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preface

This book is intended as a general introduction to modern physics for science and
engineering students.  I t  i s  wr itten at a level which presurnes a pr ior tull year’s
course in classical physics, and a knowledge of elementary differential and
integral calculus.

The mater ial  discussed here includes probabi l i ty,  relat iv ity,  quantum me-
chanics, atomic physics, statist ical mechanics, nuclear physics and elementary
particles. Some of these top&,  such as statistical mechanics and probability, are
ordinar i ly  not included in textbooks at th is  level .  However,  we have felt  that for
proper understanding of many topics in modern physics--such as quaIlturn  me-
chanics and its  appl ications--this mater ial  is  essential .  I t  i s  our opilnion  that
present-day science and engineering students should be able to worlk  quant i -
tat ively with the concepts of modern physics.  Therefore, we have attempted to
present these ideas in a manner which is logical and fair ly r igorous. A number of
topics, especial ly in quantum1  mechanics, are presented in greater depth than is
customary. In many cases,  unique ways of presentat ion are given which greatly
s implify the discussion of there topics. However, few of the developments require
more mathematics than elementary calculus and the algebra of complex nurn-
bers; in a few places, familiarity with partial differentiation will be necessary.

Unify ing concepts which ha lve  important appl ications throughout modern
phys ics,  such as re lat iv i ty,  probabi l i ty  and the laws of conservat ion,  have been
stressed. Almost al l  theoretical developments are l inked to examples and data
taken from experiment. Summaries are included at the end of each chapter,  as
well as problems with wide variations in difficulty.

This book was written for use in a one-semester course at the sophlomore  or
iunior level. The course could be shortened by omitting some topics; for example,
Chapter 7,  Chapter 12, Chapters 13 through 15, and Chapter 16 contain blocks
of material which are somewhat independent of each other.

The system of units primari ly used throughout is the meter-ki logram-second
system. A table of factors for conversion to other useful units is given in Appen-
dix 4. Atomic mass units are #defined  with the C” atom as tihe standard.

We are grateful for the helpful comments of a large number of students, who
used the book in prel iminary term for a number of years. We also thank our
col leagues and reviewers for their  constructive cr it icism. F inal ly,  we wish to ex-
press our thanks to Mrs. Ruth Wilson for her careful typing of the manuscript.

vii
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1 introduction

I .1 HISTORICAL SURVEY

The term modern physics general ly refers to the study <of  those facts and theories
developed in this century, that concern the ultimate structure and interactions of
matter, space and time. The three main branches of classical physics-mechanics,

heat and electromagnetism---were developed over a per iod of approximately
two centur ies pr ior to 1900. Newton’s mechanics dealt successful ly with the
motions of bodies of macroscopic s ize moving with low speeds, and provided a

foundation for many of the engineering accomplishments of the eighteenth and
nineteenth centur ies.  With Maxwel l’s  discovery of the displacement current and
the completed set of electromagnetic f ield equations, classical technology re-
ceived new impetus: the telephone, the wireless, electric light and power, and a

host of other applications followed.
Yet the theories of mechanics and electromagnetism were not quite consistent

with each other. According to the G&lean  principle of relat iv ity,  recognized  by
Newton, the laws of mecharlics  should be expressed in the same mathematical
form by observers in different inert ial frames of reference, which are moving with
constant velocity relat ive to each other.  The transformation equations,  relat ing

measurements in two relat ively moving inert ial  f rames, were not consistent with
the transformations obtained by Lorentz from similclr considerations of form-
invar iance appl ied to Maxwel l ’s  equations.  Furthermore, by around 1900 a
number of phenomena had been discovered which were inexplicable on the basis
of classical theories.

The first major step toward a deeper understanding of the Inature of space
and t ime measurements was due to Albert Einstein, whose special theory of rela-
tivity (1905) resolved the inconsistency between mechanics and electromagnetism
by showing, among other things, that Newtonian mechanics is  only a f i rst  ap-
proximation to a more general set of mechanical laws; the approximation is ,
however,  extremely good when the bodies move with speeds which are smal l

compared to the speed of l ight. Among the impel-tant  results  obtained by
Einstein was the equivalence of mass and energy, expressed in the famous

equat ion E =  mc2.
From a logical standpoint, special relativity l ies at the heart of modern

physics. The hypothesis that electromagnetic radiaticmn energy is  quantized in
bunches of amount hu,  where v is  the frequency and h i s  a constant,  enabled

1



2 introduction

Planck  to explain the intensity distr ibution of black-body radiation. This occurred

several years before Einstein published his special theory of relativi ty in 1905.

At about this time, Einstein also applied the quantum hypothesis to photons in an

explanation of the photoelectr ic effect. This hypothesis was found to be con-

sistent with special relativity. Similarly, Bohr’s postulate-that the electron’s

angular momentum in the hydrogen atom is quantized in discrete amounts-

enabled him to explain the positions of the spectral lines in hydrogen. These first

guesses at a quantum theory were fol lowed in the f i rst  quarter of the century by

a number of refinements and ad hoc quantization rules; these, however, achieved

only l imited success. I t  was not unti l  after 1924, when Louis de Broglie proposed,

on the basis of relativity theory, that waves were associated with material par-

t icles, that the foundations of a correct quantum theory were laid. Fol lowing

de Broglie’s suggestion, Schrodinger in 1926 proposed a wave equation describ-

ing the propagation of these particle-waves, and developed a quantitative

explanation of atomic spectral l ine intensit ies. In a few years thereafter, the

success of the new wave mechanics revolutionized physics.

Fol lowing the discovery of electron spin, Pauli’s  exclusion pr inciple was r igor-

ously established, providing the explanation for the structure of the periodic

table of the elements and for many of the details of the chemical properties of

the elements. Statist ical properties of the systems of many particles were studied

from the point of view of quantum theory, enabling Sommerfeld to explain the

behavior of electrons in a metal. Bloch’s treatment of electron waves in crystals

simplif ied the application of quantum theory to problems of electrons in solids.

Dirac, while investigating the possible f i rst  order wave equations al lowed by

relativity theory, discovered that a posit ively charged electron should exist;  this

part icle, called a positron, was later discovered. These are only a few of the

many discoveries which were made in the decade from 1925-l 935.

From one point of view, modern physics has steadily progressed toward the

study of smaller and smaller features of the microscopic structure of matter, using

the conceptual tools of relativity and quantum theory. Basic understanding of

atomic properties was in principle achieved by means of Schrodinger’s equation

in 1926. (In practice,. working out the implications of the Schrodinger wave

mechanics for atoms and molecules is difficult,  due to the large number of

variables which appear in the equation for systems of more than two or three

particles.) Start ing iIn1  1932 with the discovery of the neutron by Chadwick,

properties of atomic nuclei have become known and understood in greater and

greater detail. Nuclear fission and nuclear fusion are byproducts of these studies,

which are st i l l  extrernely active. At the present t ime some details of the inner

structure of protons,  neutrons and other part icles involved in nuclear inter-

actions are just beginning to be unveiled.

Over f i f ty of the s’o-called  elementary particles have been discovered. These

part icles are ordinari ly created by coll is ions between high-energy part icles of

some other type, usually nuclei or electrons. Most of the elementary particles are

unstable and decay illto other more stable objects in a very short time. The study



7.2 Notation and  unifs 3

of these particles and their interactions forms an important branch of present-day
research in physics.

I t  should be emphasized that one of the most important unify ing concepts in

modern physics is that of energy. Energy as a conserved quantity was well-known
in classical physics. From the t ime of Newton unti l  E instein, there were no funda-
mental ly  new mechanical  laws introduced; however,  the famous var iat ional

pr inciples of Hamilton and Lagrange expressed Newtonian lows in a different
form, by working with mathematical express ions for the kinetic and potential
energy of a system. Einstein showed that energy and momentum are closely re-
lated in relativistic transformation equations, and established the equivalence of

energy and mass. De Brogl ie’s quantum relations connected the frequency and
wavelength of the wave motions associated with part ic les,  with the part ic le’s
energy and momentum. S:hrb;dinger’s  wave equat ion i s  obtained by certain
mathematical operations performed on the expression for the energy of a system.

The most sophist icated express ions of modern-day relat iv ist ic quantum theory are
var iat ional pr inciples,  which  involve the energy of a system expressed in
quantum-mechanical form. And, perhaps most important, the stable stat ionary

states of quantum systems are states of definite energy.
Another very important concept used throughout modern physics is  that of

probabi l i ty.  Newtonian mechanics is  a str ict ly determinist ic theory; with the
development of  quantum theory,  however,  i t  eventual ly  became clear that
microscopic events could not be precisely predicted or control led. Instead, they
had to be descr ibed in terms of probabi l i t ies.  I t  i s  somewhat i ronic that proba-
bi l i ty was f i rst  introduced into quantum theory by Einstein in connection with his
discovery of st imulated emission. Heisenberg’s uncertainty pr inciple, and the

probabi l i ty interpretation of the Schradinger  wavefunction, were sources of
distress to Einstein who, not feel ing comfortable with a probabil ist ic theory, later

declared that he would never believe that “God plays dice with the world.”
As a matter of convenience, we shal l  begin in Chapter 2 with a br ief intro-

duction to the concept of probabi l i ty and to the rules for combining proba-
bi l i t ies.  This  mater ial  wi l l  be used extensively in later chapters on the quantum
theory ond on statistical mechanics.

The remainder of the present chapter consists of review and reference material

on units and notation, placed here to avoid the necessity of later digressions.

1.2 NOTATION AND UNITS

The wel l-known meter-ki loglram-second (MKS) system of units wi l l  be used in
this book. Vectors will be denoted by boldface type, Isuch  as F for force. In these
units, the force on a point charge of Q coulombs, moving with velocity v in meters

per second, at a point where the electric field is E volts per meter and the mag-
netic field is B webers per square meter, is the Lorentz force:

F = Q(E  + v x 6) (1.1)
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where v x  B denotes the vector  cross-product of  v and B.  The potent ia l  in  volts
produced by a point charge Q at a distance r from the position of the charge is
given by Coulomb’s law:

V ( r )  =  2.;
II

where the constant t0 is given by

I

(4Tto)
- 9  x  lo9 newtons-m2/coulomb2

(‘4

(1.3)

These particular expressions from electromagnetic theory are mentioned here
because they will be used in subsequent chapters.

In conformity with modern notation, a temperature such as “300 degrees
Kelv in” wi l l  be denoted by 300K. Boltzmann’s constant wi l l  be denoted by
k ,, , with

k, =  1 . 3 8  x  10mz3  j o u l e s / m o l e c u l e - K (1.4)

A table of the fundammental constants is given in Appendix 4.

1 . 3  U N I T S  O F  E N E R G Y  A N D  M O M E N T U M

While in the MKS system of units the basic energy unit is the joule, in atomic and
nuclear physics several other units of energy have found widespread use. Most of
the energies occurr ing in atomic physics are given conveniently in terms of the
elecfron  volt, abbreviated eV.  The electron volt is defined as the amount of work

done upon an electron as i t  moves through a potential  dif ference of one volt .
Thus

1 eV = e x V = e(coulombs)  x 1 volt

= 1.602 x lo-l9  joules (1.5)

The electron volt  is  an amount of energy in joules equal to the numerical value
of the electron’s charge in coulombs. To convert energies from joules to eV,  or

from eV to joules, one divides or mult ipl ies by e, respectively. For example, for a
particle with the mass of the electron, moving with a speed of 1% of the speed of
light, the kinetic energy would be

1

2
mv’! =  1 9 11

2(.
x  10m3’  kg)(3 x  lo6 m/sec)2

=  4 . 1  x  1  O-l8  ioules

4 . 1  x  lo-l8  i

=  ( 1 . 6  x  lo-I9  i/eV)

=  2 . 6  eV (1.6)

In nuclear physics most energies are of the order of several mil l ion electron

volts, leading to the definition of a unit called the MeV:
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1  MeV  =  1  m i l l i o n  eV =  106eV

=  1 . 6  x  lo-l3  ioules =  ( 1  06e)joules (1.7)

For example, a proton of rnass 1.667 x 10mz7 kg, t ravel ing with 10% of the
speed of light, would have a kinetic energy of approximately

1 ( 1 . 6 7  x  10m2’ kg)(3  x  IO7  m/sec)2
; Mv2  zx  ;i -~-

( 1 . 6  x  lo-l3  i/EheV) -

=  4 . 7  MeV (1.8)

Since energy has units of mass x (speed)2,  whi le momentum has units of
mass x speed, for mony appl ications in nuclear and elementary part icle physics
a unit of momentum called ,UeV/c  is defined in such o sway  that

1 MeV
- - lo6 e kg-m/set

C C

=  5 . 3 5 1  x  lo-l8  kg-m/set (1.9)

where c and e are the numerical values of the speed of l ight and electronic
charge, respectively, in MKS  units.  This unit of momentum is part icular ly con-
venient when working with relat iv ist ic relat ions between energy and momentum,
such as E = pc, for photons. Then if  the momenturrl  p in MeV/c  is  known, the
energy in MeV  is numerically equal to p. Thus, in general, for photons

E(in MeV)  = p(in  MeV/c) (1.10)

Suppose, for instance, that a photon hos a momentum of 10m2’  kg-m/set. The

energy would be pc = 3 x lo-l3  joules = 1.9 MeV,  after using Equation (1.7).
On the other hand, if p is expressed in MeV/c,  using Equation (1.9) we find that

p = 10m2’  kg-m/set  =  1 . 9  MeV/c

The photon energy is  then E =  pc  = (1.9 MeV/c)(c)  = 1.9 MeV.

1.4 ATOMIC MASS UNIT

The atomic mass unit ,  abbreviated amu,  is  chosen in such a way that the mass
of the most common atom of carbon, containing six protons and six neutrons in a

nucleus surrounded by s ix electrons, is  exactly 12.000000000 . .  amu.  This unit is
convenient when discuss ing atomic masses,  which are then always very close to
an integer. An older atomic mass unit,  based on on atomic mass of exactly
16 units for the oxygen atclm with 8 protons, 8 neutrons, and 8 electrons, is  no

longer in use in physics reselzrch.  In addition, a slightly different choice of atomic
mass unit is commonly useu  in chemistry. Al l  atomic masses appearing in this
book are based on the physical scale, using carbon as the standard.

The conversion from amu  on the physical scale to ki lograms may be obtained

by using the fact that one gram-molecular weight of a substance contains
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1.5 PROPAGATION OF WAVES; PHASE AND GROUP SPEEDS

Avogadro’s number, At,,  = 6.022 x 10z3,  of molecules.  Thus,  exactly 12.000 .  .  .
grams of C’* atoms contains N,  atoms, and

1 amu  = +2 x

=  1 . 6 6 0  x  10m2’ k g (1.11)

In later chapters,  many dif ferent types of wave propagation wi l l  be considered:
the de Brogl ie probabi l i ty waves of quantum theory, latt ice vibrat ions in sol ids,
light waves, and so on. These wave motions can be described by a displacement,
or amplitude of vibration of some physical quantity, of the form

#(x,  t) =  A  cos ( k x  z t z of +  4) (1.12)

where A and 4 are constants,  and where the wavelength and f requency of the
wave are given by

(1.13)

Here the angular f requency is  denoted by o = o(k),  to indicate that the fre-

quency is  determined by the wavelength,  or  wavenumber k.  Th is  frequency-
wavelength re lat ion,  01  = w(k), is  cal led a dispers ion relation and arises because
of the basic phys ical  laws sat is f ied by the part icular wave phenomenon under
invest igation. For example, for sound waves in air ,  Newton’s second law of
motion and the adiabatic gas law imply that the dispersion relation is

where v is a constant.

w = vk (1.14)

I f  the negative s ign is  chosen in Equation (1.12),  the result ing displacement

(omitting the phase constant b,)  is

#(x,  t) =  A  c o s  ( k x  - w t )  =  A  c o s
[+ - -  (f)f,]

(1.15)

This  represents a wave propagating in the pos i t ive x di rect ion.  Indiv idual  crests
and t roughs in the waves propagate with a speed cal led the phase speed,

given by

w=o
k

(1.16)

In near ly al l  cases,  the wave phenomena which we shal l  discuss obey the
principle of superposit ion-namely, that i f  waves from two or more sources

arrive at the same physical point, then the net displacement is simply the sum of
the displacements from the individual waves. Consider two or more wave trains
propagating in the same direction. I f  the angular frequency w is a function of



Propagation of waves; phase and group speeds 7

the wavelength or wavenumber, then the phase speed can be a function of the
wave length ,  and waves  of dif fer ing wavelengths t ravel at dif ferent speeds.

Reinforcement or destructive interference can then occur as one wave gains on
another of different wavelength. The speed with which the regions of constructive
or destructive interference advance is known as the group speed.

To calculate this speed, consider two trains of waves of the form of Equation
(1.15),  of the same amplitude but of slightly different wavelength and frequency,
such as

I),  = A <OS  [(k + % Ak)x - (o -F % AC+]

I,L~  = A (OS  [(k - % Ak)x - (w -- Yz Aw)t] (1.17)

Here, k and u are the central wavenumber and angular frequency, and Ak,
Ao are the differences between the wavenumbers and angular f requencies of

identity 2 cos A cos B =the two waves.  The resultant displacement,  us ing the
cos (A + 13) + cos (A - B), is

$ q = $1 + ti2 =:  (2 A cos ‘/2  (Akx - Awt) I} cos  (kx - wt) (1.18)

This expression represents a wave t ravel ing wi th  phase speed w/k,  and wi th  an
amplitude given by

2 A cos % (Akx  - Awt) = 2 A cos ‘/2 Ik (1.19)

The amplitude is a cosine curve; the spatial distance between two successive zeros
of this curve at a given instant is r/Ak,  and is the distance between two suc-

cessive regions of destructive interference. These regions propagate with the
group speed vg  , given by

AU
vg = - dw (k)

A k  ak=-o  dk

in the l imit of sufficiently small Ak.
Thus, for sound waves in air, since w = vk, we derive

“g
d (vk)=----F”Yw

d k

(1.20)

(1.21)

and the phase and group speeds are equal.  On the other hand, for surface
gravity waves in a deep seo, the dispersion relation is

w  =  {gk +  k3J/p)“2

where g is  the gravitat ional accelerat ion, J  i s  the surface tension and p is the
density. Then the phase speed is

wTw=
k

(1.23)
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whereas the group speed is

dw  1 g  +  3k2J/p
“cl=-=-d k 2 (gk + k3J/p]“2

(1.24)

I f  the phase speed is a decreasing function of k, or an increasing function of
wavelength, then the phase speed is greater than the group speed, and individ-
ual crests within a region of constructive interference-i .e. within a group of
waves-t ravel  f rom remcrr  to front, crests disappearing at the front and reappear-
ing at the rear of the group. This  can easi ly be observed for waves on a pool
of water.

1 . 6  C O M P L E X  N U M B E R ! ;

Because the use of complex numbers is essential in the discussion of the wavelike
character of part icles, a brief review of the elementary properties of complex

numbers is given here. A complex number is of the form # = a + ib, where
u and b are real  numbers and i is  the imaginary unit,  iz =  - 1. The real part
of $ is a, and the imaginary part is b:

R e ( a  +  i b )  =  a

Im(a  +  i b )  =  b (1.25)

A complex number $ ==  a + ib can be represented as a vector in two dimensions,

with the x component of the vector identified with Re($),  and the y component

Figure 1 .l. Two-dimensional vector representation of o complex number 1c/  = o + ib.

of the vector identified with Im  (Ic/),  as in Figure 1 .l . The square of the magnitude

of the vector is

( # 1’ = a2  + bZ (1.26)

The complex conjugate of $ = a + ib i s  denoted by the symbol #*  and is  ob-
tained by replacing the imaginary unit i by -i:

I,L* = a - ib
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We can calculate the magnitude of the square of the vector by multiplying $ by

its complex conjugate:

I$ 1’ =:  #*$  =  a2  - (jb)’  =  a2  + b2 (1.28)

The complex exponential  function, e”,  or exp (i@,  where 0 is a real function
or number, is of particula*  importance; this  function may be defined by the
power series

e
Ia = , + (j(q)  + 0’ + 03 + . . .

2! 3!

=km
n=O n!

(1.29)

Then, replacing i2 everywhere that i t  appears by --  1 and col lect ing real  and
imaginary terms, we find that

e i6 = 1 +s+.. .+;o-$+li)+...
( 5! )

= cos 0 + i sin /3

S ince {e”}”  =  eIns, we have de Moivre’s theorem:

e
in8 = co5  f-10  + i sin n0  = (cos 0 t i sin 01”

Since (e”)*  =  e-j8, we also love  the fol lowing identit ies:

Re eia =: ~0s  0 =  i (e’”  + em”‘)

Im  e” = sin  (j =  + (e”  - em’“)

/ e’a  12 =: ,-‘a,‘fj  = 10 = 1

1 1 a - ib_ _ _  =  ___  x -  =a -- ib.-__
( a  +  i b ) a + ib a - ib a2  + b2

The integral of an exponential function of the form ecX  is

1
ecx =  C +  c o n s t a n t

L C

and this is also valid when c is complex. For example,

s

*
$8  * e I*

e”dfj  =: % = ~- e”

0 i 0 i

(Cos  x + i sin T - 1)

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)i

=(-I  +0-l) -2
i
__  = - = .+2;

i
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The complex exponential function is a periodic function with period 2~.  Thus

et’s’zr)  =  c o s  (19  +  2 7 r )  + i s i n  (0 + 27r)

z cos 0 + i sin 0

18 (1.38)

More generally, if n is any positive integer or negative integer,

e i(o+zr”) =  e’o (1.39)

or exp (2nlri)  = 1. Conversely, i f  exp (i0)  = 1, the only possible solut ions for

0 are

B = 2rn, n  =  0,*1,~2,&3  ,... (1.40)



probability
We have ninety chances in a hundred.

Napoleon at Waterloo, 1815

The commonplace meaning of the word “chance ” i:j probably al ready fami l iar

to the reader. In everyday life, most situations in which we act are characterized
by uncertain knowledge of the facts and of the outcomes of our actions. We are
thus forced to make guesses, and to take chances. In the theory of probabi l i ty,
the concepts of probabi l i ty and chance are given precise meanings. The theory
not only provides a systematic way of improving our guesses, i t  i s  also an
indispensable tool in studying the abstract concepts of modern physics. To avoid
the necessity of digressions on probabil i ty during the later development of

stat ist ical mechanics and quantum mechanics, we present here a br ief intro-
duction to the basic elements of probability theory.

When Napoleon utterecl  the statement above, he did not mean that i f  the

Batt le of Waterloo were fought a hundred t imes, he would win i t  ninety t imes.
He was express ing an intuit ive feel ing about the outcome, which was based on
years of experience and on the facts as he knew them. Had he known enemy
reinforcements would arr ive,  and French would not,  he would have revised the
estimate of his chances downward. Probability is thus seen to be a relative thing,
depending on the state of knowledge of the observer.  As another example, a
student might decide to study only certain sectiom  of the text for an exam,

whereas i f  he knew what the professor knew-namely, which quest ions were to
be on the exam-he could probably improve his  chances of pass ing by studying
some other sections.

In physics,  quantitat ive appl icat ion of the concept of chance is  of great
importance. There are several reasons for this.  For example, it  is  frequently

necessary to describe quclntitatively  systems with a great many degrees of
freedom, such as a jar containing 10z3 molecules;  however,  i t  i s ,  as a practical
matter, impossible to know exactly the posit ions or velocit ies of al l  molecules in
the jar, and so it is impossible to predict exactly whalt  will happen to each mole-
cule. This is simply because the number of molecules is so great. It is then neces-
sary to develop some approximate, statistical way to describe the behavior of the
molecules, us ing only a few variables. Such studies Jorm  the subject matter of a

branch of physics called stofistical  mechanics.
Secondly,  s ince 1926 the development of quantum mechanics  has indicated

that the description of mechanical propert ies of elementary part icles can only
be given in terms of probclbilities. These results frown  quantum mechanics  have

11
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profoundly affected the physicist’s picture of nature, which is now conceived and
interpreted using probabil i t ies.

Thirdly, experimental measurements are always subject to errors of one sort
or another,  so the quant i tat ive measurements we make always have some un-
certaint ies associated with them. Thus, a person’s weight might be measured as

176.7 lb, but most scales are not accurate enough to tel l  whether the weight
is 176.72 lb,  or 176.68 lb, or something in between. Al l  measuring instruments
have s imi lar l imitations. Further, repeated measurements of a  quant i ty  wi l l

f requently give dif ferent values for the quantity.  Such uncertaint ies can usual ly
be best described in telrms  of probabilities.

2.1 DEFINITION OF PRCIBABILITY

To make precise quaniii,tative  statements about nature, we must def ine the con-
cept of probabi l i ty in a quant i tat ive way.  Cons ider  an exper iment having a

number of different possible outcomes or results. Here, the probabil ity of a par-
ticular result is simply the expected fraction of occurrences of that result out of a
very large number of repetit ions or tr ials of the experiment. Thus, one could ex-
perimental ly determine the probabil i ty by making a large number of tr ials and
finding the fraction of occurrences of the desired result.  I t  may, however, be
impractical to actual ly repeat the experiment many t imes (consider for example
the impossibi l i ty of f ighting the Battle of Waterloo more than once). We then
use the theory of probability; that is a mathematical approach based on a simple
set of assumptions, or postulates, by means of which, given a l imited amount of

information about the s i tuation, the probabi l i t ies of var ious outcomes may be
computed. It is hoped that the assumptions hold to a good approximation in the

actual physical situatiomn.
The theory of probabi l i ty was or iginal ly developed to aid gamblers interested

in improving their  inc~ome,  and the assumptions of probabi l i ty theory may be
natural ly i l lustrated v&th  simple games. Consider f l ipping a s i lver dol lar ten
t imes. I f  the s i lver dol lar i s  not loaded, on the average it  wi l l  come down heads
five t imes out of ten. ‘The fraction of occurrences of heads on the average is

‘,‘,,  or % Then we say that probabi l i ty  P(heads)  of f l ipping CI  head in one try is
P(heads)  =  %  .  S i m i l a r l y ,  t h e  p r o b a b i l i t y  o f  f l i p p i n g  a  t a i l  i n  o n e  t r y  i s
P(tails) =  % .

In this example, it is assumed that the coin is not loaded. This is equivalent to
saying that the two s ides of the coin are essential ly identical,  with a plane of

symmetry; It I S  then reasonable to assume that s ince neither s ide of the coin is
favored over the other, on the average one side will turn up as often as the other.
This i l lustrates an important assumption of probabi l i ty theory: When there are
several  poss ible alternat ives and there is  no apparent reason why they should
occur with different frequencies, they are assigned equal probabil i t ies. This is
sometimes called the postulate of equal a priori probabilities.
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2.2 SUMS OF PROBABILITIE’S

Some general rules for combining  probabi l i t ies are also i l lustrated by the coin-
f l ipping experiment. In every tr ial ,  i t  i s  certain that either heads or tai ls  wi l l  turn
up. The fraction of occurrences of the result “either heads, or tails” must be unity,
and so

P(either  heads or tai ls)  = 1 (2.1)

In other words, the probability of an event which is certain is taken to be 1.

Further, the fraction of lheads added to the fraction of tai ls  must equal the
fraction of “either heads or tails,” and so

P(either heads or tai ls)  = P(heads) + P(tails) (2.2)

In the special case of the fak  coin,  both P(heads) and P(tails) are ‘/:t,  and the
above equat ion reduces to 1 = % + %.

M o r e  g e n e r a l l y ,  i f  A ,  B, C,.  .  . are events that occur with probabi l i t ies
P(A), P(B), P(C), . . . , then the probability of either A or B occurring will be given
by the sum of the probabilities:

P(either A or B) = P(A)  +  I’(B)

Similar ly, the probabil i ty of elither  A or B or C occurr ing wil l  be

(2.3)

P(either A or 6 or C) = P(A)  +  P(B)  + P(C) (2 .4)

Here it is assumed that the labels A, 6, C, . . . refer to mutually exclusive alterna-
t ives,  so that i f  the event A occurs,  the events B,  C, .cannot  occur, and so on.
The above relat ion for combining probabi l i t ies s imply amounts to addit ion of the
fractions of occurrences of the various events A, B and C, to f ind the total  f rac-
tion of occurrences of some one of the events in the set A, 6, C.

These relations may easi ly be general ized for any number of alternatives. For
example, consider an experiment with s ix possible outcomes, such as the s ix
possible faces of a die which could be turned up wheil  the die is thrown. Imagine
the faces numbered by an index i that var ies f rom 1 to 6,  and let  P,  be the
probabi l i ty that face i turns up when the die is  thrown. Some one face wi l l

definitely turn up, and so the total probability that some one face will turn up will
be equal to unity,  Also, the probabi l i ty that some one face wi l l  turn up is  the
same as the probability that either face one, or face two, or face three, or,. . . ,
or face s ix wi l l  turn up. This  wi l l  be equal to the sum of the individual probabi l i -
t ies P,. Mathematial ly ,

1 =f:P,
,=I

(2.5)

In words, this equation expresses the convention that the probability of an event
which is certain is equal to .I, It also utilizes a generalization  of the rule given in

Equat ion (2.3),  which says the probabil i ty of either A or B is the sum of the
probabil it ies of A and of B.
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2.3 CALCULATION OF PROBABILITIES BY COUNTING

Given a fair die, there is no reason why the side with the single dot should come
up more often than the side with five dots, or any other side. Hence, according to

the postulate of equal a pr ior i  probabi l i t ies,  we may say that P, = P , ,  and,

indeed, that P, = P2  = P3  = P,  = P,  =:  P,.  Then ~~=I  P, = 6P,  = 1, or

PI  =  ‘/,  a n d  h e n c e  .P,  =  ‘/,  f o r  a l l  i .  T h i s  s i m p l e  c a l c u l a t i o n  h a s  y i e l d e d
the numerical values of the probabi l i t ies P,.  A general rule which is  very useful
in such calculations may be stated as follows:

The probability of a particular event is the ratio of the number of ways this event
can occur, to the fatal  number of ways o/l possible events can occur.

Thus, when a die is thrown,, six faces can turn up. There is only one face that has
two dots on it. Therefore, the number of ways a two dot face can turn up, divided
by the total number of ways all faces can turn up, is ‘/,  .

I f  one card is  drawn at random from a pack of cards,  what is  the probabi l i ty
that it will be the ace of spades? Since the ace of spades can be drawn in only
one way, out of a total of 52 ways for all possible cards, the answer is

p  =  (1 ace of spades)

(52 possible cards)

o r  P  =  %,. Likewise, i f  one card is  drawn from a pack, the probabi l i ty that i t
wi l l  be an ace is  (4 aces),1(52  possible cards) or P = “/:,  =  I/,,.  We can also
consider this to be the sum of the probabilities of drawing each of the four aces.

2.4 PROBABILITY OF SEVERAL EVENTS OCCURRING TOGETHER

Next we shal l  consider o s l ightly more complicated situation: f l ipping a coin
twice. What is  the probabi l i ty of f l ipping two heads in succession? The possible
outcomes of this experiment are listed in Table 2.1.

TABLE 2.1 Different possible
o~utcomes  for flipping a coin twice.

Krst  F l i p Second Flip

heads
heads
tai ls
tai ls

heads
tai ls
heads
tai ls

Since there are two possible outcomes for each f l ip, there are two t imes two or
four possible outcomes for the succession of two coin f l ips. Since there is no
reason to assume that one of these four outcomes is more probable than another,

we may assign each of the four outcomes equal probabil i t ies of VI. The tota l
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number of outcomes is the product of the number of outcomes on the first flip and
the number of outcomes on the second flip, while the number of ways of getting
two heads is  the product of the number of ways of gett ing a head on the f i rst
flip and the number of ways of getting a head on the second flip. Thus,

P(two heads in succession)

=
t

# of ways for head,;  on flip 1--~  x
# of outcomes on flip 1 I t

# of ways  for heads on flip 2_-
# of 0’Jtcomes  on flip 2

= P(heads on flip 1) x P(heads on flip 2)

1 1 1=- X-=-
2 2 4

(2.7)

lp/e  I f  a die is rol led twice in suc’:ession,  what is  the probabil i ty of rol l ing the snake

eye both times?

t;on  P(snake eye twice) = (‘/,)  x (I/,) =  ‘/,b.

T h e s e  r e s u l t s  i l l u s t r a t e  allother  g e n e r a l  p r o p e r t y  o f  p r o b a b i l i t i e s :  I f  t w o
events  A and 6 are independent-that is ,  i f  they do not inf luence each other
in any way-then the probabi l i ty  of  both A and 6 occurrin’g  is

P(A and 6) = P(A)P(B) (2.8)

In words,  the probabi l i ty of two independent events both occurr ing is  equal to
the product of the probabilities of the individual events.

nple If you throw a six-sided die and draw one card from a pack, the probability that
you throw a six and pick an ace (any ace) is equal to

Another way to obtain the answer is to divide the number Iof  ways of getting the
s ix  and any ace (1 x  4),  by the total number of ways of gett ing al l  possible

results (6 x 52),  or

in this case.

(1x4) 1

(6 x 52) = 78

2.5 SUMMARY OF RULES FOR CALCULATING PROBABILITIES

We may summarize the important features of the probabil i ty theory disf:ussed  so

far in the fol lowing rules:
(1) The probability of an event that is certain is equal to 1.
(2) In a set of events that  can occur in several  ways,  the probabi l i ty  of  a

particular event is the number of ways the particular event may occur, dilvided  by
the total number of ways all possible events may occur.
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(3) (Postulate of equal a pr ior i  probabi l i t ies):  In the absence of any contrary
information, equivalent poss ibi l i t ies may be assumed to have equal probabi l i t ies.

(4) I f  A and B are mutual ly exclus ive events that occur with probabi l i t ies

P(A) and P(6), then the probabil i ty of either A or 6 occurring is the sum of the
indiv idual  probabi l i t ies :

P ( A  o r  6) =  P ( A )  +  P ( B ) (2.9)

(5) I f  A and 8 are independent events that occur with probabi l i t ies P(A)
and P(B),  then the probabi l i ty of both A and 6 occurr ing is the product of the
indiv idual  probabi l i t ies :

P(A and B) = P(A)P(B) (2.10)

2.6 DISTRIBUTION FUNCTIONS FOR COIN FLIPPING

In order to introduce the idea of a distr ibut ion function, we continue with some
examples of coin-tossing. Distr ibution functions are functions of one or more inde-
pendent variables which label the outcomes of some experiment; the distribution
functions themselves are proport ional to the probabi l i t ies of the var ious out-
comes ( in some case’s they are equal to the probabil i t ies).  The variables might
be discrete or continuous. Imagine, for example, a s ingle experiment consist ing

of f l ipping a coin N times, when N might be some large integer. Let nH  be the
number of t imes heads turns up in a part icular experiment. I f  we repeat this
experiment many t imes, then nH can vary f rom exper iment to exper iment.  We

shal l  calculate the probabi l i ty that n,, heads wi l l  turn up out of N f l ips;  this
probabi l i ty wi l l  be denoted by P,.,  (rt”). H ere the independent var iable i s  nH;
and the quant i ty  P,{n,),  which for f ixed N is a function of n,,, i s  an example

of a distr ibution function. In this case, the function only has meaning if  nH  i s  a
nonegative integer not glreater  than N.

To get at the problem of f inding P,(nH),  we define PHI  to be the probabi l i ty
of gett ing a head in the f i rst  toss and PT1 to be the probabi l i ty of gett ing a tai l
(both are % for a fair coin but differ from,  % for a weighted coin). Then P,,  +
P T1 = 1. Likewise folr the second toss, P HZ  $-  Pr2  =  1 .  I f  t h e s e  t w o  e x p r e s s i o n s

are mult ipl ied together, we get P HlPHP  +  PHIPK  +  PTlPH2  +  PT1PT2  = 1.
Note that these four ,termls correspond to the four possibilities in Table 1, and that
each term gives the probabi l i ty of gett ing the heads and tai ls  in a part icular

order.
In N tosses,

(PHI  +  PTI)(PH?  + Pn)**-(PHN  + PrrJ)  =  1 (2.11)

and when the products on the left  are carr ied out,  the var ious terms give the
probabil i t ies of gett ing heads and tai ls  in a part icular order. For example, in
three tosses, the product of Equation (2.1 1) contains eight terms, one of which is
PT,PH2PT3.  This  i s  equal to the probabi l i ty of gett ing a tai l ,  a head and a

tail, in that order, in three tosses. If we were interested only in the probability of
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gett ing a given total  number of heads nH in N tosse,j  regardless of order, we

%would  take al l  the terms which contain nH  factors of the form P,,,,  regardless of
the subscr ipt numbers,  and s imply f ind their  sum. This  i s  equivalent to dropping
all  numerical subscripts and combining terms with s imi lar powers of P,.

I f  the express ion on the left of the equation, (P, t Pr)”  = 1 ,  i s  expanded,
the term proport ional to (PH)“H(PT)N-nH  .I S  the probabil i ty of gett ing nH  heads

ond N - n,,  tails in N tosses, regardless of order. I\ccording  to the binomial
theorem.

(PH  + Pry  = 2
t

N !

1

“”  N-“H

“H=o  [rlH!(N  - rlH)!]  PH  pr (2.12)

where zero factor ial  (O!) is  defined to be one and n! = n(n  - l)(n  - 2) * * *
3.2~1.  The reader may recognize  the binomial coefficient N!/n,!(N  - n,) !  as
the number of ways of selecting n,., objects from a total of N objects, regardless
of order, or in our case, the number of ways of getting nH  heads in N tosses. Thus,
a  given term is the total number of different ways of gett ing nH  heads t imes the
probabi l i ty,  (P,.,)“H(PT)Nm”H,  of getting nn heads in a’ne  of these ways. There-
fore, in the special case of a fair coin when P,, =  PT =  !/2, the probabi l i ty of

getting nH  heads in N tosses, regardless of order, is

N ! 1
PN(“H)  = ;,,!(N  - n,)!  2N

In F igures 2.1 through 2.4, the probabil i ty P,.,(nH)  of Equation 2.13 is plotted
as o function of nH  for N = 5, ‘I 0, 30 and 100. It may he seen that as N becomes
larger,  the graph approaches a continuous curve with a symmetr ical bel l - l ike
,shape. The function P,.,(n,)  i:, cal led a probabi l i ty disfribution  f u n c t i o n ,  because

id gives a probability as a function of some parameter, in this case n,,.

lple  l (a) Consider a coin which is loaded in such a way that the probabi l i ty  PH  of

f l ipping a head is  PH  = 0.3. The probabil i ty of f l ipping a tai l  i s  then PT = 0.7.
‘What is the probability of flipping two heads in four tries?

lion  Use Equation (2.13) with N = 4,  nH  = 2; the required probabi l i ty is

;I& (PH)‘(P,)*  =  0 . 2 6 4 6

IPI~ 1 (b) What is the probability <of  getting at least one head in four tries, i.e. either
one or two or three or four heads?

‘ion The probabi l i ty of gett ing at least one head is  the same as the probabi l i ty of

not gett ing four tai ls,  which is one minus the probabil i ty of gett ing four tai ls.
In this case,

P (getting al l  four tai ls) = & (P,,)“(P,)4 = ~0.2401;

Therefore,

P (at least  one head) = 1 - 0.2401 = 0.7599
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Figure 2.3. Probability of getting nH heads Figure 2.4. Probobility of getting nH heads
i n 30 tosses. in 100 tosses.
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p/e  2(a) I f  the probabil i ty of gett ing ail  the forms f i l led out correctly at registration
is 0.1, what is the probabil i ty of gett ing al l  forms f i l led out properly only once
during registrations in three successive terms?

ion The probability of not getting the forms correct is 0.9 each time. Then the desired
probabi l i ty is

{is (0.1)‘(0.9)’  =  0 . 2 4 3

p/e  2(b) What is the probabil ity of f i l l ing out the forms correctly in one or more of
the three registrations?

ion This is one minus the probability of doing it incorrectly every time or

1  - (0.9)3  =  0 . 2 7 1

!.7 DISTRIBUTION FUNCTIONS FOR MORE THAN TWO POSSIBLE
OUTCOMES

Suppose we consider another exper iment in which therl?  are four possible results,
A, B, C, and D, in o single tricrl. The probabil i t ies for each result in this tr ial ore,
respectively,  PA,  Pg, PC  and Pr,  = 1 - PA  - Ps  - P,. I f  the quantity on the left
side of the equation

(PA + PB  + PC + PD)N  = 1 (2.14)

is expanded, the term proportional to

is the probabil i ty that in N tr ials result A occurs nA  times, 6 occurs ‘n,  t imes,
C occurs nc  t imes and, of course, D occurs no  t imes, with nr, = N -~  nA  - ns - nc.

A general ized mult inomial expansion may be written OS  fol lows:

(x + y + z + W)N =
y’‘A

, [

N ! 1p!q!r!(N  - p - q  - r)! xpyqz’w
N - p - q - ,

p+pdT,rrlN

(2.15)

T h e  p r o b a b i l i t y  t h a t  A  occclrs  nA  t i m e s ,  6 o c c u r s  n,,  t i m e s ,  a n d  C  o c c u r s  nc
times in N tr ials is therefore

PN(nA,nBtnC)  =
N!

nA!nB!nc!l:N - flA  - nn - nc)! 1
(2.16)

The general izotion to the ca’se  of any number of alternat ives in the results  of a

single tr ial  is  obvious.
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2 . 8

In throwing a die three t imes, with s ix poss ible outcomes on each throw, the
probability of throwling  two fours and a three is

E X P E C T A T I O N  V A L U E S

One of the important uses of a probabil i ty distr ibution function ar ises in the
computation of averages. We shal l  obtain a general formula for the computa-
t ion of an average us ing a dist r ibut ion funct ion.  Suppose that over several
months a student took ten examinations and made the following grades: 91 once,
92 twice, 93 once, 94 four t imes, 95 twice. Figure 2.5 is a plot of the number,

5-

90 91 92 93 94 95

IFigure  2.5. Grade distribution function.

f(n), of times the grade n was made, as a function of n. This function f(n) is also
cal led a distr ibut ion function, but i t  i s  not a probabi l i ty distr ibut ion function,
since f (n)  i s  the number of occurrences of the grade n, rather than the proba-
bil ity of occurrences of the grade n. To compute the average grade, one must
add up all the numerlical  grades and divide by the total number of grades. Using
the symbol ( n )  to d enote the average of n, we have

91 + 92 t- 92 + 93 + 94 + 94 + 94 + 94 + 95 + 95(n) = -__
1+‘1+1+1+1+1+1+1+1+1

(2.17)

In the numerator, the grade 91 occurs once, the grade 92 occurs twice, 94 occurs
four t imes, and, in general, the grade n occurs f(n) t imes. Thus, the numerator
may be written as (1 x 91) + (2 x 92) + (1 x 93) + (4 x 94) + (2 x 95) or,
in terms of n and f(n), the numerator is c n f(n),  where the summation is  over
al l  possible n. In the denominator, there is a 1 for each occurrence of an exam.
The denominator is  then the total number of exams or the sum of al l  the f(n).

Thus, a formula for the denominator is c f(n),  summed over al l  n.  Now we can
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write a general expression iq terms of n and f(n) for the average value of n. It is

c n f(n)

(” = 5 f ( n )
(2.18)

In this case, the average grtgde turns out to be 93.4. If the student were to take
several more examinations,  then, on the basis  of past (experience, i t  could be
expected that the average grade on these new examinat ions would be 93.4.
For this reason, the average, (n),  .I S a so called the expectafion  value. Expecta-I
tion values are of considerable importance in quonturn mechanics.

As a further example, suppose you made grades of 90,  80, and 90 on three
examinations.  The expectation  value of your grade Nould  be (80 + 2 x 90)/

( 1  +  2 )  =  8 6 . 6 7 .

2 . 9  NORMAUZATION

For any distribution function f(n), the value of the reciproc:al  of the sum c f(n) is
cal led the normalization of the distr ibution function. I t  1:  f(n) ==  N,  we say that
f(n) i s  normal ized to the value N, and the normalization is l/N. S ince the sum
of the probabi l i t ies of al l  events is  unity,  when f(n) is  a probabi l i ty distr ibut ion
function, it is normalllzed  to ‘Jnity:

Cf(n)  =  1

Equation (2.18) refers to the expectat ion of the ndependent var iable, (n).
However,  in some appl ications i t  might be necessary to know the expectation
values of n2, or n3, or of some other function of n. In general, to find the average

or expectation value of a function of n, such as A(n), one rnay use the equation:

c n n
( A ( n ) )  =  $p (2.20)

.lO EXPECTATION VALUE OIF  THE NUMBER OF HEADS

For a more detai led example of an expectation valut:  calculat ion, we return to
the fl ipping of a coin. As was  seen before, if  a number of experiments are per-
formed in each of which the coin is flipped N times, we  would expect that, on the

average, the number of heads would be N/2, or (17~) = N/2. To obtain this
result mathematically using Equation (2.18),  we shall evaluate the sum

(nH)  = 2 hP,(nH)““TO
(2.21)
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Herexf(n)  =  cP+,(n,,)  =  1 , since P,.,(n,)  is a probability distribution function

‘wi th a  normal izat ion Iof  un i ty .  There fore , the  denominator  has  been  omi t ted .

F r o m  E q u a t i o n  (2.13),  PN(n,) =  N!/[2N n,!(N  - n,,)!!  for  a  fa ir  coin.  Hence,

n,N!
(nH)  = C ~

[2NnH!(N  - nH)!j
(2.22)

‘The result is indeed N/:2.  The reader who is not interested in the rest of the details

of the calculation can skip to Equation (2.26).

We have to  evaluate  the  summat ion in  (n,+) = ~~~=on,N!/[2NnH!(N  - n,)!].

We can calculate this by a little bit of relabeling. First, note that the term corre-

sponding to  nH  = 0 does not contribute to the sum because the factor nH  is inside

the sum, and in the denominator there is O!, which is defined to be 1. Therefore,

instead of going from 0 to N, the sum goes effectively from 1 to N. It is easily

verified that after usinlg  the following identities:

N! =  N(N - I)!; s = ’ ; (N - n,)!  = (N - 1 - [nH  - II)!
nH (nH  - l)!

a n d

(2.23)

p = 2.-p (2.24)

Then factoring out an N/2, we get

(“‘)  = :i N “$,  [~N-‘Q,,  - ,&-m’;!  - [nH  - I])!]
(2.25)

Then,  for  m = n,, - 1 ,  the  summat ion  over  nH  f rom 1  to  N  can  be  rewr i t ten

as follows:

N - l

(n,,)  =  i N  g0  F-$~--‘),!  _ m)!,  = i N(i +  1)“’  = i N (2.26)

This result agrees with our intuitive idea of an expectation value. The result does

not  mean that ,  in  an actual  exper iment ,  heads wi l l  come up exact ly  % N  t imes ,

but  heads wi l l  only  c:ome  up ‘/2  N  t imes on the  uverage  af ter  repeat ing the

N tosses many times.

2.11 EXPERIMENTAL DETERMINATION OF PROBABILITY

Our  prev ious  d iscuss ion  has  suggested  that  we  could  exper imenta l ly  measure

the probability of some  particular result by repeating the experiment many times.

That is, the probability of an event should be equal to the fractional number of

times it occurs in a series of trials. For example, if you know a coin is loaded, you

cannot  assume that  P(heads)  = P(tails),  and i t  might be dif f icult  to calculate

these probabilities theoretically. One way to find out what P(heads) is, would be
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to flip the coin many times, compute n,/N,  and set the result equal to P(heads).
Thus, if N is very large, we should find that

!k (nH)  - /‘(heads)=--
N N

(2.27)

0.4

%
N

ti

0.6 -

0.5

0.3

N

Figure 2.6. Graph of fractional number of t eads in N tosses.

Figure 2.6 is a graph of n,/N as a function of N in an actual experiment. Note
the logarithmic horizontal scale. From the graph we see that for

N=l,  ““=o;
N

N =  1 0 ,  “H=O.3;
N

N = 100, “”  = 0.52
N

As N becomes very large, it is seen that n,/N  tends to % . In this case, therefore,

P(heods)  =  (n,>  =  lim !k = 1
N N-X  N 2

(2.28)

Although, as N -  ~5, one would obtain a unique value for  P(heads),  one may
see from the graph that in actual practjce  the value of n,/N  for any finite N may

be greater or less thman  ‘I?, and general ly could osci l late about % in some ran-
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dom fashion; the amplitude of these osci l lat ions should decrease, however,  as N
increases.

2.12 EXPERIMENTAL ERROR

Since, in practice, we have to stop an experiment after some f inite number of
repetit ions of the measurements, we would l ike to know how much error we are
making on the average when we do this .  In F igures 2.7 and 2.8 are given the

l&l/N N=z:4 n,/N N - 1 0

l.O--
1

0
1 2 3 4 5 6 7

Experiment number Experiment number

Figure t2.7. F igure  2 .8 .

actual f ractions n,/N,  obtained in several  repetit ions of an exper iment in which
a coin was f l ipped I N t imes. In the f i rst  experiment, N = 4; in the second,
N = 10.  One can see qual i tat ively that the points  in the N =  10 case l ie gen-

eral ly closer to the mean value of % than they do in the N = 4 case. Judging
roughly from the scatter of the values of n,,lN  in Figure 2.7, one might expect

the error made in stopping at N = 4 to be about 0.2, whereas in F igure 2.8 i t
would be sl ightly smaller.  Thus, general ly speaking, we expect the error to

decrease as the number of repetitions of the measurement increases.

2.13 RMS DEVIATION FROM THE MEAN

How can we define a precise numerical measure of the error? One way would be
to average the distances of the points n,/N  from the mean value (nH)/N.  In using
such a measure we would have to be careful  to take the magnitude of the
distances; if we took !some distances as positive and others as negative, we might

calculate that the error was zero, which is not reasonable. A s imilar measure of
error which is better ior many purposes is  the square root of the average of the
squared differences of the points from the mean value. This is  cal led the root

mean squared deviation from  the mean.
To i l lustrate what is  meant, let us imagine that a coin is  f l ipped N t imes. The

mean  for a large number of experiments N should be M N. Consider the

difference nH  - (nH)  for a single experiment with N f l ips. This difference is

called the deviafion from the mean. The squared deviation from the mean would

b e  j u s t  (nH  - (nH))“.  H e r e  (nH), as usual,  i s  the average of nH  over  many
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experiments,  and II,,  i s  the result  for any one experiment. I f  we repeated the
exper iment many t imes and averaged this  squared deviat ion f rom the mean,
(n,,  - (n”))*,  over the exper iments to obtain ((n,,  - (nH:))‘),  then this averaged

s q u a r e d  d e v i a t i o n  f r o m  t h e  m e a n  w o u l d  b e  a  m e a s u r e  o f  t h e  s q u a r e  o f
t h e  e x p e c t e d  e r r o r .  T h u s ,  o m e a s u r e  o f  t h e  e x p e c t e d  e r r o r  w o u l d  b e

V/h - (n,,))‘),  t h e  r o o t  mean  s q u a r e d  deviaticn  f r o m  t h e  m e a n ,  o r  r m s

error  for short.
The mean squared error may be reduced to another form which is also some-

times useful. First, write out the square as follows:

1 nH  - (n,))’  = fli - 2n,(n,)  i- (n,J (2.29)

I f  we take the average of tloth  s ides of this  equation, then, s ince the average
of a sum of terms may be computed term by term, we have

(2.30)

But f rom Equation 2.20, the average of a constant is  iust the same constant,
s o  ((#) =  (“H)Z.  A l so f r o m  E q u a t i o n  2 . 2 0 ,  f o r  a n y  c o n s t a n t  C  w e  h a v e
(CnH)  =  C(n,)and  hence (?n,,(n,))  =  2(n,)(n,).  Combining these results,  we
obtain

((h - -  (%/))2)  =  (4) - (q (2.31)

This result is  quite general,  for the mean squared err’sr  of  any quant i ty ;  i t  was
der ived here us ing the variable  I-I,,, but the der ivat ion would be the same for
any other  var iable.  l-he equat ion states that the mean  squared deviat ion f rom

the mean is equal to the average of the square of the variable, minus the square
of the average of the variable.

.14 R M S  D E V I A T I O N  F O R  C O I N  F L I P P I N G

To i l lustrate the use of rms error as a measure of el.ror, we shal l  consider the
case of coin flipping with a fair coin, and use the probability

P,i,nff)  =
N ! 1

n,!(N  - n,.,)!  p

to calculate the rms error as CI  function of N. We knolv that  (nH)  = N/2; hence,
in this case, (n,.,)’  = N2/4.  To calculate (II;),  we need to find

“go  n,!(Z“‘!,,)!  $

The result of the calculation IS ni  = VI N2 + % N. Anyorle not interested in the

details of this calculation should skip to the result in Equation 2.38.
As in the evaluation of nH  previously,  we shal l  use o relabel l ing tr ick to evalu-

ate the sum. We write n,?,  := nH(nH - 1) + nH, arid  use the fact that the

average of a sum is  the sum of averages. Then (nj!+:)  =  (nH(nH  - 1)) + (nH).
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S i n c e  w e  a l r e a d y  k.now  t h a t  (nn)  =  Yz N ,  w e  n e e d  t o  c a l c u l a t e  o n l y

(nH(nH  - 1 ) ) .  T h i s  i s

(nH(nH  - -  1 ) )  =  2 nH(nH - l)PN(nti)
““=O

(2.33)

The terms corresponding to n,,  = 0  and nH  = 1 do not contr ibute because of
the presence of the fac:tor  nH(nH  - 1) in the numerator. The sum then goes only
over  values of  n,,  from 2 through N. Now we wil l  use the fol lowing identit ies to

reduce the sum to something we can evaluate:

nH(nH  - 1) 1

n , ! (nH  - -  2)!
; N !  =  N ( N  - l)(N - 2)!;

(N  - n,)!  =  (N  - 2 - [II,,  - 2])!;  2N =  4*2N-2  (2.34)

Factoring out ‘/4  N(N - l),  we get

(nH(nH - I)) ahf(N ( N - 2)!= - 1) 2

nH=2 [2N-2(nH - - 2)!(N -- 2 - In, - 2])!]

(2.35)
The sum may be evaluated by letting m = nH  - 2. Then

(2.36)

Collecting the results, we have

(ni) =  (nH(nH - 1 ) )  +  (nH)  =  $N(N  - 1) +  fN =  ~N(N  +  1) (2.37)

Finally, the root mean squared deviation from the mean is

Gy (nH))‘)  =z  VT;)  - (n,.,)’  =  .{s+ 1) - aN2  = k  fi

(2.38)

This rms deviat ion from the mean is  the approximate number of heads by
which we could usual ly expect the observat ion of nH  to differ from the expecta-
t i o n  v a l u e ,  (nH)  =  N / 2 , in one series of N f l ips. We could call  this the ap-
proximate error in f inding the expectation value experimental ly i f  we do one
experiment with N f l ips. The fractional error in N tosses, i .e. the error in f inding
(nH)/N,  is then the error divided by the number of tosses, or l/N t imes the rms

deviation. The fractional error is  therefore Yz  m/N = 1/(2~%).  Thus,  in  at-

tempting to measure a probability such as P(heads), we would have to say that
after N flips in which nH  heads turned up, the probability would be equal to the
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fraction nH/N  but with a fractional error l/(26). Hence, we would wr i te
P ( H e a d s )  =  (nH/N)  f l/(2%‘%).

mpk 1. A f t e r  o n e  f l i p  o f  a  f a i r  c#Din, what would be the rms error in the measured
probabi l i ty?

ution  Yz  /vx  =  % ( 1 )  =  0 . 5 .

mp/e 2.  How many t imes would you have to f l ip the coirl  to reduce the uncertainty
in the measured probability from 0.5 to 0.05?

ufion  0 . 0 5  =  % /vTi o r  N  =  ‘/I  /(0.05)’  =  1 0 0  f l i p s .

In F igure 2.6 the dashed l ines are drawn at %  =I=  1/2/.fl  to give an idea of
the limits within which one could expect the graph to vary. This square root type

behavior of an error occurs in many other places in physics. For example, in
experiments in which the rate of decay of radioactive substances is  measured,
one simply counts the number N of decays in some time t. The measured counting
rate is then N/f, and it can be shown by arguments very similar to those for coin
f l ipping that the f ract ional terror  in the measured rate is of order of magnitude
l/ v’%  Thus, to obtain good stat ist ics, i .e. low error, in counting experiments,
it  is necessary to take large numbers of counts. To get the counting rate correct
to three signif icant f igures or a fractional error of 0.001, one would need

around one mil l ion cfounts.

1.15  ERRORS I N  A  COIN-FLIPIPING  E X P E R I M E N T

We may now compare this theory of the rms error with the experiments depicted
in Figures 2.7 and 2.8. In Figure 2.7, each experiment (corresponds to N = 4.
F o r  t h i s  v a l u e  o f  I V ,  t h e  t h e o r y  g i v e s  t h e  f r a c t i o n a l  r m s  d e v i a t i o n  t o  b e
% /fi = 0.25. Next,  we wi l l  use the data of F igure 2.7 to f ind the experimental
rms fractional deviation for this part icular set of trai ls .  To do this,  we simply cal-
culate the square root of ,the  average of [(nH/N)  - (n,/N)]’  over  the seven
experiments. The exipectation  va lue  (nH/N)  i s  just the average of the results of
these experiments and is 0.571. We may then obtain roblIe  2.2:

TABLE 2.2
~--

Experiment Number Deviation (Deviation) ’
~--

1 0.179 0.0320
2 0.179 0.0320
3 - 0 . 0 7 1 0.0050
4 -0.071 0.0050
5 0.179 0.0320
6 -0.321 0.1030
7 0.071 0.0050

!ium = 0.2140
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The average deviat ion squared i s  then 0.21417  = 0.0306, and the rms deviat ion

is -06 = 0.175. Based on these seven experiments, the result of the f i rst
experiment could the11  be expressed as

nH
077

=  0 . 7 5 0  f 0 . 1 7 5 (2.39)

Likewise for the third experiment, (n,/N)  = 0.500 & 0.175. This is in reason-
able agreement with the theory, which supposes a very large number of experi-
ments instead of seven and gives for the case N = 4,

=  0 . 5 0 0  + 0 . 2 5

The reader can perform simi lar calculations for the data given in Figure 2.8
in the case N = 10. Here the experimental result for the rms deviation from the
mean is 0.105. The theoretical result is

=  0 . 5 0 0  zt  0 . 1 5 8

2.16 ERRORS IN AVERA.GES  OF REPEATED EXPERIMENTS

Errors of the type we have descr ibed, depending on l/a,  also ar ise when

repeating exper iments which measure the average value of some physical
quantity, such as the diameter of a cylinder or the length of an object. Suppose
that an experiment is  performed in which the quantity x is  measured N t imes. I t
must be kept in mind here that a s ingle experiment means N measurements of
the value of the quantity, and the result of an experiment is the average value
of the quantity for these N measurements. Then we ask: What is  the error in the
average value? If the experiment is repeated, it should give a new average value

that does not differ from the previous one by much more than the error.
What is being measured here is an average itself. This average is not the same

as the expectation vallue.  The expectation value would be equal to the average
if the number of mearurements,  N, approached infinity.

Suppose that the ,N  individual measurements in one experiment are x1  ,x2,
.  .  , x,.,.  The result of the experiment is  then (x1  + x2  + * * * + x,.,)/N. sup-

pose the true, or expectation, value of the quantity is X. This would be the aver-
age of an extremely large number of measurements. The deviation from the true
value X in a particular experiment is

x,  + x2 + *-*  + XN- ~- - X
N

We can then get a measure of the experimental error by computing the rms error,
averaged over many experiments of N measurements each. Cal l  the error EN.
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Then

To i l lustrate how this may be worked out, we shal l  take the case N ==  2, only
two measurements in an experiment. Then

EN =

= (((x,  - X)‘)  + 2((.K,  - X)(x,  - x,) + ((x2 - X)‘)]----1
N2

f o r  N  =  2 .  C o n s i d e r  t h e  t e r m  ((x1  - X ) ( x ,  - X ) ) .  W h e r e a s  c~  t e r m  l i k e
( ( x ,  - X ) ‘ )  i s  a l w a y s  positive,  (x1  - X ) is  negative about as often as i t  i s
p o s i t i v e ,  a n d  s o  i s  (x2  - X). Since the values of (x,  - X) and (x2  - X)
are independent of each other,, their product will also be negative as often as it

i s  pos i t ive,  and the expecta,tion  va lue  ((x1 - X)(x,  - X)) wi l l  be zero. Hence
the only remaining terms produce:

E,  =
1/

& - w>  + ((x2  - Xl’)1- - -
N2

(2.44)

This was for the case N = :2. However i t  i s  easy to see that a silmilar argu-
ment applies for any N; 011  the expectation values of the cross-terms which
a r i s e  i n  t h e  s q u a r e  [(x1  - X )  +  (x2  - X )  +  * .  .  + (x,.,  - X)]”  w i l l  b e  n e a r l y
zero. Therefore,, for any N, we can say

li

-~_~~__

EN = I((+  - X)‘)  t ((x2  --x,‘)  + .  .  * +  ((XN  - X)‘)}~__-. ~.
N2

(2.45)

However, since the svbscrip-ts on the x’s denote nothing more than the order in
which the measurements are made, we expect that, on the average, .the  quantity

((x;  - X)‘)  wil l  be the same for ail  x, ,  or

((x, - X)‘)  = ((x2 - x,‘)  = ((XN  - Jo’)  = E: (2.46)

We call this average ET, since it is the mean squared error of a singlle  measure-
ment,  averaged over many exper iments.  That i s ,  E, i s  the rms deviat ion i f  we
consider that the experiment consists of one measurement rather than N rneasure-
ments. Then, s ince there are N terms l ike ((x, - X)‘),

(2.47)
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Thus, the error in the result of an N-measurement experiment is less than the
error in the result of (1 one-measurement experiment by CI  factor of l/-\/N. To
see how this works in practice, Table 2.3 gives the actual results of 24 measure-

‘ T A B L E  2 . 3 Results of Six Experiments, Each  Consisting of Four Measurements of the
Lellgth  of CI  Cylinder. Distances in Cenfimeters.

(1) (2) (3) (4) (5) (‘5)
4.11 4 . 0 7 4 . 0 8 4 . 0 5 4 . 0 9 4 . 0 6
4 . 0 6 4 . 0 5 4 . 1 0 4 . 0 6 4 . 0 8 4 . 1 0
4 . 0 6 4 . 0 6 4 . 0 9 4 . 0 9 4 . 0 6 4 . 0 7
4 . 0 8 4 . 0 8 4 . 0 9 4 . 1 0 4 . 0 4 4 . 0 8-_-.

A v . = 4 . 0 7 7 5 A v . = 4 . 0 6 5 A v . = 4 . 0 9 0 A v . = 4 . 0 7 5 A v . = 4 . 0 6 7 5 A v . = 4 . 0 7 7 5
Overal l  average of  the results = 4.0754 cm

ments of the diameter, in centimeters, of Q  cyl inder, using vernier calipers. I f  we
regard these as 24 separate experiments in which N = 1, then we can compute
the mean value and the error for these 24 experiments.  The mean of the 24
measurements, which we shal l  take OS  the t rue value, i s  X = 4.0754 cm and the
rms error El  for one measurement is

li,  =: x(deviations)’
= 0.018 cm

2 4

Let us next regard the data as s ix experiments of four measurements each,
in which the quantity being measured is  the average of four measurements.  In

this case, N = 4, so ,the  error in the average of the four measurements should
b e  a b o u t  E4 =  E,/-6  =  0 . 0 0 9  c m . By  subtract ing the overal l  average,

4.0754 cm, from each of the averages of the s ix experiments, we can f ind the
exper imental  deviat ions of the averages f rom the mean. Then the exper imental

E4 i s

.
E.,  =

,,[Bevlation;f  averages)l  =
0.0081 cm (2 .49)

This compares favorably  with the result ,  0.009 cm, obtained using Equation
(2.47). Actually, while we used the mean of 24 experiments as the true value, this

itself has an rms error associated with it.  An estimate of this error, again using

E q u a t i o n  (2.47),  i s  El/v/24  =  0.018/4.90  =: .0037  c m .  T h e  r e a d e r  m a y  w e l l
reflect that these differing measures of error for the same data look somewhat
suspicious; however, this  s imply means that quoted errors often depend on the
method of data handling.

2 . 1 7  P R O B A B I L I T Y  D E N S I T I E S

So far, we have consi,dered  distribution functions which are functions of a discrete

variable. In many cases, the independent variables are continuous. Consider, for
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example, a thin circular disc on a horizontal axle. I f  the disc is given a spin

and then allowed io come to rest, what is the probability that some one point on

the rim of the disc will be exS3ctly on top? Obviously, since one point is only one

of an uncountable inf ini ty o,f  points along the r im, the probabil i ty wil l  be zero.

However, let us introduce a coordinate system fixed in the wheel, and describe

points on the rim in terms of bcrn  angle 0, with 0 varying continuously from 0 to 2s

to describe all  dif ferent points on the r im. I f  there is no reason ,why  one port ion

of the disc should come  to the top more often than any other portion, then the

probability that some portion in the infinitesimal range d0 will come up,, denoted

by P,,o, is P.,o = d8/2rr.  The factor 27r in the denominator is chosen so that the

total probability that some point (any point) on the rim comes to the top is unity.

We can check this because

(2.50)

Once an inf initesimal probaloi l i ty of this nature is known, i t  can be used to

find the probabil i ty that an event takes place in a given range.. Thus, the

probabil i ty that some point in the portion of the rim between ?r/6  alld  s wi l l

come to the top wil l  be the integral of d8/2r  between the l imits of x/6  and H.

The resul t  i s  5/12.  The coeff icient of d0 in the expression for P&  i s  ca l led  o

probabil i ty density. In this spec:ial  case, the probabil i ty density is l/:271.. In gen-

eral ,  for  the continuous variablle  0, i f  the probabil i ty of f inding 0 in the range

d0 is given by an expression of the form Pdo  =  p(H)do,  thei?  ~(19) i s  c a l l e d

the probabil ity density. In our example, the probabil ity density, p(B),. was a

constant; but i f ,  for instance, there were more fr ict ion on one side of the axle

than the other,  the wheel w(ould be more l ikely to stop in certain posit ions, and

p(0) would not be independent of 8.

Similarly, with a dif ferent plhysical  si tuation described by a variable x, and

given the probabil i ty density p(x), the probabil i ty that x is to be found in the

range dx wil l  be P&  = p(x) dx. A probabil i ty density is thus the probabil i ty

per unit  x, for the continuous variable x. Moreover, the probabil i ty that x wi l l  be

Figure 2.9. Crosshatched area Jnder the probability density curve is the lpobobility
that a measurement of x will yield a value between x1 and x2
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s

“2

found in the range b’etween  x1  and xz  wi l l  be given by p(x) dx. This is  just
x1

the area under the ‘curve of p(x) , versus x between the l imits  x1  and xz (see
Figure 2.9). Probability densities have the property that, when integrated over all
poss ible values of x,  the result  must be the total  probabi l i ty that some value of

x occurs, or
/

p(x)c/x  =: 1 .

2.18 EXPECTATION VALUES FROM PROBABILITY DENSITIES

We shal l  next show how to compute an average us ing a probabi l i ty densi ty.
You recal l  that for a discrete probabi l i ty distr ibution function, P(x,), of the dis-
crete variable x;,  the rneon value of x is given by

@) = c xi Phi)

where P(x,) i s  the probabi l i ty that xi occurs. I t  i s  unnecessary to div ide by

c,,rIX;  P(x;)  here, s ince the sum of the probabil i t ies is  unity. Now consider the
enti re range of the continuous var iable x to be broken up into smal l  increments
Ax,.  I f  x,  is  a point in Ax,,  then the probabi l i ty P(x,) that i t  l ies in the range Ax,
wi l l  be given approximately by P(x;) = p(x;)  Ax,,  where p(x) is  the probabi l i ty

density.  Thus,  (x)  = c., x,p(xi)  Ax;.  Taking the l imit as Ax,  4 0, we get

(x) = /xp(x)dx. (2.51)

example 1. Consider the probabil i ty density defined for 0 5 x  5 1 by

A plot for p(x) is given in F igure 2.10.  I f  we wish to compute the average value

of some quantity us ing the given p(x),  we should f i rst  check to see that p(x) is
correctly normalized. It will be correctly normalized if the integral

is equal to one. In this

2 ,  O‘<Xl%

P(X)  = o
t. 1% 5 x 2 1

s p (X:I  dxall x
case, j-p(x)dx  = s”’ 2 d x = 1, so the normalization is

0
correct. The l imits on the integral are 0 and ‘/2, because in this special case,
when x >  %  , p(x) is equal to zero. To find the expectation value (x), we should
compute the integral ,/xp(x:)dx.  In this case also, the limits on the integral will be
from 0 to ‘/2  The integration may then be performed as fol lows:

(x)  =  /- ‘J2 2 x  d x  =  ;
0
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p(x)

.x1
Figure 2.10.

2. Consider a part icle in a one ,dimensional  box wi th  ends at  x  ==  0 and x  = 2.

The probabi l i ty density for f inding the part icle outs ide the box is  zero. In quan-

tum mechanics the probabi l i ty density is  1 G(x)  1 ‘,  where the wave funct ion #(x)
sat i s f ies  a wave equat ion callled  the Schrtidinger  equation. Suppose the proba-
bi l i ty density,  1 G(x)  / ‘?,  i s  g iven by

/ #(x) / 2 = p(x) =

for 0 5 x 5 2. Outside this range, p(x) is zero. A plot of this fulnction  is,  shown
in Figure 2.1 1. This probab’ility  density p(x) is  correctly normalized so that

p(x)

1 2

Figure 2.11.
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s 20 p(x)dx = ‘. w e can calculate the averuge value or expectation value of x

as fol lows:

x p ( x ) d x  =  ; J,‘x(x2  - $ x4) d x

lb2 5--x
24 ,=I)I

Let us also calculate the rms deviation of x from the mean. This is a measure of

the spread of the wave function q(x). The rms deviation is

((x - (x),‘)  “2
We know that the expectation value of x, +), is ‘/,.  Hence we wish to calculate

the expectation value

(i:x - :)‘) = (x’) -- (x)’ = G’) - g
from Equation (2.31) It is

(x2)p(x)dx  - ; = 5 12(x4 - ; x’)dx  - ;

Then the rms deviation from the mean is

j/qzs)3  = ~~5.1518  =  0 . 3 9 0

The same result can be obtained by straightforward calculation of

((x - ;)3 =12(x2 - 2+ y)p(x)dx

but the algebra is more tedious.

2.19 GAUSSIAN DISTRIBUTION

An interesting probabil i ty density, called the gaussian  distr ibut ion, ar ises  when a

fair coin is f l ipped an extremely large number of t imes. This same distr ibution

arises in the majority of physical measurements involving random errors. In

f-l’ lpping  a coin N t imes, the discrete probabil i ty distr ibution function was, from

Equation (2.13),

PN(“H)  = (2N”“qy - Q] (2.52)
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In the l imi t  of  very  large N,  th is  d istr ibut ion funct ion is  sharply  peaked about

the average value of  nH, % IN. Th is  tendency  may  be  seen  by  re fer r ing  to

Figures 2.1 through 2.4.

We can obtain an approximate analyt ical  expression for  PN(nH),  for large N,

by using St ir l ing’s approximation for  the factor ia ls:  For large n,  In  (n! )  E

% In (2x) + (n  + Y2)ln  (n) - n. This, together  wi th  the  approx imat ion

In (1 + b) E h - ‘/2  b2 for small b, leads to the following approximate result

fo r  PN(nH):

p,(n,)  ‘2
If [

-$ exp I-.kN*1 (2.53)

when N is  large and nH  is  neor  i t s  averoge , % N. A graph of Equation (2.53)

is  shown for  N =  100 in  F igure 2 .12.  The corresponding discrete  curve of  Fig-

pm ‘n,’

0.1 r---

0.06 (

1
L A?0 -

4 0 5 0 6 0 7 0

Figure 2.12. Comparison of the discrete probability distribution PI,, (n,,)  with op-

proximate function, a Gaussian.  The Gaussian curve is drawn with o dashed line.

ure 4 is shown on the some graph. It may be seen that for N = 100, the opproxi-

motion of Equation (2.53) is olready extremely good.

The exponent ia l  curve of  Equat ion (2.53),  peaked symmetr ica l ly  about  Yz N, is

called a goussian or normal distribution. It occurs often in probability theory and

in classical statistical mechanics. Although nH is still a discrete variable ,toking  on

integral volues, when N is sufficiently large we can lump many of these integral

values together and regard Pr.,(n”)  as a probability density.

20 EXPECTATION VALUES USING A GAUSSIAN DISTRIBUTION

In other chapters we will need o number of expectation values using the goussian

distribution. To illustrate the types of integrals which arise, let us find the root
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mecrn squared deviation of x for the gaussian  probability density p(x), given by

pf:x)  d x  = & e x p  [y(x2izx1)?]  d x

Here x ranges from -- 2 to LC,  and the quant i t ies  x1  and c are constonfs. First,
we check that this probabil i ty density is  normolized to unity. Referr ing to’  the
table of definite integrals,  Table 2.4,

TABLE 2.4 Tobleof Integrals

and lett ing y = x  - x1  w i th  dx = dy,  we f ind that

In calculat ing the rms deviat ion from the mean of x,  we need f i rst  to fincl  the
mean. S ince the distr ibution is  symmetr ic about x = xl,  i t  i s  clear that (x) =: x1.
I f  this  were not obvimous,  the average value of  x  could be calculated by the
equation

I - ”
(x)  = J_, XPb)dX (2.54)

In the case of the gaussian, this is

=  ~ ( x  - x , ) e x p  [*2+]  dx

+  & 1: e x p  [3(x]  d x (21.55)

The f irst integral on the r ight is  zero because the integrand is odd in (x - xl).
‘The second term is x1.  Thus, for a goussian peaked about xl,  the average value
of x is just the position of the center  of the peak: (x) = x1.

Let us next calculate the rms deviat ion from the mean. This is Cl ,‘h
!jo we first need to calculate the expectation value,

( ( x  - x1)‘)  =  -----;; j m ( x  - x1)2  e x p  [mm’“2i2x’)2  d x ]  (1’.56)
--li
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Again, with the subst i tut ion y = x - x1, this reduces to the second integral in
Table 2.4. Therefore,((x - x1)‘)  =  r~‘. Hence, the rms deviat ion from the mean
is equal to u. As a characteristic width of the gaussion curve, we might take the
distance from x1  to the polsnt where the curve is  half  i ts  maximum. This  i s  at
x - x, = ~5 ln2&  = 1.180.  Thus we see that the width at holf -maximum
and the rms deviation are about the same.

CALCULATION OF PROBABILITY

The probability of an event is equal to the number of possible ways of getting the
part icular result ,  divided by the total number of ways of gett ing al l  poss ible

results. I f  A and 6 are two independent events,  the total  probabi l i ty of  gett ing
either the result A or the result is is equal to the sum of the probabilities of getting
A and of gettiny  6 separately:

P ( e i t h e r  A  o r  8) =  P ( A )  +  P ( B )

The probability of getting both A and B is equal to the product of the probabili-
ties of getting A and of getting B separately:

P(both  A  a n d  8) =  P ( A )  P ( 6 )

The total probability of getting all possible results in a given situation is unity.

PROBABILITY DISTRIBUTION FUNCTIONS AND DENSITIES’

A probabi l i ty P(n),  which is  a function of some discrete var iable n, and which
gives the probabi l i ty  of  the event characterized  by n, i s  cal led a probabi l i ty
distr ibution function. The normalization of a probabi l i ty distribmutiorl  function is

unity:

C P ( n )  =  1
all ”

A quant i ty p(x),  which is  a funct ion of the cont inuous var iable x,  such that
p(x) dx is  the probabi l i ty of f inding x in the inf in ites imal interval dx, is called
a probabi l i ty density.

s p ( x )  d x  =  1
.II II

I f  f  (n) is  a distr ibut ion function, then the probabi l i ty distr ibut ion funsction  P(n)
is given by P(n) = f (n)/xC,li  n  f (n). If f (x ) .I S  a function of the continuous vori-
able x,  then l ikewise, p(x) = f  (x)/If(x)  d x .
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EXPECTATION VALUES

The average value of any quantity g(n) or g(x) is defined as:

or

(9’) = Cg(n)f(n)  = Cg(n)P(n)I
Cf(n)

(ah =z ‘Jgg(x)  f(x) dx) =: jg(x) p(x) dx. ,
/.f(x)dx

The average value is also called an expectation value, because in repetit ions of

the experiment, wherl  average values are computed, it is to be expected that

their values are equal to the expectation value.

EXPERIMENTAL DEFINITION OF PROBABILITY

If an experiment is performed which is repeated N times, and the event Ii occurs

a total of nH  t imes, then the experimental definit ion of the probabil i ty of the

event f-f  is

Jim
nf+- = P(H)

N-X N

The root mean square (rms) deviation of nH  from the mean is defined as

l/((n,  - - nH  )‘) = V’(Ti>  (nH ‘)

‘The rms deviation from the mean of a measured quantity is a good measure of

the error, or uncertainty, in the measured value of the quantity.

If  a measurement is repeated N times, the probable error in the average is

proport ional to l/V?7  times the probable error for one measurement.

1. If you draw 4 cards from a standard deck of playing cards, what is the probability
that they are all aces?
Answer : (4 .3 .2 . 1)/(52  * 51 .50  .49) =  l/270,725.

2. If you draw 4 carcls from a standard deck of playing cards, what is the probability
that none is an ace?
Answer: ( 4 8  .4:7  .46  .45)/(52  - 5 1  -50  .49) =  38,916/54,145.

3. If you draw 4 carcls from a standard deck of playing cords, what is the probability
that exactly one is Ban  ace?
Answer : 4 . (48 * 47 .46  .4)/(52  .5 1 .50  .49) = 69,184,‘270,725.

4. A jar contains 3 black balls and 4 white balls. If you draw 1 ball out of the iar,
what is the probability that it will be white?
A n s w e r :  4/7.
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5. A jar  contains 4 black balls and 10 white balls. If you draw 2 balls out of the iar,
what is the probability thai both will be white?
A n s w e r :  ( 1 0  x  9)(14  :x:  1 3 )  =  45/91.

6. A blind mon in ~1  cafeteria comes to pick up his silverware, which is stosred  in deep
cans. Two of the cans contain forks. One can contains 1 salad fork, the other con-
tains 99 regular forks and ‘I salad fork. He sticks his hand at random into CI  can and
picks a fork at random from the forks in the can. What is the probability that he
will pick a  salad fork?
Answer: 0.505.

7. I f  the probabi l i ty of missing  the bul l’s-eye target shooting is 0.96, how many
bull’s-eyes  would you expec:t  to hit in 350 shots?
Answer: 14.

8. What is the probability hat  in 10 throws of CI  die, o 2 comes up 5 times?
Answer: 10!55/(5!)2CI’O = 21,875/1,679,616.

9. What is the probability that in 10 throws of a die, a 2 come::  up 5 .times  and CI
3 comes up 2 times?
Answer: 10!43/5!2!3!6’o  = 35/13122.

10. If o rabbit runs past you and the probability of catching it is 0.05, then what is the
probability of catching clt least 2 rabbits if a herd of 160 rabbits runs by one at CI
time? What is the probat)lllity  of catching exactly 2 rabbits?

Answer: 1  - (0.95)Iea  ~-  160(0.95)‘59  o(O.05) =  0 . 9 9 7 4 3 ;
160!(0.95)‘5”~(0.05)2/158!2!  = 0 . 0 0 9 6 1

1 1. According to quantum mech~anics,  o free atom may hove on intrinsic ongu~lar  momen-
tum G + 2)A/2 associated with it, where n is an integer and Pi  a constant.
If a particular component I I S measured, it can have with equal probability n + 1
equally spaced values from - % nh to % ni?.  If there are N such no’ninteracting
atoms, what is  the probabi l i ty that there are ml wi th  z components of % nA,
mzwith(%n  - l)Ii,....N  - (ml +  m2 +  e..+ m,)with  -1’znfi?

Answer: N!/(n  + l)Nml !mz!  . . . [N - (m, + mz  + . . . + m,)]!

12. A crystal is grown by evaporating A and 8 type atoms, and then letting them
condense to form the crystal. If, because of the forces involved, on  A atom  is twice
as likely to stick to the crystal OS a B atom, what is the probability that the final
crystal wiil  consist of %A  atoms if there ore 3N total atoms? What is the probability
in terms of N that it will consist of %  B atoms? Find the ratio of these prsobabihties
if N = 10”.

A n s w e r :  (3N)!22N/331qN!(2N)!;  (3N)!2N/33NN!(2N)!;
21022  = 10(3 * 102')

13. Suppose a  prism whose cross section is on equilateral triangle has the three faces
forming the triangle marked A, 6 and C. If the triangle is dropped on a  table, it is
equally likely that any of these faces is on the bottom. If it is dropped N times, find
an expression for the probability that the A face is on the bottom n times, H m times,
and C (N - n - m) times.

Answer: N!/3Nn!m!(EJ  - - -  n - m ) !

14. If, in the previous problem, the triangular cross section is not equilateral but is such
that in one drop of the prism the probability that side A is down is 1,  and that
side 6 is down is q, what is; the probability of n A’s and m 6’s in N trials?

Answer: N!p”q”(l  - p - q) N-“mm/n!m!(N  - n - m ) !

15. A particle can move along the x axis, and is moved successively by the fixed amount
,&I with equal probability either in the positive or the negative x direction. If
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i t  i s  moved N t imes, what is  the probabi l i ty that i t  i s  n LL in  the pos i t ive x
direction away from where it started? Assume N and n are both even integers.

A n s w e r :  N!/2N (!F)! (!+L)!

16. If in a trial the probability of getting result 1 is p and that of getting result 2 is
q  = 1 - p, show that in N trials the expectation value of the number of times one
gets result 1 is

Find this expectation ,value.  Also find the expectation value of the square of the
number of times one gets result 1.
Answer: N p ;  N2p2  t- N p q .

17. In quantum mechanics,  it is found that a harmonic oscillator consisting of a mass m
and a spring of constant k can have energies of E, = (n + %)Xtiw,  where Ii is a
constant, w = Qrk/m,  and n is an integer or zero. As you will see in the statistical
mechanics chapter, the probability that it has an
temperature is J, is

em  (-E.lk~  J)

f: ev(-WhJ)
n=O

energy L, when the Kelvin

where k, is a constant called Boltzmann’s  constant. The denominator is a geometric
series whose sum is given by

Show that the expectation value of the energy is given by

and evaluate it.
Answer: hw(1 + l/[exp(hw/ksJ) - 111.

18. Suppose N noninteracting particles are confined in a volume V. What is the iprob-
ability that any one particle will be found Inside a volume V’, which is inside V?
What is the probability of finding all N particles in V’?
A n s w e r :  VI/V; (V’/V)N.

19. An unfair coin is tcssed  10 times, with p(H)  =: 0.6. Calculate the rms deviation from
the mean of nH.  See Problem 16.
Answer: 1.549.

2 0 . Suppose N noninteracting particles are confined in a volume V, and all momenta are
equally probable so long as their components lie between p.  and p. + f:, pr
and pY  + PY,  and pz  and pz  + P,.  What is the probability that the ith particle Ilies  in
the volume dx,dy,dz,  inside V and lies in the momentum range dp,,, dp,;,  dp,, inside
the momentum bounds? What is the total probability that these N particles are in
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dx,,dy,  ,dz,,  ,dxN,  dyN  a n d  dzN,  a n d  dp,,,  ,,dp,,? T h i s  6 N  dilnensional
space of coordinates and Imomenta  is called phase space.

dx,  dy,  dzi dp,  +r, dp,.
Answer:

dxl dy, . . . dzN  dp, dp,,  . . . dp,,.,
-:-_.I. -

vP,P,f: ’ (VPj,PJN  -’

21.  The displacement of a mc~ss executing harmonic motion is given by x = xg  cos tit.
The time it spends in dx is d’x/  1 v ) In a given half cycle, where 1 Y  ) = 1 wxc,  sin wt  ) .
A half period is r/w.  In terms of dx, t, w,  xg, what is the probability of
finding the mass in dx? This probability can be written as f(x) dx, where f(x)
is the distribution function. Find f(x). Find the expectation value for x and x2.
Answer: dx/  1 “x0  sin cllt  ) ;

( x ’ )  =  1/2x&
f ( x )  =  l/,fl- x2,  (xj  =  0 ,

22. The distr ibution of weights x in  lb , of a large set of objects is  given by the
distr ibution function f(x) = e-lox, w h e r e  0  5 x 5 J.  W h a t  i s  t h e  normaliza-
tion constant C such that C’f(x)  is the probability density? What is the average value
of the weight x? What is the rms deviation from the mean?
Answer: 10; ‘/,o; ‘/,,).

2 3 . If an arrow is dropped on a uniform table, all directions are equally probable. Find
the distribution function t(H) where the probability that it points in the increment
d%  is  f (%)d%. F ind the expectat ion value of 8,  and of %*  if %  var ies  between
- H and P.
Answer: 1/(2a);  0 ;  7ri’/3.

24. A piece of sand falls in an hourglass a distance h. At the instant it hits, another
piece starts falling, etc. What in terms of the distance y down from the top, is the
probability of finding a piece of sand in the increment dy at the distance y < h?
What is the expectation value of y for a moving piece of sand?
Answer: dy/2 dhy;  hl’3.

25. A fair coin is tossed 360,C~OO  times. Estimate the ratio of the probability that heads
turn up 179,000 times, to the probability that heads turns up 180,000 timsea (assume
the gaussian  distribution).
Answer: 0.00387.



3 special theory of
relativity

In this chapter i t  wi l l  be seen that the laws of Newtonian mechanics, when used

to describe objects of very high energies, or traveling at very high speeds, give

predictions which disagree with experiment. The understanding of the funda-

mental reasons for these disagreements and the discovery of the theory of

relativity, which agrees with experiment, are due to Albert Einstein (1879-l 955).

His theory is based on some simple experimental facts and on a careful analysis

of the processes of measurement of length and time.

We shall discuss how length and time measurements are related in frames of

reference whic4  are moving with respect to each other.  These relat ionships are

called the Lorenfz transformation equations and are basic to the later develop-

ment of the laws of physics, when speeds are comparable to that of l i ight.

Historically, the primary experiment which helped convince other physicists that

Einstein’s theory was correct was the Michelson-Morley experiment, to be dis-

cussed in Section 3.12!.  However,  we shall  f i rst look at some other discrepancies

between the predictions of classical physics and experiment; such discrepancies

also necessitate the introduction of the theory of relativity.

3.1 CONFLICT BETWEEN ULTIMATE SPEED AND NEWTON’S LAWS

In Newtonian or classilcal  mechanics, the basic law which describes the motion of

any particle of mass lrll  under the action of a net applied force F and with1  ac-

celeration a is  Newton’s second law of motion, F = ma. This law agrees with

experiment for most ordinary situations, but i t  breaks down in extreme situations,

such as for particles going at very high speeds.

Imagine, for example, an electron of mass 9.1 1 x 10w3’  kg acted on by an

electric field of lo6  volts/m over a distance of ten meters. The force is the charge

times the field or 1.6 x IO-l3 nt.  By Newton’s second law, the acceleration is

F/m = 1.76 x 1017  m/set’.  If  the electron starts from rest, the kinematic expres-

sion for the speed v is v = v?%,  where s is the distance the part icle has

moved. In this example for s = 10 m, the final speed is v = 1.9 x 1 O9  m/set.

However, i t  is now a well-known fact, substantiated by mult i tudes of experi-

4 2
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ments with cyclotrons and other accelerat ing machines, that no part icle can be
made to go faster than the speed of l ight, c = 2.9974 x 10’  m/set (hereafter

we wi l l  use 3 x 10’  m/set  for c). Thus, Newtonian mechanics disagrees with
experiment. The error is eithtsr  in the second law of motion, or in the kinematics,

or  both.  However,  since the kinematical relation fol lows directly from the defini-
t ions of velocity and accelerat ion, we would expect that i t  i s  the law  Iof  motion
which must somehow be modified in order to resolve the discrepancy.

3 . 2  C L A S S I C A L  M O M E N T U M  A N D  E N E R G Y  CONSERVATION-
C O N F L I C T  W I T H  E X P E R I M E N T

The laws of conservation of mechanical energy and momentum fol low from

Newton’s laws of motion, which were seen to be of suspect val idity by the
preceding example. Now we shal l  apply these class ical conservation pr inciples
to the problem of an elast ic col l is ion between two bodies of equal mass. Com-

parison of our prediction for high speed experiments wi l l  show a discrepancy,
giv ing further evidence that the laws of motion must be modif ied, and that the
definit ions of energy and momentum wil l  also have to be modif ied if  we are to
retain our concept of the existence of conserved physical quantities.

For a particle of mass m and velocity v colliding elastically with another of the
same mass initially at rest, conservation of energy gives

w h e r e  v,  a n d  vz  a r e  t h e  v e l o c i t i e s  o f  t h e  t w o  particles a f t e r  t h e  c o l l i s i o n .
(See Figure 3.1 .:I Likewise, conservation of momentum gives us

mv = 171y~ + mvz  or v = v.  + v2 (3.2)

Y Y

----X

4 3

Before After ‘V2

Figure 3.1. Collision  of particles with equal  rest moss.
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3 . 3 C O N S E R V A T I O N  O F  M A S S - C O N F L I C T  W I T H  E X P E R I M E N T

The scalar product of the latter equation with itself leads to

2” = v: + 2v, ‘V2  + v: l(3.3)

Comparison with Equation (3.1) shows that v , *v2  is  zero. Then, i f  neither f inal

velocity is zero, the angle between the final velocities must be ninety degrees.

The photographs in Figures 3.2 and 3.3 show some experimental results.  Fig-

ure 3.2 is  a mult iple f lash photograph of two coll iding bil l iard balls of equal

mass. The angle between the paths of the outgoing balls can be measured

directly from the photographs; i t  is found to be essential ly ninety degrees, as

predicted. In Figure 3 a track is shown in a nuclear emulsion of a col l i s ion

between an electron traveling with a speed of nearly 3 x 10’  m/set, and an

electron initially at rest in the emulsion. We would expect energy to be conserved

in this col l is ion, because conservative forces are involved and l i t t le radiation is

emitted during the coll is ion. As in Figure 3.2, the plane of motion is the same

CIS the plane of the paper. From the photograph, the angle between the outgoing

particles is found to be around 19 degrees, much different from the prediicted

ninety degrees. Into the classical prediction went the classical laws of energy

and momentum conservation. Also, since the same mass was used on both !sides

of the equations, conservation of mass was assumed. Therefore, one or more of

these classical laws must be incorrect.

Let us finally look at experiments relating directly to the conservation of mass. In

chemical reactions, such as 2H2  +  O2 + 2H20,  i t  i s  w e l l  s u b s t a n t i a t e d  ifrom

experiment that the .total  mass after the reaction occurs is equal to the ,totaI

mass before the reaction. This mass conservation law is sometimes called Dalton’s

Law. In such chemical reactions, the forces involved are electrical in nature and

act between particles separated by distances of the order of 10-l’  meters. Atsomic

nuclei are bound together very t ightly by a different, extremely strong force,

called the strong interaction, which acts between particles separated by distalnces

o f  t h e  o r d e r  o f  10-l’ meters. This leads to nuclear interaction energies that

are around a million times greater than in chemical reactions. For example, sup-

pose a proton and a Ineutron  combine to form a deuteron.

The mass of a proton is: 1.6724 x 1 Om2’  kg;

The mass of a neutron is: 1.6747 x 1 Om2’  kg;

The sum of the masses is: 3.3471 x 10e2’  kg.

When these particles combine, the mass of the result ing deuteron is 3.3431 x
10e2’  kg. This is less than the total original mass, so that mass is not conserved.

Therefore, i f  the energies of interaction are high enough, s ignif icant departures

from the conservation of mass law can be observed.

Of the two other conservation laws known in classical physics-conservation

of angular momenturn and of charge-experiment shows that whereas the f irst

must be modified for high energy particles,, the charge conservation law remains

generally valid under all circumstances.
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Figure 3.2. Elastic collision of two billiard bails.
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Figure 3.3

Coll is ion with an electron of the *
charged particle formed by the P-
decay of a p-meson

The charged parWe  emitted in the
P-decay of a p-meson makes a col l i -
s ion with an electron in the emuls ion.
The tracks before and after the coll i -
s ion are long enougih  to al low the mo-
m e n t a  o f  t h e  partic:les  t o  b e  d e t e r -
mined. An analysis of the dynamics of
the coll is ion can therefore be made,
assuming it  to be elast ic so that no
appreciable energy is  emitted in the
form of photons. It lmay thus be shown
that i f  track (a) is clue to the recoi l ing
electron, the mass of the particle pro-
ducing the track (b) is 3 f 2m,;  and if
track (b) is due to aln electron, the mass
of the other part icle is I  .5  f 1 . Om,.
This  observat ion therefore proves that
the part icle produced in the decay of
the p-meson is of small  rest-mass and
gives very st rong support  for  the v iew,
commonly held, that it is an electron.

. ,  0,.

*.
’

‘ ,, .

‘.. ‘.

.. .
.;.

Although the coll is ion is almost cer-
tainly due to two part ic les of equal
mass, of which one was or iginal ly “at
rest,” the subsequeni  directions of mo-
t ion of the two part icles are not at
r ight angles, s ince the velocit ies are in
the relativistic region.

From The Study of Elementary Part icles
by the Photographic Method, Powel l ,
Fowler and Perkins. .-. . \

P
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3.4 CORRESPONDENCE PRINCIPLE

In the next chapter we wi l l  develop the general izat ions of mechanics,  due to
Albert Einstein, that wi l l  resolve the diff icult ies encountered above. The corre-
spondence principle, to be disc:ussed  in this section, serves as a useful guide in
finding the generalization of a law that is valid for one range of a variable, but
which hos to be modified for another range of that variable.

Suppose there existed a t’heory of mechanics that gave results in agreement
with exper iment for al l  speeds v 5 c. The diff icult ies with Newtonian mechanics
show up mainly when we are dealing with high speeds. Then in the cas#e  of very

low speed,  v  <: c, the predicted results of this  new theory must be identical
to the predicted result of Newton’s laws of motion.

Newton’s laws are so wel l  ver i f ied in terrestr ial  and astronomical exiperiments
that they must be an accurate representation of nature in those cases. About the
highest speed available in such experiments with large objects is the speed of the
planet Mercury,  lo5 mi/hr or 5 x lo4 m/set. S ince this  speed is small c:ompared
to c, we would expect any deviat ions f rom the predict ions of Newton’s laws of
motion to be very smal l .  However, in modern accelerating machines part icles
are accelerated to speeds (approaching the speed of l ight,  c, and Newton’s
second law does not apply.  The newer theory,  the s.pecial  theory of relat iv ity,

applies to all particles going with any speed up to c.
The correspondence pr inciple states that any new theory which appl ies to a

broader range of experiments than an old theory, must give the same predicted
results as the old theory in those experiments with which the old theory is  in
agreement. The new theory--- in our case, the special theory of relat ivity-must

give the same results as Newton’s laws of motion when appl ied, for instance, to
problems involving motion of art i f icial satel l i tes.

Another way of stating the correspondence principle is:  Any new theory which
contains an older theory as ~a  special case must give the same predictions as the
old theory in the special cases ito  which the old theory applies.

As we wi l l  see, special relat iv ity explains why the mass of a deutelron  might
not equal the sum of the neutron and proton masses. Also in accorcl  wi th the

correspondence principle, relativity gives Dalton’s law when applied to chemical
reactions. The correspondence principle is also satisf ied in the other examples
discussed above.

3.5 INERTIAL SYSTEMS

Hoving seen in preceding sec:tions  that  the Newtoman  laws of motion do not
always agree with experiment,  we shal l  now proceed to analyze in more detai l
the condit ions under which the  laws are known to hold. One of the most impor-
tant restr ict ions,  and one which also appl ies in special  relat iv i ty,  i s  that the

laws can be val id only in certain frames of reference cal led inertial1  frames.

Consider, for example, Newton’s f i rst law of motion: If  the net force ascting  o n  a
body is zero, the body wi l l  either remain at rest or wi l l  continue to lmiove  wi th



constant velocity in a straight line. An inertial frame, by definition, is one in which
the f i r s t  law-the law Iof  iInertia-holds.

To measure the posit ion and velocity of a part icle, we need a coordinate
system, set up with clocks and measuring rods (rulers) at rest in i t ,  to observe
the motions of bodies. There are many different coordinate systems we could
choose. For example, ‘we  could pick a reciangular  xyz system, as in Figure 3.4,

-m--tY--tYtu
.

Figure 3.4. Two inertial reference frames.

with i ts  z axis pointing up, and its or igin in the middle of some rai l road tracks
with the x axis pointing parallel to the rails. Also, let us pick a second coordinate
system with origin fixecl  in a train going along the tracks with constant velociity  v
relat ive to the tracks.  We cal l  this  system the x’y’z’ system, with z’  ax i s  up,
and x’  ax is  paral le l  to the  tracks. A passenger in the train might observe a book

ly ing on the seat and !say  that relat ive to the x’y’z’ system, the book is  at rest,
and therefore by Newt’Dn’s  first law, there must be no force on the book.

On the other hancl,  a person standing in the middle of the rai l road tracks
might say that the book i s  t ravel ing with constant velocity v re lat ive to the xyz
system. Therefore, for him also the force is zero by Newton’s first law.

To simplify the disc:ussion, we shal l  designate the observers by letters,  cal l ing
the observer on the trcin G. and the one on the tracks R. G. goes and R. remains.

We shal l  cal l  their  coordinate systems G and R, respectively. G.‘s  coordinate
system, G, is the x’y’z’ set; R.‘s  set, R, is the xyz set.

Now according to R.,  the book is  t ravel ing with constant velocity,  V. The net
force acting on it is t!herefore  zero, in accordance with Newton’s f i rst  law in R.
Likewise, the motion of the book in G.‘s  system, G, satisfies the first law since the
book is at rest. A system of coordinates in which Newton’s f i rst law of motion is
satisfied is called an inertial system because, when no force acts on it, the inmertia
of a body causes it  to continue in a state of rest or of motion with constant

velocity. Thus, since the b’ook  in G.‘s  coordinate system is at rest and has no net
force acting on it ,  the x’y’z’ coordinate system (the G system), would be an
inert ial system of coordinates. (At this point, we are neglecting the earth’s

rotation and planetary motion.) Likewise, R.‘s  system is an inertial system
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3 . 6  N O N - I N E R T I A L  S Y S T E M S

Not all coordinate systems are inertial systems. Imagine a rotating coordinate

system (x”y”z”)  f ixed in a merry-go-round, as in FiGlure  3.5,  which is  rotat ing

Figure 3.5. Coordinate system fixed in a merry-go-round which is rotating wiih angular

velocity w.

with the angular velocity w, relat ive to the ground. The origin of the coordinate

system is on the axis of rotation. A t icket stub lying on the ground a distance d

f r o m  t h e  a x i s  o f  r o t a t i o n  w i l l  h a v e  x ”  a n d  y ”  c o o r d i n a t e s ,  x ”  =  dl  c o s  wt.
I,

Y =  d  s i n  wf. T h e  e q u a t i o n  o f  t h e  p a t h  o f  t h e  s t u b  i n  x”y”  c o o r d i n a t e s ,

that is,  as seen by an observer f ixed to the merry-go-round, is thus (x”)’  +

(y”)’  =  d2,  the equation o,f  CI  circle. The net force acting on the t icket stub

from all  physical causes such OS  gravity and contact with the grouncl  is  zero.

The path of the stub in the x”y” coordinates is  a circle. Therefore, the f i rst

law of motion is invalid in this rotating coordinate system, and it is not an inertial

system.

The earth we live on rotates approximately once per day relative to the sun. A

coordinate system fixed relal’ive  to the eorth also rotcltes  once a day. Then the

sun undergoes ci rcular  motic’n  relative to such a coordinate system fixed in the

earth. (See Figure 3.6.) We conclude that this coordinate system fixed in .the  earth

is, therefore, not an inertial system. We have defined an inertial system as a sys-

tem of coordinates in which the f irst law of motion holds. Clearly, i f  an observer

is accelerating, the f i rst  law wil l  not hold because an object not acted on by

forces wil l  appear to accelerate. Thus, a coordinate system  fixed on the surfac:e

of the earth is not exactly an inertial system, both because of the centripetal

acceleration that bodies have on the earth’s surface and because it is a rotating

coordinate system.

The magnitude of the centripetol acceleration of a man on the equatolr  is

a2r  = (2~/864ClO  set  per revolution)2(about 4000 miles)

=  2 . 1  x  1 0  m5 mi/sec
2

==  0 . 1 1  ft/sec’

The acceleration of a car which speeds up from rest IO 15 mi/hr in 60 seconds
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Figure 3.6. A coordinate :,ystem  fixed on the surface of the earth is a non-inertial system.

is 6.9 x 1O-5 mi/sec’,.  which is of the same order of magnitude as the centripetal

acceleration at the equator. Suppose a coordinate system were f ixed in a car

which is accelerating, and that a passenger in the car is observing a .ticket

stub lying on the road. Then the net force on the stub from all physical causes is

zero. As seen from the car’s coordinate system, however, the stub is accelerating.

Therefore, the acceler’clting  system is not an inert ial system, since Newton’s, f i rst

l a w  d o e s  n o t  h o l d ;  s i m i l a r l y ,  t h e  m a n  o n  t h e  e q u a t o r  i s  n o t  i n  a n  in’ertial

reference frame.

3 . 7  A X E S  R E L A T I V E  TO  F I X E D  S T A R S

Suppose that instead1 of axes f ixed in the earth, we choose a set of axes with

center at the center of the earth, but with the x axis pointing along the direc-

t ion of orbital motion and the y axis pointing toward the sun. This is st i l l  nlot  an

inertial system, because the coordinate system wil l  rotate once a year; also, the

earth has a small centripetal acceleratioln  toward the sun. We can go a step

further and take a c:ooredinate system with origin at the sun’s center, one axis

normal to the plane of our galaxy and another along the l ine from the center

of the sun to the center of the galaxy. This is again not an inert ial system,

because the sun orbits around the galactic center. However, this is close enough

for most purposes, as seen in Table 3.1, because the acceleration of the sun

toward the galactic center is very small compared to ordinary accelerations

we measure on earth. From here on, we shall assume that, to a good approxi-

mation, a coordinate system with origin f ixed at the center of the sun and axes

pointing toward “f ixed” stars is an inert ial system of coordinates, because it

has negligible acceleration and negligible rate of rotat ion. Then the path of a

free particle (no forces acting on it) relative to this system wil l ,  to a high

degree of approximation, appear to be a straight l ine.



3.8 Ga/i/eon tranrformotions

TABLE 3.1 Accelerations of Origins of Possible Reference Frames

5 1

acceleration of towards a  =  v’/r
- - -

point on equator center of earth 2 . 1  x  10e5  mi/sec’

center of earth s u n 1 . 5  x  10e6  rni/rec’

sun center of galaxy 1 . 5  X lo-l3  rni/sec’
- --___- - -

3.8 GALlLEAN  TRANSFORMATIONS

Suppose R. is  at rest relat ive ta the inert ial  system with or igin in the !sun, and
consider G.,  in the x’y’z’  system, moving with same constant velocity v re lat ive

ta R.  Let’s  choose x and x’  axes paral le l  ta v,  as shown in F igure 3.7.  The

Y

/’
/

/
----x

Y’

//

/

v

------id

Figure 3.7. R and G inertial frames. G moves with velocity v relative to, R.

motion of a free particle looks like straight line, constant velocity motion, ta G. as

wel l  as ta R.,  so the systems of bath G. and R. are inert ial  systems. We shal l
exumine this in mare detail, II I I  order ta find fransformatian  relations between the
two coordinate systems. Suppose that at a certain instant t ,  as measured by R.,
the free part icle is  at the point (x,y,z).  As measured by clocks in G.‘s  system,
the time is t’ when this  observat ion is  made. I f  in G and R there are clacks

which beat seconds and which are set ta t =  t ’  = 0 at  the instant the or igins in
G and R pass each other, the Newtonian assumption of absolute time gives

f’ =  f (3.4)

We wi l l  later see that this  equation, which seemed 1~0 obvious  ta Newton and
to generations of physicists tllereafter,  is not valid in special relativity.

After t ime t, referr ing ta Figure 3.8, the origins are separated by OI  distance
equal  ta vt ,  s ince G. t ravels  with speed v re lat ive ta R.  Thus,  the pos i t ion x’  of
the particle at the instant t’ =: t, as measured by G., can be expressed as,

X ’ = x - vt (3.5)

Also, i f  the y’ axis  i s  chosen paral lel  to y,  and z’ is  paral lel  ta z,  we have,

at the same instant t’ = 1,  the fallowing relations between G.‘s  and R.‘s  measure-
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Figure t3.8. Separation between origins at time t is vt.

ments of the particle’s position:
y’ =  y, i” =  z (3.6)

Of course, R. and G. must each use measuring rods at rest in their respective

coordinate systems. The  four equations, Equations (3.4), (3.5), and (3.6), a re

called the Galilean transformation equations. The equation t’ =  t was,  in  New-

tonian mechanics, simply taken to be self-evident; other intuit ive assumptions

went into the other equations, such as the assumption that all lengths appear the

same in the two coorclinate  systems. It will be seen that, when the relative speed

of G and R becomes large, these assumptions are erroneous, indicating that

intuit ion can’t always be Irusted. f, 9 5 ,I___--.---

3.9 GALlLEAN VELOCITY’ TRANSFORMATIONS

Next, let us f ind the relation between the part icle velocit ies, as measured in

the two coordinate systems, using the Gali lean transformations. The x cornpo-

nents of velocity in the ,two systems, R and G,  are dx/dt and dx’/dt’,  respectively.

However, s ince i f  t ime is (absolute dt and df’  are equal, we don’t have to dis-

t inguish between them. Dif ferentiation of Equation (3.5) with respect to f, remem-

bering that v is constant, results in
i’=i-v (3.7)

,where the dots mean time derivatives. Similarly, Equations (3.5) lead to

p’ =  y, i’ :3  2 (3.8)
The result  states that lif R. observes a part icle going with constant velocity, and

G. is moving with cons.tont  velocity relative to R., then G. will observe the particle

Imoving  with constant velocity. Hence, if R. is,  in an inertial system, so is G.

Hence, al l  inert ial  frclmes  are completely equivalent as far as the statement of

the first law of motion is concerned; if the first law is valid in one inertial frame, it

is valid in every other iriertial  frame.

This  resul t  is  a f i rs t  indication  of the signif icance of this discussion of inert ial

frames. The similarity of the statements of ,the  f i rst  law of motion in various in-



: I . 10 Second law of motion uqder Galileon  transformations 5 3

ertial frames means that there is no way to pick and choose among the infinity of
inert ial  f rames (using the f i rst  law), in the hope that by judicious choice the ex-
pression of the law might b’e  Imade  s impler. One inert ial frame is as good as
another. One may draw the analogy of attempting to pick a better or igin for
coordinates for the expressiofl  of the rules of plane analyt ic geometry-actual ly,
one origin is as good as another.

I t  wi l l  be seen below that th is  equivalence proper*y  of the law of inert ia is

also satisfied by the other laws of motion. Hence no mechanical law can lbe  used
to draw essential  dist inct ions between inert ial  f rames. Nevertheless,  Newton and

many other phy!jicists  of  the eighteenth and nineteenth centur ies maintained a
bel ief in the existence of an absolute space and an absolute t ime. “Absolute
space” referred to space coordinates measured with respect to one preferred
inertial frame, which was supposed to be absolutely at rest. Absolute time flowed
uniformly, independent of the motion of the observe\- with respect to absolute
space, and the bel ief in the existence of absolute t ime was the or igin of the
assumption in Equation (3.4).

10 !SECOND LAW OF MOTION UNDER GAULEAN  TRANSFORMATIONS

ltet  1~s look at the expression of the second law of motion in the two relativel,y

Imoving coordinate systems, R and G. We shal l  put pr imes on al l  quantit ies such

as F’, m’, a’, t o  d e n o t e  qualntities  m e a s u r e d  b y  G .  W e  s h a l l  a s k  IIOW t h e
quant i t ies F’, m’, a’, for general motion of a particle, are related1 to the
corresponding physical quantit ies F, m, a, measured by R.  In Newtonian rne-
chanics,  i t  i s  always assumed thIat  a l l  observers  wi l l  measure a part ic le to have
the same mass, i .e. mass is  an absolute quantity.  Scl for a given part icle, i f
m’ is the particle’s moss OS  measured in G, and m is i ts mass as measured ill
R ,  then  m’  = m. Similar ly, forces ore absolutes, and are assumed to be .the
same in two inert ial systems. For example, a book weighs the same on ma  sc’ale

on the ground as on a scale in a car moving at constant velocity. Then F’ = F:.
l3y us ing Equations (3.7) and (3.8), we can f ind a re lat ionship between the two

accelerations a’ and a. Differentiating these equations with respect to’  t ime (f
or t’), we find that , ,a, = a,, ay = a”, a, = a, (3.9)

Thus, the accelerations ore the same in the two inertial systems.
We see that the three quantities in F = ma, the second law, are equal to the

‘corresponding quantit ies F’, m’, a’ in the other inert ial  f rame. It  fol lows that

F’ = m’a’. In Newtonian mechanics, the second law of motion has the same form
in al l  inert ial frames; this low,. therefore, cannot be used to pick out some prc:-
ferred inertial frame in which the law would be different.

I1 T H I R D  L A W  U N D E R  GAUL.EAN  T R A N S F O R M A T I O N S

Final ly,  the thi rd law, the law of act ion and reaction, i s  the same in var ious
inert ial  systems; in other words, the low is form-invariant under Gal i leon trans-
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formations. We can see this because if particles A and B  interact in the R  system,

the third law gives F,,,  c,n  BI = -F,, on A). But for any force, F = F’. So this equation

is the same as F’(AonBj  = -F’(BonAj, which is  the third law for the same interaction

in system G.  Hence,  oil  the  Newtonian laws of  mot ion are  form- invar iant  under

Gal i lean  t ransformat ions .  There fore ,  there  is  no  hope  o f  f ind ing  one  pre fer red

inertial system, in which the laws of mechanics take a simpler mathematical iform,
and which we could s,ay  is absolutely at rest.

3 . 1 2  M I C H E L S O N - M O R L I E ’ Y  E X P E R I M E N T

In spi te  of  the fact  that  a// c lassical  mechanical  laws are  form- invar iant  under

Gal i lean t ransformat ions,  Newton’s  phi losophical  be l ie fs  led h im to  assert  that

there existed a preferred inertial frame, at rest in absolute space.

Later  on  in  the  n ineteenth  century ,  people  came to  be l ieve  that  l ight  waves

were supported by a medium called the “ether,” which was at rest in absolute

space.  Re la t ive  to  the  e ther ,  l ight  was supposed to  propagate  a t  the  speed c;

hence,  by  the  Gal&an velocity transformation,  Equation (3.7),  observers  in

motion with respect to the ether should be able to observe light rays propagsating

at various speeds, depending on the direction of propagation and on the motion

of the observer with respect to the ether. The apparent variation in the speed of

propagation of light would mean, in other words, that the laws describing light

waves are  not  form- invar iant  under  Gal i lean t ransformat ions.  Hence,  detect ion

of  the  mot ion  o f  an  observer  w i th  respect  to  the  abso lu te  res t  f rame,  o r  w i th

respect  to  the  e ther ,  by  means  o f  exper iments  w i th  l ight ,  appeared  a t  f i rs t  to

be feasible.

A  very  accurate  exper iment  des igned to  detect  the  absolute  mot ion  of  the

e a r t h  w a s  p e r f o r m e d  b y  .Michelson  and Mor ley  in  1881.  This  was an exper iment

T A B L E  3 . 2 Trials of the Michelson-Morley Experiment
- - -

Observer

Michelson
Michelson & Morley
Morley & Mil ler
Mil ler
Mil ler
Mi l ler  (sunl ight)
Tomaschek (starl ight)
Mil ler
Kennedy

l l l ingworth
Piccard & Stahel
Michelson et al.
Joos
Townes, Javan,

Murray, Jaseja

Ratio of expected

Year Place to observed time
dif ferences

- - -

1881 Potsdam 2
1 8 8 7 Cleveland 40
1 9 0 2 - 0 4 Cleveland 8 0
1921 Mt. Wi lson 15
1 9 2 3 - 2 4 Cleveland 4 0
1 9 2 4 Cleveland 8 0
1 9 2 4 Heidelberg 15
1 9 2 5 - 2 6 Mt.  Wi lson 13
1 9 2 6 Pasadena & 3 5

Mt. Wi lson
1 9 2 7 Pasadena 1 7 5
1 9 2 7 M t .  Rigi 2 0
1 9 2 9 Mt.  Wi lson 9 0
1 9 3 0 Jena 3 7 5
1 9 6 2 long Is land 1 0 0 0
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in which l ight was sent along t,wo  arms of an interferometer, of equal length’s,
placed parallel and perpendicular to the direction of the earth’s orbital velocity.
The difference in l ight speed, or travel t ime differences, along these two arms
could be measured with precis ion great enough to detect the earth’s orbital
velocity,  30 km/set. When the experiment was f i rst  performed, physicists were
surprised to learn that the time difference was zero-I.e.  the experiment gave a

null result .  This  means that, to within the accuracy of the experiment, the l ight
speed is  independent of direction and hence-which is  lnot  reasonable--that the
‘earth seemed to be at rest in absolute space. This experiment has been per-

formed many t imes s ince 1881 with greatly increased accuracy, always with a
null result. Some of tl-iese  results  are given in Table 3.!2.  Many other extremely
accurate experiments involvim;I  moving charges, moving telescopes, interfer-
ometers with unequal arms, etc.,  performed to detect the earth’s motilon  h a v e

given null results.

13 IPOSTULATES OF RE:LATlVlTX

All of the efforts to de,tect  the absolute motion of the earth by optical experiments

have failed in spite of the lal~ge magnitude of the expected effect. This tends to
Iindicate  that absolute motion is  s imply not detectable by means of optical ex-
periments. We have also seen that no preferred inertial system can be detected
lby  means of Newtonian mechanics. Einstein concluded from this that it must be a
.fundamental  fact of nlature  that there is no experiment of any kind, performed

iln an inert ial system, by means of which it  is  possible to detect absolute motion
or to select a preferred inertial system.

A deeper analysis of the rellations  between the inert ial  systems G and R is
Inecessary.  If there is nt3 way elf detecting a preferred frame of reference, we can

Inever  say that,  of  two observers ,  G. and R. ,  who are moving relat ively to each
(other in inert ial  f rames, one is at rest absolutely. Only relative motion is ob-
servable. (See Figure 3.9.) Thus, R. can say, “G. i s  moving with velocity v re la t i ve

to me,” but not, “I am at rest in absolute space and (3. is moving.” If G. is in an

--

;

Y’

/

Figure 3.9. Reference frame G moves with velocity v along the positive x,x’ direction
with respect to R.
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inert ial  system, the experiments he performs using apparatus at rest in that

system would be desc:ribed  by some set of equations which express physical laws.
If R. performed identical experiments using apparatus at rest in his inertial frame,

these experiments would be described by physical laws in R which would be the
same in form as the physical laws in G. So, in principle, there is no difference in
the form of the equatit>ns  which express physical laws discovered by G. and those
discovered by R. This is  one of the basic assumptions of the theory of relat iv ity,
cal led the principle ol’ relat iv i ty,  and may be stated as fol lows:  A// the laws of

physics are the same in al/ inertiul  f rames. This pr inciple is a general statement
which restr icts the poss ible physical laws to those having the property of form-
invariance with respect to transformations. between inert ial  systems. AlthoLlgh it
is consistent with the results of mechanical and optical experiments, it is not true
that al l  conceivable exper iments have already been performed, or that al l
phys ical  laws have been discovered. Henc:e  the pr inciple has very broad impl i -

cations.
Measurements at the (earth’s surface show that light propagates in a vacuum

with speed c z 3 x lo8 m/set, independent of direction. I f  R. measures the
speed of a light wave in vacuum, it  wi l l  be c. I f  the laws descr ibing l ight waves
are val id laws of  physic:j,  and i f  G. measures the speed of some l ight wave, i t
should be c. Both would measure the speed to be c even if it were the same light

wave whose speed they were measuring. This very important principle was taken
by Einstein as the second fundamental assumption of his theory: In vacuum the

speed of light, c, is a ~onstanf,  irrespective of the state of motion of the source.

Thus, if G., traveling at velocity v relative to R., shines his flashlight in the +x’
direct ion,  i t  fo l lows that he wi l l  observe a l ight wave that t ravels  with speed c.
R. will observe the same ‘Nave  traveling with the same speed c. (See Figure 13.10.)

Figure 3.10. Both G.  and  R. see light from the flashlight moving with the same speed c
relative to themselves.
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This contradicts the Gal i lean velocity transformations, Equations (3.4),  l(3.5)  and
(3.6),  which tell us that the speed of light wave sent out by G. as observl?d  by R.,
is c + v. Therefore, i f  the postulate of the constancy of the speed of l ight is

correct, as indicated by experiment, the Gali lean transformations mu’st be in-
correct. S ince the Gali lean transformations depend solely on distance ond t ime
measurements, and since a slseed  is a distance divided by a time, somehow the
distance and time measurements must be modified in relativity so that the speed
of light remains a universal constant.

Summariz ing, E instein was led to base a new theory on two postulates.  These

are:

I. The pr inciple of relat iv ity:
No inert ial system is preferred. The equations expressing the laws of physics
have the same form in CIII  inertial systems.

II. The principle of the constancy of the speed of light:
The speed of l ight, c, is, a universal  constant independent of the state of
motion of the source.

14 EXPERIMENTAL EVIDENCE FOR THE SECOND POSTULATE

Most of the experiments performed to test the predictions of relativity theory
largely confirmed the first por,tulate  but did not test the second postulate directly.

We shall now describe an experiment which was performed to test the volidity of
the second postulate, that the speed of l ight is  a constant independent of the
motion of the light soLlrce.

Suppose R. has a light source at rest in his lab and he measures the speed of

\
\
\

:
I

\ /

Figure 3.11. Light emitted from positions A and B on the sun’s equator colnes from
r,ourtes  moving with different velclc~~ties  relative to the earth.
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light using apparatus at rest in his lab. He finds the speed to be c. Then, if G. is
moving toward R.‘s  light source with speed v, the light’s speed in G woulol  be c
if the second postulate is correct, but c +  v i f  the Gal i lean transformations are
correct. I f  G. is  moving away from R.‘s  light source, with speed v,  the Gal i lean

transformations imply that the l ight’s speemd  in G would be c - v. The difference
between these two observed speeds would be 2v.

Imagine that R. is slitting  in a lab at rest on the sun’s equator, as in Figure 3.1 1.

The sun rotates about aln  axis which is nearly normal to the l ine of s ight of G.,
who is  supposed to be on the earth. The sun has a radius of 695,000 km and
rotates with angular velocity 2.9 x 10m6 r’ad/sec.  The speed with which a point A
or B (see Figure 3.1 1) at the edge of the visible equator moves either towalrd  or
away from the earth is  ‘v  = o r  =  2  km/!;ec  =  2 0 0 0  m/set. H e n c e ,  i f  G .  m e a -
sures the speed of lislht, (emitted by a source at rest relative to R, for both points
A and 6, he should see a difference of 4000 m/set i f  the Gali lean transforma-
tions are correct and 170  difference if the second postulate is correct.

When the experiment was actual ly performed by the Russ ian physicist  Bonch-
Bruevich, the speed difference was observed to be 63 f 230 m/set, where the
figure ~230  m/set indicates the s ize of the probable error in the measurements.
This experiment is  in far better agreement with the principle of the constancy of

the speed of l ight than with the Gal i lean transformations.  Bench-Bruevich calcu-
lated that, given the rlzsult 63 & 230 m/set and the predicted result of the Gali-
lean transformation Iof  4000 m/set, the chance that the Gal i lean transformation
could be right is 1 in 104.j.  A reproduction of that paper is given on the following

page.

3.15 GALlLEAN  TRANSFORMATIONS AND THE PRINCIPLE
OF RELATIVITY

The Gali lean Transformations connecting the measurements of G. with those of

R. may be written as:

Xl = x - v f Y’  = Y

f’ = t z’  = z (3.10)

These transformations are completely consistent with the principle of relativity

(Postulate I)  taken by itself .  This may be seen by solving for x,  y,  z,  f in terms of
x’, y’, z’t:

x = x’  + vi’ Y = Y’

t = t’ z = z’ (3.11)

Examining the last four equations, it is seen that they are of the same form as the
first four except for the sign of the relative velocity and the interchange of primed
and unpr imed variabll,Es.  This formal difference in the two sets of transformations,

which occurs in the s ign of the relat ive velocity, is one manifestation of the



LETTERS TO THE EDITOR

A DIRECT EXPERIME:NTAL  CONFIRMATION OF THE SECOND POSTULA’TE  OF THE
SPECIAL THEORY OF RELATIVITY

( i n  connection  w i t h  D i n g l e ’ s  n o t e )

A .  M .  Bench-liruevich
R e c e i v e d  1 8  F e b r u a r y  1 9 6 0

I t  i s  w e l l  k n o w n  that  t h e  Sptxcial  ‘Ttleory
o f  R e l a t i v i t y  i s  b a s e d  83”  t h e  poz’tulate  o f
t h e  r e l a t i v i t y  o f  motion  a n d  t h e  p o s t u l a t e
t h a t  t h e  v e l o c i t y  o f  li&t  i s  cor1stant.l
T h e  f i r s t  p o s t u l a t e  i s  ,s  d i r e c t  consequence
o f  t h e  n e g a t i v e  r e s u l t s  o f  r e p e a t e d  a t t e m p t s
t o  d e t e c t  a  p r i v i l e g e d  ~coordinatr  system)  i n
o b s e r v i n g  o p t i c a l  a n d  electricaL  pheonomena.

E x p e r i m e n t s  f o r  t h i s  p u r p o s e ,  r e p e a t e d  o v e r
s e v e r a l  d e c a d e s  a f t e r  tile  formulation  o f
t h e  S p e c i a l  T h e o r y  of  Rczlativity,  h a v e
c o n f i r m e d  t h e  f i r s t  p o s t u l a t e  with  i n c r e a s -
i n g  a c c u r a c y . 2 - 5 T h e  s e c o n d  p o s t u l a t e  o f
t h e  T h e o r y  w a s  n o t  b a s e d  o n  d i r e c t  e x p e r -
i m e n t a l  I-esults, a n d  i n  t h e  decacles  tl,at
f o l l o w e d  i t  w a s  n o t  c”nEirmed  directly
b e c a u s e  o f  t h e  great  ditficult]eE  e n c o u n -
t e r e d  i n  s e t t i n g  u p  t h e  approprrE#te
exper iments .

T h e  Special  T h e o r y  “C  Relati\,lty  n o
l o n g e r  n e e d s  a n y  additi,lnal  suppc’rt. N”“f2
t h e  l e s s , a s  Academician  S.  I .  Vzvilov
p o i n t e d  o u t  m o r e  t h a n  tczn year:;  zmgo,  a
d i r e c t  e x p e r i m e n t  showing  that  ltlle  v e l o c i t y
o f  l i g h t  i s  i n d e p e n d e n t  o f  t h e  velocity  o f
t h e  source  o f  r a d i a t i o n  relatiw  t o  ttle
o b s e r v e r  i s  i m p o r t a n t ,  <due  t o  i he b a s i c
s i g n i f i c a n c e  o f  t h i s  po.;tulate,

Dfi”glep u b l i s h e d  a  n o t e  o n  this r e c e n t  ly. I t
a p p e a r s  from  t h i s  n o t e  tllat  thf,  author  i s
n o t  acauainted  w i t h  t h e  r e s u l t : ;  r#f tile
e x p e r i m e n t  t o  c o n f i r m  t h e  s e c o n d  p o s t u l a t e
d i r e c t l y , c a r r i e d  o u t  i n  1 9 5 5 .  ?-5’

I n  t h i s  e x p e r i m e n t , a comparisc~n was made
o f  t h e  t i m e s  t l  a n d  t2 require<1  f o r  liglit
e m i t t e d  I,y t w o  m o v i n g  s o u r c e s  t o  t r a v e r s e
a  d i s t a n c e  L  =  2 0 0 0  metgirs. ‘l’ilf~  sunvs
e q u a t o r i a l  e d g e s  w e r e  wed  a s  :,o~rces.
S w i t c h i n g  f r o m  t h e  r a d i a t i o n  oj  t h e  s u n ’ s
ea.stern  edge t o  t h a t  o f  i t s  weL,t:ern  e d g e
c o r r e s p o n d s  t o  c h a n g i n g  t h e  v e l o c i t y  o f  t h e
s o u r c e  o f  r a d i a t i o n  b y  13.9  km/s,cc  i n  t h e
p l a n e  o f  t h e  e c l i p t i c . W e  usec a  p h a s e
m e t h o d  t o  s h o w  t o  t h e  r e q u i r e d  a c c u r a c y  t h a t
u n d e r  these  c o n d i t i o n s  :he t r a n s i t  t i m e  o v e r
t h e  h a s e  L r e m a i n s  cons‘cant. l’ile  i n t e n s i t y
o f  t h e  l i g h t  r a d i a t e d  a l o n g  the  b a s e  b y  t h e
l e f t  o r  r i g h t  e q u a t o r i a l  e d g e s  o f  the s u n
w a s  m o d u l a t e d  a t  a  f r e q u e n c y  OS  a b o u t
1 2  MC/S. T h e  p h a s e m e t e r  o f  a  t#l&,h  r e s o l -
v i n g - p o w e r  f l u o r o m e t e r  w a s  t h e n  l’sed  t o
m e a s u r e  t h e  p h a s e  s h i f t  Ap o f  t h e  m o d u l a t i o n
o f  t h e  l i g h t  t r a w l i n g  .along the b a s e  w h e n
t h e  t r a n s i t i o n  w a s  m a d e  f r o m  “IIC’  e d g e  o f  t h e
sun t o  tt16’  o t h e r . 1 0

A  statIstica  a n a l y s i s  o f  t h e  r e s u l t s
o f  m o r e  t-llan  1 7 0 0  measure’rents  o f  A t  =
t 2 - t l  s h o w e d  t h a t  i n  our e x p e r i m e n t
t h e  c h a n g e  i n  tlie  transii  t i m e  o v e r  t h e
b a s e  L  o f  tt-e  l i g h t  e m i t t e d  b y  t h e  l e f t
a n d  right e q u a t o r i a l  edgg  s  o f  t h e  s u n
w a s  A t  == (1.4+5.1)  x 10-.12  s e c .

We  note  tt,at  i f  t h e  clsssical  l a w  o f
c o m p o u n d i n g  v e l o c i t i e s  were  v a l i d ,  t h e
q u a n t i t y  A t  f o r  o u r  a p  aratus  8ould  h a v e
h a d  t h e  value  7 5  X lo- e2 see,  ,xhich  l i e s
f a r  o u t s i d e  tile  l i m i t s  o f  e x p e r i m e n t a l
e r r o r . I n  a d d i t i o n , t h e  v a l u e  A t  =  0
l i e s  inslde  t h e s e  l i m i t s .

A s  was; s h o w n , 9 t h e s e  e,:perimfental
r e s u l t s  c a n  b e  s t a t i s t i c a l l y  analyzed
a l o n g  d:tl-ferent  l i n e s ,  ard u s e d  t o  com-
par?  t h e  p r o b a b i l i t i e s  ttlat  the c l a s s i c a l
o r  relativistic  l a w s  o f  c o m p o u n d i n g
velocities  a r e  v a l i d . Ttlis  siiows  t h a t
t h e  p r o b a b i l i t y  t h a t  t h e  v e l o c i t y  o f
l i g h t  is  i n d e p e n d e n t  o f  the vel”:ity  o f
motion  o f  t i e  s o u r c e  exceeds  b y  1 0 4 5
t i m e s  tllc  p r o b a b i l i t y  t h a t  t h e  c l a s s i c a l
l a w  o f  c o m p o u n d i n g  v e l o c i t i e s  i s  v a l i d .

Tile  e x p e r i m e n t a l  r e s u l t s  a p p e a r  c o n -
v i n c i n g  t o  u s , a n d  i t  seems  o f  l i t t l e
i m p o r t a n c e  t o  r e p e a t  then,  i n  alother
v a r i a t i o n  a t  p r e s e n t  ( f o r  instawze,
u s i n g  e x c i t e d  a t o m s  o r  icons  a s  a  m o v i n g
s o u r c e  “1.  radiaticn)
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6 0 Special  theory of relativii’y

principle that neither of the inertial systems is preferred. Hence the correct trans-
formation laws in re lat iv i ty must  have a !similar property; i t  is  mainly the con-
stancy of the speed oi l ight which br ings about maior changes in the form of

the transformations.

3.16 TRANSFORMATION OF LENGTHS PERPENDICULAR TO THE
RELATIVE VELOCITY

We shal l  now begin .the  ‘der ivation of the correct transformation laws which wi l l
replace the Gal i lean transformations.  These new transformations wi l l  have to be
valid for all physical values of the relative velocity v. Experimentally, the largest
possible magnitude Iof  the relat ive velocity of two physical objects is  c.  When
the relative velocity v is such that v << c, Ihowever, the correspondence principle
requires that the mor’e general transformations reduce to the Gali lean trans-
f o r m a t i o n s .  T o  f i n d  the  m o d i f i e d  t r a n s f o r m a t i o n s ,  w e  w i l l  c o n s i d e r  s e v e r a l
thought experiments.

We f i rst consider the rneosurement of distances oriented perpendicular to the
direction of relat ive svelocity between the ‘two  frames, that is,  along the y or z

directions. To f ind G.‘s  coordinate y ’ in terms of the unprimed coordinates
measured by R., suppose that G. and R. each have meter sticks which, when at
rest relat ive to each other,  are identical.  Then lay one meter st ick with midpoint
on each of the z and z’  axes, and arrange the two sticks parallel to the y, y’ axes
as in Figure 3.12. Imagine that G. and R. drive nails into the sticks at the ends to
provide definite markers for the end points, and that then G. moves past R. with
some large constant velocity v along the x axis. If the nails in G.‘s  stick pass be-

tween the nails in R.‘s stick, we would have to say that G.‘s  meter stick was con-
tracted due to its motion. Because R. is moving with speed v relative to G., then

G R

Figure 3.12. Thought expqeriment  showing lengths oriented perpendicular to the direc-
tion oi relative motion ore unchanged by motion.
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by the pr inciple of relat iv i ty,  F!.‘s nai ls  must also pass between G.‘s  nai l s .  How-
ever,  i t  i s  not consistent to say that G.‘s  nai l s  pass between R.‘s,  and R.‘s  pass

between G.‘s;  the only way This  can be consistent is  i f  the nai ls  hit  each other.
This would tell us, in general, that the transformation between y and y’ is:

Y’ = Y (3.12)

A similar argument results in:
z’  = z (3.13)

So no matter what the relativto  velocity is, as long as it is normal to the y’ and z’
axes,  we must  s t i l l  have y’  = y and z’  = z,  just  as in the Gal i lean transforrna-
t ions.  However,  we st i l l  have to obtain x’  and t’  in terms of  x  and t, which i s  a
less straightforward process.

17 TIME DILATION

ltet us consider another thougllt experiment to see how time intervals ancl lengths
oriented along the x axis vary from one inert ial  f rame to another. SuF18pose  G.
puts a mirror a distance L’ out along his z’ axis  at M’ in F igure 3.13, and ar-

k
-.

A

1’

I-

Figure 3.13. Thought experiment as seen by G.; light travels from 0’ to the stationary
mirror M’ and back.

ranges it  so that a l ight ray which passes from his or igin 0’ to M’ wil l  be re-
f lected r ight back to 0’. The principle of the constancy of the speed of l ight

means that G. wi l l  f ind that the l ight ray t ravels  with speed c. The t ime i t  takes
to go from 0’ to M’ and back to 0’ is then

(3.14)

Next we consider th’e  same light ray from R.‘s  pain:  of view, and calculate the
time interval At for the l ight ray to go from 0 to M’ and come back to the

origin 0’.  We assume here that 0 and 0’ coincide when the l ight ra’y  is first
emitted. In Figure 3.14, the dclshed  rectangle represents the posit ion of the mirror

at the time the ray strikes it. Since z’ = z and z’ = I’ for the mirror, R. will ob-

serve that the mirror is out in the z direction a distance L = I’. Let’s call the time
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Equal lengths

Figure 3.14. Thought experiment as seen by R.; light travels obliquely from 0 to the
moving mirror M’ and black  to 0’.

at which R. observes that the ray str ikes the mirror At,, .  The x coordinate of this
event, “ray strikes mirror,” i f  G.  moves with velocity v,  wi l l  be (v)(At,,).  In  the
tr iangle OMX in the f igure, the hypotenuse OM is therefore of length (L.”  +

[vA~,~]‘)‘.  Since the speed of light relative to R. is c, the time it takes for light to
go from 0 to M’ will be given by

At _ (L’2  + [vAtgo]‘)“’
P - - -

c7

When this equation is solved for At,, , the Iresult  is

At = -c!‘)90 2 II2(1 -- v’/c  )
(3.16)

It takes as much time for the ray to come from M’ back to 0’, as to go from 0 to
M’. Therefore, the total t ime, At, for the ray to go from 0 to M to 0’ is 2At!),, or

At =
(2L’,ic)

( 1  - vZ/cZ)“2
(3.17)

We have thus analyzed an event-the col l i s ion of  the l ight ray with Or---from
two different points of view. G. says that for this event,

x’ = 0 and  A+’ z 2L’
C

R. says that for this event,

x = “Af = -P’/c)
2 I,?(1 - vz/c )

and
(i!L’,ic)

Af = --__

(1 - vZ’/c  )2 I,?

(3.18)

(3.19)

(3.20)

There are several things ‘we  can do with this information. For example, the rat io
of At to At’ can be obtained. Divis ion of the equation for A.t  by that for At’
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gives  At/At’  = (1 - v’/c’)-‘~!,  o r

Af = Atr
( 1  - ?/c2)1’2

(X21)

That is, the observers obtain different times for the occurrence of the event.

T o  g i v e  a  n u m e r i c a l  e x a m p l e ,  i f  Y =  4c/5,  1  - -  v2/c2  =  ‘/,s  a n d  A t  =

At1/(9/25)‘/2  = (%)At’.  So if  G.‘s clock,  at  0 ’ ,  reads 3 set  e l a p s e d  t i m e ,  t h e n  a

clock at rest in R.‘s system, which is at the position of 0’ when the ray strikes it,

will have beat 5 seconds.

Hence the “moving” c lock,  G.‘s c lock ,  beats  more  s lowly  than R.‘s clocks.  In

this experiment G.‘s clock at 10’ was the only clock he used in making the mea-
surements .  However ,  R .  useed  one  c lock  a t  h is  or ig in  to  mark  the  t ime the  ray

went out, and one clock at the final position to mark the time of arrival of the

ray back at 0’. These two clocks in R.‘s system cannot be the same clock because

w e  a s s u m e d  i n  t h e  tllought  exper iment  that  a l l  R.‘s c locks remain at  rest  in  R.

R. ,  therefore ,  used at  least  two c locks.  We may conclude that  for  the  speesd  of

light to have the same value for all observers, it must be true that clo&s  moving

relative to a system beat slower than clocks at rest in the system. However, the

observer at rest must use at least two clocks to see the effect, while the moving

observer carries one clock along with him. This effect is called time dilatron.

In  th is  exper iment , ,  the  c lock carr ied  by  the  “moving”  observer ,  G. ,  appears

to  beat  more  s lowly  than  the  two  c locks  in  the  “ res t”  sys tem,  tha t  01:  R .  I f  we

analyze a s imi lar  experimerit  f rom the  po int  o f  v iew of  G . ,  in  which  we regard

G.‘s system as the rest system, then by the principle of relativity we must find

that a single clock carried along by R. will beat slower than G.‘s clocks. In this

latter experiment, by the principle  of relativity,
j ,

A t ’  =  At
F-

,-!I!
‘\

)
C2

(3.22)

_.,.  _.
just  the opposi te  of  Equat ion (3;27).  Th is  shows tha t  the  s tudent  should  not

a t tempt  to  learn  the  equat ions  o f  re la t iv i ty  in  te rms of  pr imed and unpr imed

variables, but in terms of the physical interpretation of the equations; confusion

regarding the sense of the various contraction and dilation effects is then less

likely to result.

Suppose someone your own age gets in a rocket ship and moves past you with a
1 ‘I2

s p e e d  Y such that  (1  - v2/c  ) = % Suppose that  in  10 seconds,  by h i s  o w n

reckoning, he counts that his heart beats 10 times. You would observe that in ten

seconds, by your own reckoning, his clocks have recorded less than ten seconds,

or (% )( 10) = 5 set,  so you would observe that his heart beats only tii times. If

h e  g o e s  t o  M a r s  ancl  re turns ,  he  wi l l  then  be  younger  than  you  when he  gets

back.

This time dilotion effect has been observed in experiments in which the average

lifetimes of high speed particles called p-mesons are measured. p-mesons  at rest

decay in to  e lect rons af ter  arl average  l i fe t ime of 2.2 x lo-*  sec.  This  decay

can be thought of as an internol  clock in the meson. When the mesons are moving
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rapidly, i t  appears to us that the internal clock beats slower, so the meson’s

average li fetime appears to be longer. Table 3.3 gives some experimentally

observed l i fetimes, together with correspolnding  values calculated from Equa-

tion (3.21) for dif fering values of v/c. The measurements were obtained by B.

Rossi  and D. B. Hall, who counted the number of cosmic ray /J mesons at different

heights above the ealrth’s  surface. Since the p’s  are produced by high energy

cosmic ray particles str iking the earth’s outer atmosphere, the number of p’s

counted at a given heisght  was a measure of the number of p’s  surviving after

being created in the primary coll is ions. From these measurements, along <with

independent measurernents of speeds of the p’s,  the l i fetimes as a function of

speed could be found.

TABLE 3..3 M-Meson  Lifetimes As o Function of Speed

v/c Tmvwtsg.  (ohs.) Tareroge  (Cal4- - -
0.9739
0.9853
0.990

10.6 k 3.5 psec 9.3 psec
13.3 f 5.8 psec 13.0 psec
15.6 k 5.8 psec 15.7 psec

3.18 LENGTH CONTRACTION

The results of the thought experiment, from which we obtained the t ime dilation

effect, can also be used to derive a length contraction effect for rods oriented

parallel to the relative velocity. Suppose R. has a measuring rod along his x axis,

on which he makes a scratch at his origin 0 and another scratch at the point

ivhere the l ight ray hits 0’ after ref lection from the moving mirror. Let us call

the distance between scratches in R.‘s  system Ax. Since Ax is the distance be-

tween 0 and 0’ after tile  t ime At, during which G. is moving away with speed v,

A x  =  vAt (3.23)

Now the distance, Ax’, measured by G. between the scratches is a distance be-

tween scratches on a rod which is moving with speed v relative to him. It is also

the distance between 0 and 0’, measured after the time, At’,  when the l ight

a f t e r  g o i n g  f r o m  0 ’  to M’ a r r i v e s  b a c k  a t  0 ’ .  T h e n  t h e  d i s t a n c e  b e t w e e n

scratches is, for G.,
Ax’ = vAt’ (3.24)

Division of the expression for Ax’ by that for Ax leads to

Ax’ At’- = - - .
Ax At

(3.25)

Hut from the time dilation ‘equation, Equation (3.21),

Therefore,

Ax’  = _ !f’j’* Ax
c2/

(3.26)

(3.27)
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Here Ax is the length of aln  object measured in a system in which thtr  object is

at Irest.  The object is moving with speed v relative to the G system in which the

corresponding lengttl  Ax’  is  measured.  Thus,  i f  an  object  is  moving rlelative  to

the observer with velocity v, it appears contracted in the dimension parallel to

v  b y  t h e  f a c t o r ,  ( 1  - v~/c~)“~.  S i n c e  y  =  y ’  a n d  z  =  z ’ ,  t h e  o b j e c t  is,  n o t

changed in  s ize  in  d i rect ions perpendicular  to  v .  For  example,  i f  v/c =: ys,

Ax’ = (7s )  Ax.  This  resul t  says that  a  st ick of  any length Ax at  res,t  reloltive

to R., when measurecl  by G., appears to be shorter. This effect, in whic:h moving

rods appear contracted in the direction of motion, is a necessary consequenc’e  of

the assumption that the speeld  of light has the same value for all observers.

Suppose G. and R. both Ihave  meter  s t icks  para l le l  to  the  x  and x ’  axes.  To

R., the length of G.‘s stick appears to be less than a meter. Also to G., R.‘s stick is

less than a meter lonlg.  How can each measure the other’s stick to be!  shorter?

The reason is that to measure a moving length one must find the positions of the

t w o  e n d s  s imultaneously,  and  then  measure  the  d is tance  be tween  these  pos i -

tions. The two observers simply  disagree about what measurements are simul-

taneous, as we shall see. It should  be noted that if the physical situation is,  re-

versed so that the length is at rest relative to G., Equation (3.27) woul’d  become

Ax  = (1 - v’/c’)”  Ax’.  So,  as  in  the case of  t ime di la t ion,  one should not

learn the equation in terms of where the prime goes but iln  terms of the physical

situation corresponding to the given equation.

-19  LORENTZ  TRANSFORMATIIONS

With the informat ion gainecl  f rom these  thought  exper iments ,  we  can  now f ind

the Lorentz transformations which give the relativistic relations between coomrcli-

notes of events, observed frorn different inertial frames. Two of the lequatiolls

a r e  u n c h a n g e d :  y ’  == y  a n d  z ’  = z .  We wi l l  assume in  our  t ransformat ions

that  t = f’  =  0  when the or ig ins 0  and 0 ’  coincide.  This  can be done by s imply

setting the clocks to ziero  at that instant.

Suppose an object  at  P’  in  f igure 3 .15 is  at  rest  re lat ive to  G.  The distclnce

x  i n  t h e  f i g u r e  i s  t h e  x  c o o r d i n a t e  o f  P’ relat ive to R;  i t  is  the distance

measured para l le l  to  the  x  oxis,  f rom x = 0 to P’ .  As me’asured by R. .  the dis-

tance from 0’ to P’ is AK = x - vt. To G., the distance O’P’ is simply

J(’  = Ax’ .  A lso,  we note  that  Ax’  is  a  d is tance between points  a t  rest  in  the

moving system G.  Thus Ax is  less than Ax’  by  the factor  (1  - v2/c2)‘?  We

t h e n  h a v e  A x ’  =  A.</(1  - v’/c’)“~.  B u t  a s  w e  f o u n d  a b o v e ,  A x ’  == x ’  (and

Ax = x - v t .  Therefore ,  we  obta in  the  fo l lowing transforlmation  equat ion re lat -

ing x’to x and t:
I

x :-
( 1  - vZ/cZ)“2

( x  - vt)

This applies if P’ is any point whatever. Hence, if some event occurs relative to

R at position x and at time f, then substitution of x and t into this transforma,tion

equat ion g ives the value of  10 at  which G.  observes the event .  Equat ion (3 .28)

is  the  same as  the  ‘corresponding Gal i lean equat ion,  except  for  the  factor
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z

- x,  x’

d

Figure 3.15. x coordinate of on object at rest in G and observed by R.

l/(  1 - vz/c2)“‘. As v/c app roaches zero, this factor approaches one. Therefore,

the correspondence principle is satisfied.

The pr inciple of  relativlity  implies that the equation giving x in terms of x’ and

f’ is of the same form as the transformation equation, Equation (3.28),  but with

the sign of v reversed. Hence, in terms of x’ and t’, we must have

1
X= - ( x ’  +  Vf’)

( 1  - Yz/cz)“2

Finally, we want to f ind the transformation equation which gives the t i rne t’

in terms of measurements made by the observer R. To do this, we use the expres-

sion for x’  of  Equation (3.28) to el iminate x ’ in Equation (3.29).  The result ing

equation is

1 1x =  -______
(‘I  - vZ/c2)“2

[

--~  ( x  - vf)  + vt’
( 1 - Yz/cz)“z 1 (:3.30)

On solving this last equation for t’, we find that

t’  = 1
272 t - :

(1 - “2/C ) ( )C

(3.31)

This is  the desired relat ionship giving t ’  in terms of t and x. Likewise from the

principle of relativity, expressing f in terms of t’ and x’, we must have

t= 1 - if’ + 5)
(l-v21c)  \

2 l/2
(3.32)

For v << c, the two equations, (3.31) and (3.32),  both reduce to 1’ =  t. There-

fore, the correspondence principle is satisfied.

These equations were found using the length contraction equation. They also

agree with the t ime dilation formula. We con see this by supposing that a single

clock is at rest in the rnoving system G at x’ = 0. The equation
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t :I:

1

( 1  - “2/C2)“2( )
t’ + YXI

cz
(3.33)

becomes, for this clock, t =  t’/(l - Y’/c’)~‘~.  The t ime t’, read on this s ingle
clock at rest in the moving system G, is therefore less than the t ime t meas,ured
by a coincident clock in the rest system R. This  agrees with Equation (3.13),
found previously from a thousyht  experiment.

The set of transformations we have found between x’y’z’t’ and xyzt are:

x’ =: 1
2 2 ,,2 (x - v %

(1 -v/c)

t�  q :
1

(, _  v2,c2)l/2  t - y-

( i

(:3.:34)

These are called the Lorentz t,ransformations. We have seen that they satisfy the
correspondence pr inciple. They were der ived by repeated use of the two postu-

lates of the theory oif relativity.

imp/e  Suppose that G. i s  moving away f rom R. in the posit ive x di rect ion at a speed

s u c h  t h a t  v/c  =: %,, I f  R .  sets  o f f  a  f i r e c r a c k e r  a t  y  =  z =  0 ,  x =  1 0 , 0 0 0  m ,

t := 10m4 set, where and when does G. observe it?

htion F o r  v/c  =  5/13,  ( 1  - -  v2/c2)“”  =  ‘/,,  . Then subst i tut ion into Equations (13.34)
gives y’ = z’ = 0, .K’  = - 1 6 6 7  m ,  t’ =  0 . 9 4 4  x  lo-‘!sec.

I.20 S I M U L T A N E I T Y

Aside from the time dilation factor (1 - v~/c~)~“~,  the equation for t’ in the
Lorentz transformations differs from the Gali lean transformations by a term

Y

Figure 3.16. A number of explosions ot different positions along the x axis are simul-
toneous in R.
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proport ional to x. To see the physical s ignif icance of this term, suppose that R.
sets off a number of explosions along the x axis,  which by his own clocks occur
s i m u l t a n e o u s l y ,  a t  t h e  insstant  t =  0 .  ( S e e  F i g u r e  3 . 1 6 . )  T h e  e q u a t i o n  t’ =
(t - vx/c2)/(l  - v2/c2)““,  t e l l s  u s  t h a t  f o r  t =  0  b u t  f o r  d i f f e r e n t  p o s i t i o n s
x,t’  = -vx/c2(1  - v~/c”)“~.  These are then the readings on the var ious clacks

of G. for the different explosions, al l  of which are observed simultaneously in
R. at t = 0. Thus, for positive x, these clocks in G appear to be set behind what
R. would cal l  the correct t ime by the amounts vx/c2(1  - ~‘/c’)“~,  which depend

on posit ion. Hence events that appear s imultaneous to R. do not appear s imul-
taneous to G.; the t i rnes of their  occurrence depend on the x posit ions of the
events. Simultaneity is thus a concept which has no absolute meaning.

Perhaps we may understand this by considering the observer R. standing, as in
Figure 3.17, halfway between two light detectors /I1 and D2, that record the time

Dl \r rl \‘\A/

Figure 3.17. Light emitted from o point halfway between two detectors at rest in R

arrives simultaneously at the two detectors in R.

at which l ight hits  them. If R. turns on the l ight bulb he is  holding, then, s ince
it takes the same t ime for the wavefront to travel f rom R. to D, as to D2,  the
detectors record equal t imes when l ight hits  them. R. would say that the l ight
hit the detectors simultaneously.

However, i f ,  as shown in F igure 3.18, G. i,j moving past  R.‘s  posit ion at the

instant R. turns on the l ight, then as far as G. is  concerned, he sees D, and1 02

rnoving backward wit11  speed Y.  Then, in G,.‘s system, the l ight wave going for-
ward and the detector  D2  are approaching each other,  whi le D, i s  moving
paral le l  to the l ight wave going backward, The l ight wave going forward ,thus
appears  to  have traveled  less distance before it str ikes the detector. Therefsore,

in G.‘s  system, the l ight hits D2  before it hits D,,  and the events  which were
simultaneous in R are Inot  s imultaneous in G. S ince G. bel ieves that the l ight h i ts
D2  f i rst,  but D1  and D2  record the same t ime, G. says that the t imer at D2  is set
fast compared to that at D,. That is, the timers are not synchronized  in G.
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Figure 3.18. Light emitted os G.  passes the midpoint between two moving detectors
does not arrive at the detectors simultaneously in G.

,+ 1.  Two events  at  x := +lOO  km  are observed by R.  at  the instant t = 0.  Whlen
are these events observed by G. if G.‘s  velocity in the positive x direction relative
to R has magnitude c/10?  (Assume 1’ =  t =  0  when x’ =  x = 0.)

ution  t ’  = -VX/C’(l  - V”/C’)“’=: -0.1(&100)/(3  x 105)(0.‘99)“2

=  +3.35  X 10e6  s e c .

mp/e 2. If the relative velocity ha:,  magnitude 9c/lO,  when are they seen?

~tion  t’  := 0.9(*100)/(3  :<  1O5)(O.19)‘/2  = b6.88  X 10e4sec.

When a length melasuremcmt  of a moving object is made, the positions of both
ends of the rod must be marked at the same t ime. (See f’igure  3.19.) Thus, for

R

Figure 3.19. To measure the length of a moving rod, R. makes marks simultaneously at
the positions of the left o nd right ends, XI and xR.  L = Lrnarkr.

a  r o d  o f  l e n g t h  I a t  r e s t  i n  G ,  R .  c o u l d  m e a s u r e  i t s  a p p a r e n t  l e n g t h  L b’y
noting the posit ion of its lef+  end, x r, and the posit ion of i ts  r ight end, xR, at
the same time, and then measuring the difference xR  - XL. Suppose, for example,
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that when G.‘s speed is 10,000 ft/sec,  R.  waits 10m3 seconds to mark the r ight

end of the rod after he marks the left end. The error he would make in his length

measurement would be (1 OOOO)( 1 Om3)  = 10 ft.

Let R. mark the positions of two ends of the rod at t ime 1.  Then, from the

Lorentz transformations, G. would say the right mark was made at the ,time

1;  =  (f - VXR/C2)/(1  - “2,/C  )  .2 ‘I2 Also, G. would say the left mark was made at

the time t; = (t - vq/c2)/(l  - v2/c2~‘2.Since  these times are not the same, the

marks do not appear to be made simultaneously in G; rather, it appears the

right end is marked f irst.  The dif ference between these t imes is At’ =  t; - -  t;,

given by

At’ =
V(XR  - XI) Vl

=
2(1 - “2/c2)‘12 c2(1 - Y2/c2)1’2

(3.35)

In this time, relative to G. the R system moves a distance vAt’  to the left. Hence,

the righthand mark approaches the left end of the rod by a distance

‘2 I.“At’  =  --~
2(1 - -  2/C’) “2

Thus, if to G. the length of the rod is I’, the distance between the marks is

1 korkr  = I’ - -LV2L

c2(1 - -  Y2/c2)“2
(3.37)

To R., of course, the distance between the marks is Lma,tr  =  L,  the apparent

length of the rod.

--d-R moves  to left before
I xL  is marked
I
I

-Rat  ins tant  xI i s  marked,  t:

XR  I with t’, > t’,
I

Figure 3.20. R.‘s  measurements of the length of the rod in G, as seen by G.
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The above result can be used to check the length contraction effect, for sup-

pose the ratio of the apparent length of a moving rod to that of an identical rod

at rest is denoted by ‘I/y, where y is some constant depending on relative speed.

T h e n  s i n c e  t o  R .  t h e  r o d  a t  r e s t  i n  G  i s  m o v i n g ,  Lma,,..  =  L =  l’/y. Iiowever,

to G. the marks at rest in R are moving with the same speed, so LAark,  =  I./-y.

Thus, el iminating L’  alld  Lk,,k.  from Equation (3.37),

1- :=  yl -
21

Y cZ(l - vZ/cZ)“2
(3.313)

T h i s  q u a d r a t i c  e q u a t i o n  f o r  *y  h a s  s o l u t i o n s  y =  l/(1 - v2/c2)” and  :r =

-( 1 - v~/c~)“~.  Since the second solution becomes -1 as v/c goes to zlero,

it  does not satisfy the correspondence principle and may be discarded. The f irst

solut ion agrees with the length contraction found previously from another

thought experiment. Since tke  present argument is based on the disagreemelnt

regarding simultanei,ty  between the two frames, we see that this is the basic

reason why lengths in one system may appear shortened in another system, ranId

vice-versa.

2 1 TRANSFORMATION OF VIELOCITIES

It is extremely useful to know how velocity measurements made by different

observers are related. Suppose, as is i l lustrated in Figure 3.21, that R. observes

z

Figure 3.21. The position vector of o particle  changes by dr in time dl’.

a particle moving in .time  dt from the point with coordinates x,y,z  to x + dx,

y  +  d y ,  z  +  d z .  I n  R  t h e  v e l o c i t y  t h e n  h a s  c o m p o n e n t s  o f  dx/dt, dy/dt, land

dz/dt. Suppose G. observes the very same particle going from x’, y’, z’ to

x’ -t dx’, y’ + dy’, .z’ +  dir’  in the t ime interval d t ’ .  The velocity colnponents

in G are then dx’/dt’,  dy’/dt’,  and dz’/dt’.  We shall use the Lorentz trclnsforma-

tion equations to f ind dx’, dy’, dz’, and dt’ in terms of the unprimed differ-

ential quantities. The use of the velocity definitions just stated will then lead to the

velocity transformations.
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One of the equations of the Lorentz transformation, Equations (3.34),  i s

x’  zz 1
2 ,T2  (x - 4

(1 - v2/c )

the differential form of this equation is

d x ’  =
1

2 1/2  (dx  - VW
(1 - v2/c )

(:3.39)

This was obtained simply  by differentiation, u n d e r s t a n d i n g  t h a t  t h e  rellotive

velocity of the two observers is kept constant, i .e. that v is constant. The ilncre-

ment dt’ is obtained in the same way from the equation,

It is

t’ = 1
277?

i 1

t-x!5

(1 - “2/C ) C2

c/t’  =

(:3.41)

(:3.42)

Hence, the x’ component of velocity is

d x ’ d x  - v d t-= - - -
d t ’ df - -  vdx/c2

(:3.43)

If  we divide the numerator and denominator through by dt, on the righthand

side we get (dx/dt) -- v in the numerator and 1 - v(dx/dt)/c’  in the denomi-

nator. (We shall  use the dot notation for ,time  derivatives, f =  dx/dt, the x

component of velocity i r  R; l ikewise in G,  i’ =  dx’ldt’.) Equation (3.43) is,

in this notation,

d x ’
X” =  - = (* - v)--~

dt’ ( ‘ I  - -  “f/C2)
(:3.44)

Thus, for example, i f  ,3  particle goes with an x component of velocity, x =
- % c relative to R, anu  v = % c, then G. wil l  measure the i’ component of

velocity to be

I
X

= (-tic  - %c) 4

(l+%)  =-3’0

O n  t h e  o t h e r  h a n d ,  t h e  G a l i l e a n  t r a n s f o r m a t i o n  w o u l d  g i v e  i’ =  ic - v  =
- % c - % c = -c.

To obtain the transformation equation for 9, we have ,’ =  dy/dt and jr’ =

dy’/dt’.  S i n c e  y ’  =  y ,  w e  h a v e  d y ’  = dy. Also, for the differential dt’,  we

may use the expression in  Equation (3.42). Therefore,

dy  ’ dyV1  - v2/c2

” =  z =  (dt. “dxlc2)

Hence, dividing numerator and denominator by dt, we obtain

(3.45)

3, =  ( 1  - 1vZ/cZ)“2  9

( 1  - “.i/C2)
(3.46)
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By a similar derivation, we get for i’:

i:’  =
( 1  - ?/c2)“2  i

( 1  - vi/?)
(3.47)

lple If a particle is observed by R. to move with velocity components (10,000,; 42,000;

128,000) km/set, then when G. passes R. with a speed 5’~ c  in  the pos i t ive x

direction, what will be the velocity components he observes?

fion  1 - Vic/C2 =  1  - [104][1.5  :x:  105]/[3  x  10512  =  ‘%,;

41 - v2/c2 = +,-I- := *;

i’ ==  (lo4  - 1 . 5  x  10’)/(55$o)  =  1 . 4 2  x  lo5 km/set;

p’ =  % fi(4.2  x  104)/(5y,,)  =  3 . 7 0  x  lo4 km/set;

i’ =  ?h  d(12.8 x  10”)/(59/,,,,)  =  1 1 . 3  x  lo4 km/set.

Equations (3.47),  (3.46) and (3.44) are the desired velocity transformations.

These transformations satisfy the principle of relativity, ,for  the inverse trams-

formations from G to R are of the same mathematical form, except for thle  s ign of

v. We may show this, for example, by solving Equation (3.44) for j, in terms of X ‘:

or

X’ 1 ._ !i  = i’ _ vi’x - i _ “,
( )C2 C2

.i(l +$)=...,

(3.48)

giv ing
.$= X’ + ”

1  +  “i(‘/C2
(3SCl)

lComparison  with Equation (3.44) shows clearly that the principle of relativity is

:satisfied.  The other transformation equations, Equations (3.46) and (3..47),  als~o

lhave  this property. I f  al l  terms involving factors of v/c in Equations (3.44),  (3.46),

(3.47) are neglected, we obtlgin  the Gali lean transformation, thus showing thalt

,the  correspondence principle is !satisfied.

lp/e  I f  a l ight ray in R has velocity components 3 = c s in  0, i = c cos 8, so tholt

the magnitude of the velocity is c, show that in another inertial system tlhe speed

is also c, so that the principle of the constancy of the speed of light is sati’sfied.

Ijon 1’ =: (c cos 0 - v)/(  1 - v cos B/c);

,” =: o/C2 C  !sin  f9/(1  - -  V COS  e/c).

(i’)’  + (y’)’  = L----c2  cos2 0 - ‘Zcv  c o s  0 +  v’)  +  (c’  sin2 B - v2 sin2 /I)]

[l  --. (2v/c)  c o s  I9 +  (vZ/c2:1  cos2  81
.

.Since  cos2 13  +  sin2 0 = 1, this becomes

[c:!  - 20, cos 0 + Y2 cos2  e],(,‘)2  + (y’)’ =  ____---
[l  - (2v/c)  I.ClS  0 + (v’/c’)  cos2 H]

= c2.
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LAWS OF CLASSICAL MECHANICS

In classical (Newtonian) mechanics, there were f ive quantit ies conserved: mass,

energy, momentum, angular momentum and charge. In relativistic mechanics, all

of the corresponding conservation laws are modif ied except conservation of

charge.

CORRESPONDENCE PRINCIPLE

The correspondence prinlciple  is a useful guide in the derivation of new theories.

I t  states that any new theory containing an old, well-established theory as a

special case, but applic~oble  over a greater range of phenomena, must give the

same prediction as the old where the old applies.

INERTIAL SYSTEM

An inert ial system of coordinates is on’e  in which the f i rst  law of motion is

satisfied. A good <Approximation to an inertial system may be obtained by choos-

ing an origin of axes at the center  of the sun and al lowing the axes to point

toward fixed stars. Then the acceleration and rate of rotation of the axes are

negligible.

GslLd3i.N  TRANSFORMATIONS

A system moving with constant velocity r#elative to an inertial system is also an

inert ial system. The coolrdinates  of events in a system S’  moving with velocity v

relative to the inertial system S are given by the Galilean transformations:

r’ = r - vt

t’ = f

MICHELSON-MORLEY EXPERIMENT

I f  the ether exists, and l ight propagates with speed c relative to the ether, and

if  the Gali lean transformation laws are correct, then i t  should be possible to

detect the motion of the earth through tlhe ether.  The Michelson-Morley experi-

ment, performed with an  interferometer, gave a null  result  for this velocity, as

did many other experiments designed to detect the motion of the earth through

the ether.
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POSTULATES OF RIELATIVITY

The postulates of relativity al’e:

I. Pr inciple of  ReleDtivity:  All  the laws of physics are the same in form, in al l

inert ial frames.

II .  Principle of the Constanscy  of the Speed of Light: The speed of l ight, c, is

a constant irresloective  of the state of motion of the source.

It  fol lows that an observer in any inert ial f rame wil l  obselrve  l ight to travel with

speed c.

BONCH-BRUEVICH’S EXPERIMENT

The experiment of Banch-Bruevich in which the dif ference of the speed of Ilight

coming from opposite l imbs of the sun was found to be zero, shows that l i ight

does not obey the Golilean law  for the addition of velocities.

TIME DILATION

A moving clock, which reads the t ime interval At’,  when clompared  with a ser ies

of clocks at rest relative to tile  observer that read the time interval At, wi l l  bse

observed to beat more slowly. If the velocity of the moving clock is v, relative

to the other clocks, then

This time dilation is observed experimentally in the decay in flight of p-mesons.

LENGTH CONTRACTION

An observer comparing the length of a moving rod, oriented parallel to the

direction of relative velocity v, with rods placed at rest,  wil l  observe the length

AL of the moving rod to be shorter than its length AL’ as measured by an

observer at rest relative to it.

A L ’  =
1 AL

1 - v=/c=

SIMULTANEITY

Simultaneity is a conc:ept which depends on the observer.  Two events which are

simultaneous when viewed in one inertial frame are not necessarily simultaneoLls
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when viewed in an inert ial  f rame moving relat ive to the f i rst .  An observer S’
observ ing events  which t’o  S  appear s imultaneous at x1  and ~2, wi l l  see a t ime
difference of magnitude

LORENTZ TRANSFORMATIONS

The Lorentz transformations are a set of four equations giving relations between

coordinates of events as measured in the inert ial  system S’,  which is  moving
with relat ive speed v with respect to S in the x,  x’  di rect ions.  I f  the or igins
are chosen so that t =  t’ = 0, when the or igins pass, then the Lorentz trans-
formations are:

x’  = 1

1 - v=/c=
(x -- vf);  y’ = y; z’ =  =; f’ =

61 2/c=  2( )

f -- v x

VELOCITY TRANSFORMATIONS

I f  a part icle in the S’ system has velocity components ( i ’ ,  I’, i ’ )  and the S’
system moves with speed v in the x di rect ion relat ive to S,  then the unpr imed

and primed velocity components are related by:

I k---v
X Tz p’=.

1 - iv/c2  ‘ d--  .

1 - !?-I.-.
c=  1 - f”/C2’

i =

1. Prove that the clossicoil  low of conservation of momentum in o two-particle collision
is form-invoriont under Golilean transformations, if moss is conserved.

2. If  two objects, of masses ml and m2 and velocit ies VI and V2, whose re lat ive
velocity toward each other is V = V2 - VI collide inelastically and stick tog’ether,
show using Newtonian mechanics that the kinetic  energy lost is an invariant under
Golilean transformations. What conservation lows do you hove to assume in order to
prove this?
Answer: Conservation of momentum, conservation of moss.

3 . Prove thot Newton’s second low of motiorl  is not form-invariant under o transforma-
tion between an inertial  system and o second coordinate frame which has CI  constant

acceleration relative to the first.

4 .  There are a number  of  double stars  calkd  ecl ips ing binar ies,  where the two t’odies

revolve about their common  center  of mass. As seen from earth, in each revolution one

star passes in front of the other so that the second star’s light cannot be seen,



5.

6 .

7.

8.

9.

1lD.

1 ‘I .

P r o b l e m  7 7

When photographs of these stars are made in different colors  or wavelengths, {the!
periods for thEs  eclipse are found to be identical. Since these !stars may be thousands,
of light-years away (one light-,year is the distance light travels in a year), what con-
clusion can you draw about variation of the speed of light with wavelength?
It wos at one time suggested that the speed of light is not constant relative to an
ether but is constant relative to the object emitting it, and that Galilean  trams-
formations could then be used. Argue from the observations on eclipsing binaries dis-
cussed in the previoLls  problem that this cannot be the case.
The electron beam in the picture tube of a TV set can move across the screen at a
speed faster than c. How car,  this be consistent with special relativity?
If in one second a moving s,opwatch in good working condition is seen to register
% set,  how fast is it moving relative to you?
A n s w e r :  0.866~.

If a person’s heart beats 70 times per minute, what would be the apparent pulse
rate if he were moving ot a speed of 0.9c?
Answer : 30.5 per min.
In one second of your time, how much change of time would a stop watch register
if it were moving at a speed relative to you of (a) 19/181  c; (b) 4/5  c; (c) 60/61  c.
Answer: 180/181  set;  3/5 set;  1 l/61 sec.
Consider two observers, S ancl  S’. S’ is moving relative to S ,with  speed v.  S shines
a light ray out with a component of velocity V parallel to the direction of relative
motion and a component perpendicular to that direction. S’ observes the light
moving paral lel  to his  y axis  ~(y  being normal to V). Assuming y’ = y, ‘and  the
constancy of the speed of liclht, derive the time dilation formula by analyzing mela-
surements that S and S’ coulcl  make.

A beam of protons coming out of an accelerator is contaminated by r+-mesons
which have a lifetime when ai  rest of 2.54 x 1 O-*  set and travel with speed 10.990 c.
HOW  far from the beam port must a target be placed in order that nearly all the
mesons will have decsayed  betore striking the target? Assume the mesons have 3 life-
times in their rest system befo-e striking target.
Answer:  160 m .

1:2.  A hydrogen atom emits some light of wavelength 6563 Angstroms in the frame of
reference at rest with respect to the atom. If the atom were moving at %3 thle
speed of light relative to you in a direction perpendicular to the displacement of thle
atom relative ta you, what wculd be the wavelength of the light you would observe?
(Use the time dilatiorl  formula to find the ratio of frequencies and the fact ihat  the
wavelength is the speed of light divided by the frequency.) 1 Angstrom = lo-”  m.
Answer: 71 10 Angstroms.

13. What is the apparent length of a meter stick if it is moving relative to you pal-allel  to
its length at a speed of (a)  0.1 c; (b) 0.8 c; (c) 0.99 c?
Answer: 0.995 m; 0.600 m: 0.141 m.

14,. Repeat the previous problem if in its rest frame the meter stick is at 60” relative to the
velocity.
Answer: 0.999 m; 0.916 m 0.869 m.

158.  It was pointed out that if one  twin went to another planet and back, he would be
younger than the stay-at-home twin, because his clocks would Irun  slow compared to
earth clocks. If the traveler’s speed is v and the planet’s distance away is L, the
time it takes on earth for the roulnd  trip is 2L/v.  Using the distance of the trip as see,n

by the spaceman, find the time,  as far as he is concerned.
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1 6 .

1 7 .

1 8 .

1 9 .

2 0 .

2 1 .

2 2 .

A n s w e r :  ---.
”

T w o  t w i n  a s t r o n a u t s ,  A,  a n d  A?, a re  to  make  t r ip s  to  d i s tan t  p lanet s ,  d i s tances

d, and d2 a w a y ,  r e s p e c t i v e l y ,  w i t h  d, f d2.  They  w i sh  to  choose  the i r  speeds  so

the i r  age d i f fe rence upon retu rn ing to  ear th  i s  ze ro .  Show that  they  shou ld  choose

the i r  speeds  “,  and vP  such that

$ ( 1  - 41  - “f/CZ)  =  $ ( 1  - G;/c2)

o r  e q u i v a l e n t l y ,

“1 2v2d2(1  - ( 1  - “;/c~)“~]
-z ~___
d, [v;(d: - d;)/c’]+-2d;[l  - ( 1  - v;/c’)“‘]

S o l v e  t h e  v e l o c i t y  t r a n s f o r m a t i o n  equoitions  a l g e b r a i c a l l y  f o r  X, y ,  i i n  t e r m s  o f

X ‘, i’, i', a n d  s h o w  t h a t  t h e  i n v e r s e  traInsformations  resu l t  f rom changing ” t o  -v

and interchanging pr imed and unprimed  s y m b o l s .

C o n s i d e r  t h e  Lorentz  t r a n s f o r m a t i o n s ,  x’  =  (~~--~2~‘(x  - vt),  t ’ =

(\/l  - -  V2/c2)-‘(t  -“x/c’).  I m a g i n e  t h a t  R .  h a s  a  s t i c k  o f  l e n g t h  L a l o n g  t h e

x ax,s  a t  r e s t  i n  h i s  s y s t e m ,  w i t h  t h e  l e f t  mend a t  x =  0 .  S u p p o s e  G .  m a r k s  thfe  e n d s

o f  the  s t ick  s imu l taneous l y  i n  the  p r imed sy s tem at  t ’ =  0 ,  and measures the length L’ .

S h o w  t h a t  I ’ =  -\/ 1  - v2/c2  L. F i n d  t h e  t i m e s  a t  w h i c h  R .  s e e s  G .  m e a s u r e

the  two ends ;  show that  th i s  lack  o f  s imu l taneous  measu rement  and G.‘s cont racted

measur ing rods  as  seen by  R .  a re  su f f ic ient  to  account  fo r  G.‘s measurement  of  I ’ ,

I ’  = 41  ~ v2/c21 ,  so  far  as  R .  i s  concerned.

A s tudent  i s  g iven  an  examinat ion  to  be completed in  1  h r  by  the  p ro fes so r ’ s  c lock .

The professor  moves  at  a  speed of  0.971:  r e l a t i v e  t o  t h e  s t u d e n t ,  a n d  s e n d s  b a c k  a

l igh t  s igna l  when h i s  c lock  reads  1  h r .  The  s tudent  s tops  wr i t i ng  when the  l igh t  s igna l

reaches  h im.  How much t ime d id  the s tudent  have fo r  the  exam?

A n s w e r :
1 + v/cJ 1  h r s .
1 ~ v/c

In  an  iner t ia l  sy s tem,  a  number  o f  c locks  care  synchron i zed .  I f  you  move at  30  km/set

r e l a t i v e  t o  t h e  s y s t e m ,  h o w  f a r  a p a r t  i n  t h e  d i r e c t i o n  o f  y o u r  v e l o c i t y  d o  c l o c k s  a p p e a r

t o  b e  which  to  you  a re  1  set  out  o f  synchron’sm?

A n s w e r :  3  x lo9  k m .

T w o  c l o c k s  o n  t h e  x a x i s  i n  a  s y s t e m  m o v i n g  a t  “/,c re la t i ve  to  you  appear  to  be

s y n c h r o n i z e d .  T h e y  a p p e a r  t o  b e  1 0  m  (apart.  H o w  m u c h  d o  t h e  c l o c k s  a p p e a r  t o

be out  o f  synchron i sm in  the  res t  f rame of  the  c locks?

A n s w e r :  2 . 5  x  lOmE  s e c .

Two co l l id ing beams Iof  e lect rons  each  have  ve loc i t ie s  o f  .50  c  as  observed in  the lab.

W h a t  i s  t h e  r e l a t i v e  r,peed  o f  the  e lect rons  an  the  ine r t ia l  sy s tem in  wh ich  one o f  the

b e a m s  o f  e l e c t r o n s  i s  a t  r e s t ?

A n s w e r :  0 . 8  c.



relativistic mechanic:s
and dynamicsJ
Elecause of the modi.fications  of the velocity transformations introduced by

relativistic effects, the concept:, of energy, momentum and angular momentum in
special relativity must be redeiined so that the laws of physics are form-kvariant
vvith respect to Lorentz t ransformations.  The reader should already be famil ial

vvi th the Newtonian laws of conservat ion of energy,  momentum and angular
momentum. It  is  st i l l  possible in relativity to define momentum, angular mo-
mentum and energy in such a way that the general conservation laws are valid..
However, then new effects arise, such as the variation of mass with velocity, anc4
tlhe  equivalence of mass and energy, which is expressed by the famous equation,
E’ = mc’. These effects will be derived and discussed in this chapter.

,l LORENTZ TRANSFORMATIONS

Rlecall  that when two observers are moving relat ive to each other,  as in F ig-

ure 4.1, where G. moves past R. with velocity v, their observations of the space-
t ime coordinates of an event alre related not by means of the Gal i lean trans-
formations, but by the Lorentz  transformations. I f primed quanti t ies (x’, . . . , t’11

Figure 4.1. Inertial systems of R. and G.

7 9
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are used to denote measurements made by G. and unprimed quantities (x, . . , t)
are used to denote R.‘s  measurements, the Lorentz transformations are

x’ =  - - 1
~ (x - vf);  y’ = y; z’ = z;

41 - v’/c2

1t’ =  --~
( )

t-vx

z/i--  v2/c2 CZ
(4.1)

Also, i f  a part icle moves so that i ts  velocity components relat ive to R. are
i, i, i, then its velocity components relative to G. are

. I
X

(i  - v)
=--

(1 -.  vx/c2); i’  = 1/

’ -2

cz ( 1  - :&

f ,
Z =

1/

‘2

2 ( 1  -:;,c’) (4.2)

We shall  frequently refer to these transformations in discussing momentum and
eniergy.

4.2 DISCREPANCY BETWEEN EXPERIMENT AND
NEWTONIAN MOMENTUM

Momentum in Newtonialn  mechanics is  defined as mass t imes velocity, and the
total momentum is conserved when particles collide. The question is, can we also
find a quantity in relativistic mechanics which is conserved when particles collide?
We ult imately have to do this  by looking to exper iment.  However,  by us ing the
general principles we have previously discussed to analyze a thought experiment,
we can predict what we might expect the experimental results to be. First of all,
the relativistic quantity which we shall call momentum must reduce to the Newton-
ian expression, mass times velocity, when the speed is much less than c, ac:cord-
ing to the correspondence principle.

Let us next ask, can a relativistic expression for momentum still be given simply

as m,,v  when m0 is the Newtonian mass? The mass of a proton is 1.67 x 1 Oez7

kg. The maximum speed a proton can have is  c = 3 x 10’  m/set. Hence, if  this
express ion is  correct, the maximum momentum a proton can have is  ti.0 x

lC)-19 kg-m/set. However ,  in  some cosmic rays, which are high energy particles
striking the earth from olutet space, fast protons having momenta on the order of
lOm8  kg-m/set are obsel*ved.  Such large part icle momenta can be measured in
pr inciple by al lowing th(e proton to col l ide with another part icle, thus giv ing up
some momentum; then allowing the proton and the other particle to collide with
other part icles, sharing their  momenta; and so on, unti l  the proton has caused
a large number of part icles to be travel ing with general ly low speeds. Then the
momenta of each of these part icles can be measured by measuring their mass
and velocity. By  assuming that momentum is conserved, one can work backward

to f ind the init ial  mom,entum  of the incident proton. We conclude that the
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Newtonian express ion mov cannot be a val id express ion for momentum in the
‘case of high velocities.

1.3 MOMENTUM FROM A THOUGHT EXPERIMENT

Nevertheless,  we shal l  attempt to f ind theoretical ly an express ion of ithe  form
mv for the relat iv ist ic momentum of a part icle, such that the total momentum is
conserved in col l is ions. Experilnenters  have discovered that there indeed ex is ts
such a vector quantity; however, in relat ivist ic mechanics the factor m, multiI-

plying v is not a constl3nt  independent of speed. We shall define m as the mass.
The mass m0 that a particle has at rest we shall call the rest mass. If Y .c<  c, the

‘correspondence principle requires that m  = mo.  From our above arguments

about cosmic rays, we would expect m to increase as the speed increases.
Suppose that G. and R. have identical guns that shoot identical bullets. When

we say “ident ical” bul lets,  we mean that the bul lets have equal rest  masses,
,m,,. The guns are assumed to shoot the bul lets out with equal muzzle velocit ies,
denoted by U. G. shoots his ioullet  along the negative y’ axis .  Thus,  the y’ com-
ponent of velocity that G. see;  ii:;

i;;  = -(J (4 .3)

He sees no x component of velocity for the bul let, i .e. i; := 0. (See Figure 4.2.)
R., watching G.‘s  bullet, sees a y component of velocity,

i,; = - d---1 Au
C2

x

(4 .4)

IFigure  4.2. Bullets fired with rruzzle  speeds U in their respective rest systems, arrange~d
‘so  that a collision occurs.
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by Equations (4.2).  Let IR.  shoot his  bul let along the posit ive y axis .  I t  wi l l  then
have a y component of velocity, as observed by R., of

)jR = +u (45)

Again using Equations 4.2, s ince iR = 0, the bul let shot by R. has a y’ com-
ponent of velocity when observed by G. of

(4.6)

A prime or lack of a prime on the velocity component means it  is  observed by
G’.  or R.,  respectively. Tlhe subscript G or R means the bul let is  shot by G. or R.,
respectively.

Now we suppose that the bul lets col l ide and st ick together,  and that mo-
mentum in the y direction is  conserved during the col l is ion. This experiment has
been set up so that there is complete symmetry between the coordinate systems.
Both R. and G. are shooting bul lets that have the same rest masses,  with the

same muzzle velocit ies, in their  own systems of coordinates. They both shoot
normal to the direction of relative motion between the coordinate systems. By
the pr inciple of relat iv ity,  then, neither coordinate system is preferred,, and
both R.  and G. must  observe the same experimental results  in their  respective
coordinate systems. Frorn the symmetry between the two coordinate systems, if G.

observes a f inal  y’  velocity that i s  negative, i .e.  a velocity component which is
paral lel  to the or iginal velocity of his  bul let,  then R. must observe a fi,nal  y
velocity which is parallel to the original y velocity of his bullet and which has a
posit ive s ign. However, f rom the results of the Lorentz velocity transformations,
Equations 4.2,  i cannoi  be pos i t ive whi le Jo’  i s  negative. Thus, the f inal y com-
ponent of velocity of the bul lets after col l is ion must be zero. Since we assumed
that the momentum is  mv, this  means that the f inal y component of mom’entum

of the two bul lets is  zero. So if  momentum is to be conserved, the total y com-
ponent of momentum of the two bullets before collision must also be zero in both
systems of coordinates.

Let us look at the init ial  momentum from the point of view of R. Suppose he

observes that his bullet has a mass mR. Then he sees a momentum for this bul let

of m,U.  I f  G.‘s  bul let ,  as observed by R. , has a mass mG  and a y component
of velocity jlG, then the y component of momentum of this bullet, as seen by R.,
is mGiG.  Thus, the total momentum seen by R. is

mRU  +  rnGic  =  0 (4.7)

By Equation (4.4),  the velocity component,  YG,  of G.‘s  bul let  observed by R.  i s
- -(1 - v~/c~)“~U.  On subst i tut ing this  into Equation (4.7) and solving for mG,
we find that

mG  = (, -;:,c2y (4.8)



4.4 Experimental verification of mass  form& 8 3

This  equation is  val id for al l  vulues  of U, which has canceled  out.  In the l imit iln
which U, the muzzle velocity, approaches zero, R.‘s  bullet is at rest relative to R.,

and mR = mO,  the rest mass. The speed of G.‘s  bul let relat ive to R.  i s  then the
same as that of G., and is equal to v. Hence, the moss of the moving (G.‘s)  bullet,
as observed by R., is given in terms of its rest mass m0 and its speed Y by

m (=mo)  := (, _  yi,c2Y,2  (relat ivist ic mass)
(4.!?)

Thus, i f  the relat iv ist ic momentum of a rapidly moving part icle is  proport ional

to v, the momentum must be of the form

p = (, -“&02;c2  y/2

for momentum to be c:onservedl.
If we had written down the law of conservation of momentum, Equation (4.7),

f rom the point of v iew of G. rather than of R. ,  the results  would have been the
same: The mass of a moving object is increased by the factor (1 - vZ/ci’)-“20ver
the mass the same obiiect possesses when at rest.

Consider the expression for the mass of a particle, mo/(l - v~/c~)“~. In  the
l imit as v approaches c, this mass increases without l imit.  Thus, arbitrar i ly large
momenta are possible without having arbitrarily large velocities.

npk  I f  a part icle moves with 0.8 the speed of l ight,  what wi l l  i ts  mass be in terms of
the rest mass?

tion  ( 1  - -  0.8’)“*  =  0 . 6 .  T h e n  m  =  m0/0.6  =  1.667m,,.

In the limit as v becolnes  very small compared to c, the mass m of a particle of
rest mass ml,  i s  given by m ==  mO,  because in this l imit (1 - v~/c*)“~  is  unity.
This result is in agreement with the correspondence principle.

1.4 EXPERIMENTAL VERIFICATION OF MASS FORMULA

The increase of mass with veloscity was observed in an exper iment performed by
Biicherer in 1908. By projectling  electrons into crossed electr ic and magnetic

fields, he was able to select electrons of known velocity. The subsequent deflec-
tion of the electrons in a magnetic field gave the mass. Given in Table 4.1 are the
values of  m/m,, as a Vunction  of v/c  for the electrons observed by Bi icherer. The

TABLE 4 .  1 Increase of Moss With Speed
~- __---

V/C m/m0 (observed) m/m,,  (theory)

0 . 3 1 7 3 1 . 0 5 9 1.055
0 . 4 2 8 6 1 . 1 0 6 1 . 1 0 7
0 . 6 8 7 9 1 . 3 7 0 1 . 3 7 6



SCIENCE ABSTRACTS.

Kijln.)-Repeating one of Kaufmann’s experiments as to the deflection of ttic
electrons in an electric and magnetic field, with special precautions to obta:n
the best possible results as to the values of c/m0  at high velocities, the author
finds values which he claims to be a confirmation of the Lorentz-Einstein  Scien(ie  Abstracts,
principle of relativity. The close agreement of the results on this principle ’ ’ * 6’37 (’  908).
are shown in the following tablle,  in which p denotes the ratio of the speed
of the electron to that of light, the magnetic fields used being of the order
125 gauss :--

1 . :\rlurs  of  (c nt,,  x 10 - i  on  Tlwxy  of-

0.3792 1WS I.730
0.4286 1%70 1.730
0.5160 1.648 1,729
0 6879 1.5i8 1.730

(16e)
1

a = ~~IlOX~,
x;+(- ;.I+;;-)+&&

P,=P*Po’wo~
(1Rf)

/
~@=;.((~~).l”(*)-l}.

Uiese Form&  fCr  longitudinak und tiansversak  Masse beziehen
sirh sowohl  auf  Yolumenladung,  wie auf Fl&hmladung.

Die Formel  (1Sf)  ist es, die von Hm. W. Kaufmann
a u f  Cfruud  s e i n e r  Messungen  aber d i e  Ab lenkba rke i t  de r
Becquerelstrahlen im Iutarvalle  (B  = O#O bis p = 0,95 etwa) Figure 4.3.  A p01’3e  from  A”
gepriift  warde.  Ek faud  d ie  Formel  i n n e r h a l b  d e r  F e h l e r -  n&n  der Physik  I O ,  152 (1902;
grenze  der Verencbe  (1 Proz. bis 1,6  Proz.) bestlltigt.  Meesende  showing the “Maxwell” nm

Versnche bei  mittleren Geschwindigkeiten  Q!?  = 0,s bis @  = 0,6) formulas referred to by Bikherer

liegen bizher  nicht VOT.  Ebensowenig liegen Versuche  &ber
longitndinale  Beechleunigung razch bewegter Elektronen vor,
relche etwa zur Prtiung  der Formel  (lee)  herangezogen
werden Mnnten. Anoh  rtirde  diese  Formel  wohl bier nicht so
gute  Dienste  leizten,  wie die Formeln (lea),  (15 b) fir Impuls
and Energie, relche direkt  die vom PuSeren  Felde in einer
gegebenen Zeit  bez. auf einer gegebenen Strecke dem Elektrou
erteilte Oeechwindigkeit  beetimmen.

Ordnet man nach aufsteigenden Potenzen  von 8, so erh&lt
man die fir  /? < 1 konvergenten Beihenentwickelungen:

pw h=PoIl+  1 .p+  f .p+  ‘9’.p+  . . . . . ),
(16h)  p,=j+,(  I +ti~6.,9’+6:7./9’+&  PO+.....}

Ann denselben geht hervor, da&  den Cfrenzfall sehr lang-
samer  Bewegung  ausgenommen, die kngirudirrcrk  Marae rtcb
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,third  column gives the corresloonding  values calculated f rom Equation 114.9).  Ini-

numerable experiments since 1908 have continued to be in excellent agreemenlt
with theory. (See Figure 4.3) Also experiments verify that with the expression
for momentum found above, nomentum is always conserved in collisions between
particles.

,.5  IRELATIVISTIC  SECOND LAW OF MOTION

In  Newtonian mechariics,  the second law for a part icle can be written F =z
m dv/dt;  where m is a constant. Hence, in the nonrelativistic case, we do not have
to consider the effect of changes in m. However, the question arises in relativistisc
Imechanics  as to whether the correct relat ivist ic express ion is :  (a) F = m dv/‘df;

o r  ( b )  F  =  d(mv)/dt,:  o r  ( c )  s o m e  o t h e r  i n t e r m e d i a t e  e x p r e s s i o n .  W e  m a y
(answer this in part by considering a constant force F, acting on an electron
iin the x direction. This force could be obtained by letting tlhe  electron move in a
[uniform electric f ield. Let us take case (a), F, =  F0 =  mdv,/dt,  and show that  i t

leads to an unreasonable result. Imagine an electron starting from rest, under thte
action only of the constant force, FO, in the x direct ion, so that v,  =  v.  Insert ing
the expression for m from Equation (4.6),  we have

m0 d v
- = F,

->l  - v’/c’  d t
(4.11)

Th i s  can be w r i t t e n :  dv/-\/l  - v2/cz = Fo/mo  dt. The in i t ia l  condit ion we
assumed on v is that at t = 0, v = 0. The solution is v = c sin (f,t/moc).
This is  easi ly ver i f ied by substhution  into the differential  equation. The express ion
for v says that for the t ime when, for instance, F,t/m,c  = 3a/2,  the velocity
is negative. Also, the velocity has a magnitude of c periodically. These conclusions
do not seem reasonable. More important, they disagree with experiment. So the
possibi l i ty F = mdv/dt  is  el iminated.

In the fol lowing section, i t  wi l l  be shown that case (b),  F = d/dt (mv) leads
directly to the law of conservation of momentum for col l is ions between part icles.
Thus case (b) seems highly reasonable, and, in fact, its correctness is borne out by
experiment. In other words, force is time rate of change of momentum:

d
F = - (mv)

dt

r3f course, this form is also valid for Newtonian mechanics.

.6 THIRD LAW OF MOTION AND CONSERVATION OF MOMENTUM

(4.12)

If the force is given by F = o’(mv)/dt,  then if the third law is also valid, we c:an
show that relativistic rnomentLlm  is conserved in a collision. Newton’s third law of

motion states that if particle number one acts on particle number two with a force
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F Ion21 and i f  part icle number two acts on one with F2 on  ,  during a coll is ion,

F,onz  + ho., = 0 (4.13)

If  p, =  m,v, i s  the momentum of part icle number one, then (assuming no other
forces act)

F dpl
2on’ = -it

Similarly,

F dP2
lon2 = 37

(4.14)

(4.15)

Adding these two equations and using the law of action and reaction, we find

4pl + ~2) = o

dt
(4.16)

Integration once over the time gives

p, + p2  =: c (4.17)

where c is a constant. Hence, the momentum is constant, or total momentum after
the col l is ion is equal to the total momentum before the col l is ion. In other words,

the third law of motion leads to conservation of momentum in col l is ions. The
result can be extended for a system of an arbitrary number of particles.

4 . 7  R E L A T I V I S T I C  E N E R G Y

In Newtonian mechanics, the work done on a body when a force is exerted which
moves the body through some distance, goes into increasing the energy of the
body. This is  also true in relat iv ity,  and work is  st i l l  def ined the same way. I f  E is
the energy of a body, and a force F exerted is  moved through a distance dr in
doing work on the body, then the increase in energy E is:

dE = Fedr

Since F = d(mv)/dt,  the expression for dE becomes

( 4 . 1 8 )

( 4 . 1 9 )

We can reinterpret the r ight s ide of this equation by writ ing the dt underneath
the dr and noting that dr/dt  = v. Then

dE  =  d(mv)*v  =  dm(v.v)  +  m(dv.v) (4.20)

All the quantities on the right side of this equation are functions of the velocity, v.
We shal l  express the r ight s ide as an exact  differential in order to f ind an ex-
pression for energy in terms of velocity. We f i rst write the scalar products in
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terms of the scalar speed v: v-v  =  v2  and v*dv  =  ‘/z  d(v*v)  =  ‘/2  dv’.  S o

dli  =  dm(v2)  +  k  md(v’) (4.21)

The m here is the relativistic mass, mo/(  1 - v2/c2 )“2.Therefc,re,

% mod(v2)

dm = [c2(1 _ v2/c2)3/2]
(4.22)

:Substituting  this expression for dm into Equat ion (4.21),  and combining ter,ms,
we get

dE  = moc2
% d(v2/c2)

(1 - v2/c  )2 312

‘The right side can now easily Ibe  integrated, yielding

E = _- moc2
(1 - v2/c  )

2 ,/2  +  c o n s t a n i

It is very convenient to set the constant of integration equal to zero. If this is done,
the result can be expressed in terms of m:

L
E =  mc2  (relativist ic energy) (4.25)

One thing which this  impl ies is  that associated with an increase in mass is  an

increase in energy and vice versa. Another thing which is implied is that i f

v = 0, the energy is E = m,c2;  this may be interpreted as the rest energy a body
has by virtue of the fac:t  that it possesses mass.

K I N E T I C  E N E R G Y

That part of the energy which is due to the part icle’s motion is  cal led kinetic:

energy. It  is  s imply the total energy mc2 minus the energy with no motion,,

m,,c2.  If we denote kinetic enel’gy  by the symbol T, then

T  =  mc2 - m0c2=  m0c2  (d&jc~  - -  1) (4.26)

Let us first find the rest energy of a proton. Its mass is 1.67 x 1 Omz7  kg. Then the
rest energy is

E = mot 2 =  ( 1 . 6 7  x  10-27)(3  x  1O8)2 =  1 . 5 0  x  lo-“i

Next suppose the proton is  t ravel ing at speed (ys  )c  re lat ive to an observer .  I t s
kinetic energy is

T = mOc2

(
v’l-57 -

1
1

= (1.50 x 10-l’)  5 - 1 = 1.00 x lC-‘Oi
( 13
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The classical expression for the kinetic energy would give % m,,v’  =  %  (1 .157 x
10mz7)(2.4  x  10s)’  =  0 . 4 8  x  10-l’  i. O n  t h e  o t h e r  h a n d ,  i f  t h e  s p e e d  o f  t h e

p r o t o n  i s  a s  s m a l l  a s  (‘/,,)c,  t h e  r e l a t i v i s t i c  k i n e t i c  e n e r g y  i s  1 . 8 8  x  lo-l3  i,
and to this  number of si~gnificant  f igures the classical expression gives the same
result.

We see from this example that when the speed is  much less than c, the reia-
t iv ist ic and class ical k inetic energy agree. This is  in accord with the corre’spon-

dence principle. We may prove that the expressions agree in general for small

v/c. We shall need to exioand  (1 - v’/c’))”  for small v/c. For this, we use the bi-

nomial theorem, (a - b)” = a”  - na”‘b  + . . 0.  Then, with a = 1, b =
v2/c2, a n d  n  =  -Yz, i t  f o l l o w s  t h a t  ( 1  - v’/c~)-“~  i s  approximately 1  +
% v’/c’.  Here we are (dropping terms of order v*/c”  or higher because they
are assumed to be very small. Then, approximately,

1 = moc2 [(I +  Jj  5)-l]  =  imov2 ( 4 . 2 7 )

Note that just as the class ical express ion, % mov 2,  is not correct for the kinetic

energy at high energies, neither is % mv2.

4.9 POTENTIAL ENERGY AND CONSERVATION OF ENERGY

The energy changes cons,idered  so far are changes in kinetic energy due to forces
which may be either conservat ive or  nonconservat ive.  I f  a conservat ive force,
F,, is present, then

F;dr  =  --(V, - V , ) ((4.28)

where V is  the potential  energy depending only on the posit ion and not on the
integration path. I f  there are no forces other than the conservative ones, f rom
the definit ion of energy,

J” dE  = 6” F;dr  = m2c’  -. m,c2
I

1t4.29)

On equating the r ight s ides of Equations (4.28) and (4.29) and rearranging, we
find that

mlcZ + V, = m2c2  t V, ( 4 . 3 0 )

This is the conservation of energy equation.
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-10  EXPERIMENTAL VERIFICATION OF EQUIVALENCE
OF MASS AND ENERGY

Equation (4.25) indicates as we have seen, that there is  energy-rest (energy--
associated with the rest ma’ss, i .e. E0 =  m,c’.  There is  plenty of evidence in
nuclear physics that indicates that rest mass is indeed equivalent to energy, and
that mass can be converted to energy and vice versa.

An example of this occurs when l i thium is bombarded by fast protons: thle
l i thium nucleus, 3Li7,  and a proton,  ,p’, combine to form an unstable nucleus
w h i c h  s p l i t s  i n t o  t w o  f a s t  h e l i u m  n u c l e i ,  ,He4:  ,p’ -I- 3Li7 --+  ,He“  +  2He4.
The rest masses of these part icles are given in Table 4.2, in atomic mass units
(amu).  (1 amu  is the mass of tan  atom of C”; 1  amu  =  1.6~60 x  1O-27 k g .  T h e s e
mass units were discussed in Chapter 1.)

TABLE 4.2 Massesof  part icles
participating in reaction P + Li - 2He,  in amu

P 1.0073
Li 7.0143
He 4.0015

The sum of the P and Li masses is the total mass of the illcoming particles; it is
8.0216 amu.  The total rest mass of the outgoing particles is 8.0030 amu.  Thus,
rest mass is  not conserved. Flowever,  energy is  conserved in the overal l  nuclear
reaction, for very precise measurements of the difference between the kinetic
energy of the incoming proton and the total kinetic energy of the He nuclei gives

A E  =  ( 2 . 7 7 0  & 0 . 0 0 5 )  x  lo-l2  i. T h e  i n c r e a s e  i n  r e s t  m a s s  i s  0 . 0 1 8 6  amu,, o r
0.309 x 10e2*  kg. Then the increase in rest energy is Am,,c2 = 2.78 x lo-”  i.
I t  thus appears that the increase in mass i s  accounted for  quant i tat ively by a
corresponding decrease in kinetic energy.

~pk  A mass of 1 gm has a rest energy of

mgc2  := (lo-’  kg)(3 x  10’  m/set)’  =  9  x  1013 i.

If this energy could all be converted into electricity and sold at a rate of 6a per
kilowatt-hour, how much would it be worth?

rion  ( 9  x  1013)(1/[3.6  x  106]  kw-hr/i)(0.06)  =  1 . 5  m i l l i o n  d o l l a r s .

11 RELATIONSHIP BETWEEN ENERGY AND MOMENTUM

In Newtonian mechanics, the relationship between kinetic energy and momentum

i s
1 % (mv)’  p21 =: -my2 = ~ = -.
2 m 2m

(4 3’1)
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example

dJti0~ E2  =  c2p2  +  mzc4
E is  J  +  moc2,  so t,,;tr/e=,,$:;  m’c4)‘/“c’=  J ( J  +  2moc2) =  0.5(0.5  +  2[0.511])  =
0.761 MeV’.  The momentum in MeV/c  is numerically the square root of this
number: p = m = 0.872 MeV/c.  In kg-m/set,  th is  would be

(0.872)(  1.6 x 1 O-l3  i/MeV)

( 3  x  lo*)
=  4 . 6 5  x  1O-22 kg-m/set.

4.12 REST MASS OF A0 FROM EXPERIMENT

Relat iv is t ic mechanics ond d’ynomics

A general relation betwleen energy and momentum is of considerable uti l i ty in
special relativity. We may use the expressions for energy and momentum, IEqua-
tions (4.10) and (4.25),  to obtain such a relation mathematically. We have, upon
squar ing Equation (4.25),

In the same way,

Then, subtracting,

E2  = m2c4  = dc4
( 1  - v’/c’)

mic2v2c2p2  = ~~
( 1  - v’/c’)

E2  -.  c2p2 z

(4.32)

(4.33)

f71iC4 114.34)

Since the rest energy plus k inetic energy should be posit ive, Equation (4.34) can
be solved for E by taking the posit ive square root:  E =  dp2c2  + mic4.  In  the

l imit asp becomes very smal l ,  the binomial theorem may be used to expand the-___
r i g h t  s i d e  o f  t h e  equaiion  E = m -t mzc4, to obtain,  approximately,

T =  E - m,,c2 =  p2/2m(,  in agreement with the Newtonian result .

1.  In Chapter 1 a unit  of energy cal led the electron volt  (eV)  was def ined as
1 eV = 1.602 x lo-l9  ioules = e ioules. Also, 1 MeV  = lo6 eV.  The rest moss of
an electron is  approximately 9 x 10m3’ kg. Find its rest energy in MeV.

E. = m0c2 =  ( 9  x  10-3’)(3  x  10*)2/l.6  x  lo-l3  ]/MeV  =  0 . 5  MeV.  T o  t h r e e

significant figures, the correct value is 0.51 1 MeV.

2. If an electron is emitted from a nucleus in a beta decay with a kinetic elnergy
of 0.5 MeV,  what is its momentum in MeV/c?

We shal l  now consider in detai l  a more elaborate example, which shows how
one may use the relat iv ist ic equations to f ind experimental ly an unknown par-

t icle mass, in terms of known masses and measured energies and momenta. The
rest mass of the part icle wi l l  be measured using bubble chamber photographs in

which a ho part ic le decays into a proton and a 7r meson. If you wish to fol low
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along on the measurements, you wi l l  need to use a protractor, a f lexible plast ic
ruler and a slide rule.

A charged particle moving rapidly through a bubble chamber leaves a trail of

very tiny bubbles that render its track visible and that call  be photographed. In
the experiment discussed here, a beam of very high enerlgy  negatively charged

part icles cal led K-  mesons was al lowed to penetrate into a bubble chamber
f i l led with a mixture of orgclnic  l iquids, so that there were large numbers of the
more ordinary constituents of matter, e.g. protons,. neutrons and electrons,
present in the chamber. These K-  mesons (the superscript means a partic:le  having
a negative charge) may combine with the protons (p’ ) and neutrons (n) to pro-

duce part icles cal led pions (r) and uncharged (” superscript) A0 hyperon:;,  in

the fol lowing reactions:

K- + p+  - A0 + TO

K-  + t-AA’+  6 (4..35)

The charged part icles interclct  electr ical ly with the f luid molecules to produce
ionizat ion which leads to observable bubbles.  S ince the A0 and K(’  are un-
charged, their tracks in the cllamber  will not be visible. However, in a very short
time the A0 decays into a proton and a x- meson, according to the reaction:

A0 - p+ + r- (4.36)

Since both p+  and X- are charged, their  t racks wi l l  be vis ible in the chamber.

The 7r” would decay into unclqarged  photons, which again, are not easily visiblse.
A diagram representing a typical series of such events is shown in Figure 4..4.

A magnetic f ield applied to the chamber causes charged part icles to move in
curved paths, for which the radius of curvature is proportional to the momenturn.

K-
- -

K- ,/z===---

- - - - - - - -

Figure 4.4. Diagram of a typical bubble chamber photograph of .I0  decay, showing
p’  and K-  tracks.
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Here, the K-  tracks are easi ly identif ied, s ince al l  the K-  mesons have the same
curvature. At point A, a IK- disappears,  according to one of the reactions given

in Equation (4.35). A A0 is  produced, which t ravels  to 6, where i t  decays. !jince
the decay products are oppositely charged, the forces due to the magnetic field
are in opposite directions for the two part icles, and their  t racks wi l l  curve in
opposite directions.

T h e  p+  a n d  r- gradually lose their kinetic energies in coll is ions with the
molecules of the l iquid irl the chamber,  and wi l l  f inal ly s low down and come to
rest. In Figure 4.5, this occurs at C and D. The track length, or range, for any

B = 13,000 gW.M

A
- - - - - - - - - - - - - - - _ - - - - - --we

Figure 4.5. .4ngles  used in the calculation of the A0 rest mass.
given part icle moving in any part icular medium is  a wel l -def ined function of the
particle’s init ial momentum or energy. By measuring the range, the energy and
momentum may be measured whenever previously determined range versus

momentum curves are avaoilable.
In this  example, we shal l  apply the relat iv ist ic laws of conservation of energy

and momentum to the decay which occurs at 8, coupled with range and direction

measurements of the p+ and K-  tracks, for the purpose of measuring the rest
mass m,.i of the invis ible A0 particle. Referr ing to Figure 4.5, the dashecl  l ine
represents the path of the i1o, which we will assume has velocity vd  and energy,

m0,ic2Eh  = ---
2/1-  Vi/c2

(4.37)

I f  the pion  and proton are created init ial ly with total energies E, and Er,, re-
spectively, then, by conservation of energy, we have

En = E,  + E, (4.38)

Further, if I?,  and 0, are the in it ial  angles at which the pion  and proton are

projected, measured as indicated in the diagram, then, by conservation of mo-
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mentum,
p.4 = pr cos  0, + pp  cos H, (4.39)

and
~3  = pT  sin 0, - pP  sin eP (4.40)

Div iding Equation (4.39) by Equation (4.38) and us ing p =: mv =  Ev/c’,  w e  h a v e

VA P.iC- = .---  = (p*c  cos 0,  + ppc  cos 0,)
C E* (Er  + 6)

The combination of Equations (4.37) and (4.38) leads to

mob  c
2

= (E,  + E,) J
1-s.

C2

All  the quantit ies on the r ight s ide of Equations (4.41) and (4.42) m’ay  be ob-
tained directly or indirectly from the photographs; hence, from Equation (4..42),
the rest mass of the 11’  may be determined.

Figure 4.6 is a reproduction of a careful ly selected bubble chamber photo-
graph, in which the Ii0 decay products t ravel  in the plane of the picture. The
angles 0,  and 0,  may be (measured with ruler and protractor.  To aid in the
measurements, dashed lines have been drawn on the phot’ograph  along the path
of the A0 and also along the paths of the r- and p+. The measurement gives

0,  = 17” and 19,  = 31”. T h e n  cos0,  =  0 . 9 6  a n d  c o s  8,  =  0 . 8 6 .  N e x t ,  t h e
ranges may be measured by laying a flexible plastic rule along the curved paths
of the X-  and p +. The ranges measured in this way must be corrected because of
the fact that the reproduction is not l i fesize. A centimeter cal ibration scale is
reproduced on the photograph for this correction. After applying the correction,
we find the ranges

R, = 2.45 cm and R,  = 17.4 cm

These ranges may be converted into k inet ic energies by us ing the tvvo range-
energy curves in Figure 4.7. Then the momenta may Ibe  obtained from tlhe

momentum-energy equation:

dE2 - m:c’  d?Y-2xZ
P =  ---7  = C

(4..43)

From the curves, the kinetic energies are T,  = 44 MeV  land  T,  = 60 Me\,  for
the proton and pi meson, respectively. The rest energy of the proton is 938 MeV.
The proton momentum is, therefore, from Equation (4.22)

pp  =  [44(44  +  1876)]“2  =  291  ,y”’

The A- rest energy is 139.6 MeV;  so its momentum is

F’r = [60(150  + 279.2)]‘/2  = EFf
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Figure 4.6. Bubble chamber photograph of A0 decay.
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FigurY 4.7. Range curves for photographs in Figures 4.6 a nId  4.8.

From Equation (4.41),

VA [ (143)(0.86)  + (291)(0.96)]-= - -
C [  ( 1 3 9 . 6  +  6 0 )  +  ( 9 3 8  +  44)]  =  c”340

Final ly, from Equation (4.42),  the 11’  rest energy is

m0.z  c2 =  [  ~(139.t5  +  6 0 )  +  ( 9 3 8  +  44)]  [l - (0.34)‘!]‘/‘=  1 1  1 1  MeV

The accepted value for this rest energy is  1115 MeV.  Similar analysis of other
photographs gives results which agree closely with the value, 11 15 MeV.  This not
only provides a value for the lambda’s mass,  but i s  o dirlect  experimental ver i -
fication of the validity of relativistic mechanics.

As one further check, one may test whether relativistic: momentum, in the direc:-
,tion  t ransverse to the A”s motion, is  conserved according to Equation 4.20.
Using the measured values from the photograph,

0 = 143 sin 31”-291  sin 17”
0  =  7 4 - 8 5

which agrees as well as can be expected, to the accuracy with which the angles
were measured.



9 6 Relofivr’sfic  mechanics and dynamics

4.13 TRANSFORMATION PROPERTIES OF ENERGY
AND MOMENTUM

As a prel iminary to the discuss ion of the form-invariance of the laws of quantum
physics,  we shal l ,  in this section, derive the transformation laws connecting the
energies and momenta of a part icle, measured by two relat ively moving ob-
servers.  In deriv ing these transformations, we shal l  need to use the t ime di lat ion
formula, which says that o clock moving with speed v re lat ive to an observer

appeolrs  to that observeI*  to beat slow by the factor m. Consider,  as
in Figure 4.8, three inertial systems So,  R ,  and G.  So  i s  the system in which a

Figure 4.8. Instantaneous rest system of o particle.
clock and a part icle are at rest.  Let -u  be the velocity of 17  re lat ive to SO,  and
let --cl’  be the velocity of  G relat ive to So. Then, corresponding to the plroper
time irlterval  dt, in SO,  there is a time interval dt in I?, with

Similarly, the corresponding time interval in G is dt’; where/
dt, = ,-c

C2

(4 .44)

Combining the last two rlesults,  we have the equation,

dP,,,/G  = df ,,/7 (4 .46)

In other words,  the quolntity  dfv5-Tp  .I S  form-invar iant with respect to

Lorentz transformations. This result  appl ies to any inf initesimal t ime interval be-
tween specific events along the path of a particle, measured by the two observ-
ers;  u and u’, the veloc:ities  relat ive to the part ic le,  can be in any arbit rary
directions relative to each other.

We may use the involriance  of the interval ,  Equat ion (4.46),  to obtailn  the
transformations for momentum and energy. Imagine a particle of rest mass mo,

placed at the or igin of So. Then with our choice of velocity -u  of R re lat ive to



4’. 13 Transformation properties of energy and momentum 9 7

SO,  the part ic le wi l l  have a v~elocity  +u relat ive to R.  S imi lar ly,  relat ive to G the

particle will have a velocity i-u'. We shall assume that G is moving relative to R,
wi th veloci ty  v  a long the x),.x axes, i .e.  that G and R are related by the
Lorentz transformations given previously. Consider the y component of mo-
mentum of the particle measured by R. It is just

py  =  -;_mT!?-  =
~1~~ /&qI  &

Relative to G, the y componelnt  of momentum is

(4.47)

(4.48)

However, from the Lorentz transformation between R and G for the y coordinate,
dy’ = dy.  Us ing this  and the result  in Equation (4.46),  we f ind that the relat ion

between pY  and pi  is !simply

Pi =  P Y (4.49)

In a s imilar fashion, it  is  earily proved that the connection between z com-
ponents of momentum is

p:  = pz (4.50)

We next f ind the iransformation  for the x components of momentum. From
the definition of momentum,

(4.51)

But us ing the invar iance property in Equation (4.46) and the expressioll  for  dx’
which arises from the Lorentz transformation,

d x ’  =z  -fi;V ( d x  - v d t ) (4.52)

we obtain

1 modx

” = xx,‘/,;  ,fi u2/c2  dt - ’ -~:ou2,~i )

(4.53)

In terms of pX  and the energy E =  mOc2/d 1 - u2cz,  this reduces to

’ _px -: &T-&i ( )
px  - !5

c2

Thus, p: depends on both the energy and momentum of the particle measured in

the rest system R.
Last ly,  to obtain the transfmormation  for energy, we need

formation for the time interval dt’:

dt’ =  .-- ’
‘,/l  - v=/cz
p+dt - $dx)

the Lorentz trans-

(4.55)
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This  combined with Equation (4.46) and the expression for energy in terms of

rest mlass,  E’ = moc2/V/1-  u’~/c~, g ives  us

In terms of E/c2  and pX, this reduces to

E’-_ =
C

:1 &+i cE2  ;2 fL
(---  )

(4.56)

To summarize, we have used the definit ions of energy and momentum of a
part ic le,  and the invar iance relat ion dt& - u’/c’ = df’dl  - u”/c’, to-
gether with the Lorentz transformations, to derive the transformation formulas
for energy and momentlJm  of a part icle as measured by observers moving1  wi th
relat ive speed v. There is  a complete analogy between the Lorentz t ransforma-
tions Iof  (x,y,z,f)  and the transformations of (pX,p,.,pZ,  E/c’).  The transfsorma-

tions are:

(‘1 1 -__x’ = $& (x - Id); pL  = fi : v2,c2 ( )
p. - v  f.c2

(2) y’ = y ; PC = PY

P:  = p.(3) 2’ = z;

(4) t’ = &&$x);  s= -_fi&Tp cE2  5 pa( )
114.58)

J u s t  a s  t h e  q u a n t i t y  c2t2  - x2 - y2 - - z2 i s  an invar iant ( i t  i s  the equat ion
of a sl”herical  light wave if set equal to zero), so is the quantity

- pt - p: - p2

a  r e l a t i v i s t i c  i n v a r i a n t  a s  m a y  b e  wen  b y  f i n d i n g  c~(E’/c~)~  - p:’  - p;’  -
p:’ us ing Equations (4.58-1,2,3,4).  The invar iant  may be evaluated in  the
rest f rame of the part icle where p = 0 and E = moc2. This  gives again the
energy-momentum relation for particles of rest mass mo:

E2  =  p2c2  +  mic”

or, for zero rest mass, E = pc.
As an example of the application of these energy-momentum formulae.. sup-

pose a particle of rest mass m. has a speed of  magnitude v in  the negat ive x
direction, relative to R. Its energy in terms of m. and v,  re lat ive to G,  i s  then
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given by Equation (4.28):

= mot” (+-+) (4.60)

1.14 TRANSFORMATIONS FOR FREQUENCY AND WAVELENGTH

The reader is  probably fami l iar with the decrease in apparent f requency of a
sound wave as a moving source approaches and then recedes. This phenomenon,
known as the Dijppker effect, also occurs when one observes the frequency of a
moving l ight source. We shal l  obtain the relat ivist ic transformations relat ing the
frequencies and wavelengths of  a l ight wave as measured by two observers ,
G. and R., as G moves relative to R with a speed v along their mutuallly  parallel
x’, x axes. These transformairions will provide a means of (comparing with enerlgy
momentum transformations to see if  the quantum relation, E = hv,  is form-in-
variant under Lorentz  transf(Drmations.

We imagine that observers G. and R. , s i tuated at their  respective or igins,
measure the f requency of a l ight wave with plane wave f ronts  by countinS  the
number of fronts which pas:; their origins in some specif ied time intervsal.  Let the
observed directions of propagation be denoted by angles 8’  (in G) and 6’ (in h!),
with respect to the posi t ive x’  ( in G),  x ( in R) axes. The s ituation is diagrammed

in Figure 4.9. In relating the frequencies u’ ( in  G) and Y ( in R) of  the wave,  we

Figure 4.9. Measurement of frequency of a light wave by observers in relative motion.
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must take into account tweo effects: First, the clock at the origin of G beats slower
than the clocks in R, and second, the origin of G is moving with respect to that  of
R SO that at any given instant there may be wave fronts which have passed R,
but hove not yet reached G.

Suppose that start ing at the instant t =  t’ = 0 when the or igins coincide, G.
counts wove fronts for 0 t ime t’, and that thei r  observed f requency i s  v’ ;  the
number of fronts which he counts is  then t’v’. Similar ly, beginning at the some
instant, let R. count wovefronts passing 0: he will obtain iv. But tv is not equal to

t’u’,  s ince there are fronts between the two or igins which, in F igure 4.9,  have
been counted by R.  but not by G. The number of these f ronts ly ing between 0
and 0’  may be found by div id ing the distance  between or igins,  vt,  by the hor i-
zontal distance Ax between fronts. From Figure 4.9, Ax = X/cos  0 =  C/Y  cos 0,
so the odditionol number of fronts measured by R. is vt/Ax  = vvt  cos 8/c. There-
fore,

COS  8tu =  t)d  +  vly- (41.61)

Solving for t’~‘,  we obtain

t’u’ = (1 - ;y cos8)tu
If t were equal to f’, this would be identical to the Doppler effect in sound for

an observer moving relat ive to o source. In this express ion, t refers to o time
measured in the rest frame R, both on a clock at 0 and on one at 0’; at the same
instant,  t ’ (on a single cloc:k at 0’) is  measured in the moving frame G. Hence, t

and t’ are related by the s imple t ime di lat ion formula, t’ =  ,dyzqp.

So, substituting for t in the above equation ond canceling  t’, we obtain

u(  1 - v/c  cos f9)uI =  ~-=
67/C=

(4.63)

From this we may also obtain the transformation formula for wavelengths, :since
ulxr  = ux  = c:

x’  =  XVF- v’/c’--__
(1 - v / c  COS  e)

(4.64)

The relotion between the angles of propagation 8’ and 0 may be obtaineld  by
noting that, s ince measurements of distance  along the z,  z’  axes are related by
z’  = z, the two observers agree that the distances between two successive points

where the wavefronts  intersect the z  or  z’  axes are equal :  AZ ’  =  AZ .  But ,from
Figure 4.9,

A ’  =  AZ ’  s i n  B’, X = AzsinB (4.65)

Hence,
A’ h-  = - -

sin 8’ sin 6
(4.66)
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and from Equation (4.64),

s i n  8’ =
sin 6 1 - v2/c2

( 1  - V/CCOSe)
( 4 . 6 7 )

The cosine of the angle t9’  may be obtained by s impl i fy ing the trigonometlric

formula:

c o s  6 ’  =  A- s i n ’  8’ =
~-  ~~~;~>l  - v’/cZ)

_____-.-
cos2  6 .- 2v/c  cos 6 + v2/c2zr

1/

cos 6 - v/c- -~ - _ = ~_-
(11 - v / c  c o s  I!?)’ 1 - v/c  cos 0

(4.68)

where the posit ive s ign of the square root was chosen in order that cos 0’ =
cos 0 in the special case v = 0, when the observers are not in relative motion

The relat iv ist ic trollsformation  Equat ions (4.63),  (4.64),  (4.67) and l(4.68)  alre

the principal results of this section; we shall now discuss a few applications.

.15 TRANSVERSE DijPI’LER  EFFECT

Suppose that to an observer in the rest system R, the direction of propagation is
perpendicular, or transverse. to the direction of motion of G. Then 6’ = 90”,  and
Equation (4.63) becomes

y’ = u

dl  - v2/c2
(4..69)

This change in frequency is s imple to understand solely as the result of the t ime
di lat ion effect.  S ince R. sees the waves propagating paral lel  to his  z axis ,  each
wave that passes 0 will simultaneously (to R.) pass 0’ (see Figure 4.10). Thus, both
observers agree on the number of wavefronts they have counted, but G.‘s  clocks

beat more s lowly, so the frequency of the waves wi l l  appear higher to G.,  in
order that equal numbers of wavefronts be counted by both observers.

Suppose G. carries along a source of light which emits plane waves of natural
f r e q u e n c y  V’ =  vO. If R.  thfsn  observes the l ight transversely, at 90” from the
direction of motion, the frequency will be given by

u = u()
lf-

1-v’
C2

(41 .70)

and since XV = c, the wavelength will be

(4..71)

Thus the wavelength wi l l  appear to be increased, or red-shi f ted. The transverse
Dijppler  effect could be used to obtain a direct experimental ver i f ication of the
t ime di lat ion predicted by special  relat iv i ty; however,  such exper iments are
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Figure 4.10. Transverse Doppler effect

difficult, because it is hard to arrange matters so that an appreciable amount of
l ight of known proper frequency vc  comes in at exactly 90”. Errors in angle wil l
,yield  corrections of order ,v/c,  whereas the transverse effect is of order (“/c)~.

4.16 LONGITUDINAL DijPPLER  EFFECT

In the longitudinal Doppler effect,  the observed l ight is  t ravel ing paral lel  to the
direction of relative motion of the source. In this case, 19  = 0 or K.  Suppose

again that G. carr ies along a l ight source of frequency v,,  and that  8’ = 0.  The
diagram, Figure 4.9, is  drawn so that the l ight is  propagating to the r ight
(0 = 0) in R, and hence we must imagine the source to be positioned far out on
the negative x’  axis  and approaching the observer R.  Therefore,  subst i tut ing
6’ = 0 in Equation (4.63),  we obtain the expression for the frequency v observed

by R.:

ug = $+g (4.72)

O r ,  s i n c e  t h e  f a c t o r  ( 1  - v/c)/41  - 2/ ”v c can be s impl i f ied by writ ing i t  as

(4.73)

we have

1

1/

+ v/cy=vo ---
1 -- v/c

(4.74)



4.16 Langifudinal  Diippler  effect 103

for an approaching source of proper frequency v,,. S ince Xv = c, the cor-
responding express ion for wavelength is

x=x,, ~
i

1 - v / c

1 +  v / c

If  the source is  receding, we have instead, by revers ing the s ign of v (or
changing 19  from 0 to a),

/

u=uo
11 - v/c

1/

-.11  +v,cJ (4.715)

This indicates that for a receding source, the apparent wavelength is redshifted.

I f  a source of natural wavelength 5000 Angstroms is  moving with velocity

v  =  4c/5  direct ly toward the observer, the observed wavelength would be

blueshifted and Equoltion  (4.75)  would apply.  The observed wavelength woulld
b e

i\=(5000& If-- - -  1  - 0.8 5 0 0 0 A
p=-=  1 6 6 7 A
1 + 0.8 3

The longitudinal Doppler effect can be used to interpret the spectra of liglht
received from distant galaxies. Bright spectral l ines from these galaxies alre
identif ied by comparison with spectra of the elements, produced on earth. The
identif ication shows the l ines are systematical ly redshifted. For nearby galaxies
whose distances can be measured by observing cepheid variable stars, the frac-
t ional redshift  AA/x is direlztly proport ional to the distance. This is  expre,ssed
in Hubble’s relation,

cJ!-+=/-/r
x

where H,  Hubble’s (constant,  i s  approximately 75 km/set per lo6 parsecs.
(1 parsec = 3.26 l ight-years.)

TABLE 4.3 Redshifts of Some Quasi-Stellar Objects (Quasars,

by Kohn and Palmer, Harvard Univ. Press, 19’67).

Cata logue Number Redshift  z = AX/h Recession velocity,

p =  v / c

3c 2738 0.158 0.146
3c 249.1 0.311 0 . 2 6 4
3c 345 0 . 5 9 5 0 . 4 3 6
3~  48 0 . 3 6 7 0 . 3 0 3
3c 279 0 . 5 3 6 0 . 4 0 5
1116+12 2.1 la 0.813
PHL 256 0.131 0.122
PHL 938 1.93 0.791

BSO 1 1.24 0.668
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Recent observations of quasars, for which no independent distance measure-

ments are available, have revealed enormous redshifts, indicating that the

objects from which this l ight was emitted may be receding from our galaxy at

speeds of over 80% of the speed of l ight. Some of these recent observations are

given iln  Table 4.3. The redshifts,  i f  interpreted as D6ppler  shifts, imply that the

entire visible universe is expanding and hence that at some distant t ime in the

past al l  the matter in the universe must have been concentrated in one region.

The gallactic  redshifts are the primary experimental evidence on which the

big bang theory of the orligin  of the universe is based.

TRANSFORMATIONS OF ENERGY AND MOMENTUM

The transformation formulae for energy and momentum of a particle E’, p’ as

observed from a system of reference moving with speed v along the x, x’ axes

relative to an observer who measures the values E, p for the same particle, are

given by

p: = d, I.“2,c2 (PA;)  p:=fJr

E ’
-=
C2

d&J; - -  ;PX) P:  =  P.

The four  quantities p., pr,  p., E/c’,  are thus analogous to X,Y,Z  and t.

TRANSFORMATIONS FOR FREQUENCY AND WAVELENGTH

The transformation formulae for frequency v’, wavelength A’ and angle of

propagation 19’ of a l ight wave, observed from a system of reference moving

with speed v along the x,x’ axes, relative to an observer who measures the

values u,  A, and 0 for the same wave, are

V(1  - v/c c o s  0)“’ =  --___

-\/T-Tp-

x’ = xvK7p--
(1 - v/c cos f3)

(-0s 0 (cos e -- v/c)= - - -
( 1  - v / c  COS  6)

s i n  19ti - v’/c’
sin  /j’  =  - -

(1 -- v/c cos 0)
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Since E  =  hv  and p = h/h for l ight,  these are identical to the transformation

equations for energy and momentum of a particle of zero rest mass.

DijPPLER EFFECT

A l ight source of natural f requency v0 (wavelength X0)  wi l l  have i ts  f requency

shifted when measured by on observer moving with respect to the source. lf  the

light is observed at 90” from the direction of motion of the source, then the

frequency is redshifted due to time dilation:

If the source is receding from the observer with speed v and the

parallel to v, then

For an approaching source, the sign of v is reversed.

light is obselrved

1. Suppose a particle with rest mass m. is initially at rest at x = 0. If it is acted on
by a constant force F in the x direction, find x as a function of time. Check to see

if this gives the same as the nonrelativistic equations given for small velocity, i.e.
small time. Also show that the speed approaches c as t approaches infinity

Answer:
7-3

x =  (c2mo/F)[  V 1  +  (Ft/moc)  - 11.

2. Suppose a force Facts on a particle in the same direction as the velocity. Show that
the power expended by the force is m,,v(dv/df)/(  1 - Y~/c~)~‘~,  and hence show that

the energy of the particle is mc’.
3 . Show that dE/dp  :=  v,  the speed of the particle.
4. An electron of mass m. = 9.1 x 10e3’  kg and a proton of mass MO  :=  1.6’7 x

10mz7  kg are each accelerated from rest through a total po’tential  energy difference
of 1.6 x 10-l’  i. What is the increase in mass of each particle? What is the frac-

tional increase in mass of each particle? What is the final speed of each?

Answer: I.78 x 10-28kg; 1 . 7 8  x  10mz8kg;  196m,,; 0.107Mo;  0 . 9 9 9 9 8 7 ~ ;

0.43 c.

5. Suppose 1.00 cubic kilometer  of water at 0°C were changed to ice by extrac:ting
heat. How much would the mass change? (Fiat  of fusion ==  80 kcal/kg  := 3.3.5 x

10’  i/kg.)
Answer:  3 .73 kg.

6. The energy radiated from the sun in the form of neutrinos has the inteinsity  0.12

i/cm’/min  at the eorth’s surface.  The earth-sun distance is 1.5 x lo8  km ond the
sun’s mass is 2.0 x 103’  kg. Calculate the fractional loss in mass from the sun in ‘IO”

years (age of the universe), from the radiation of neutrinos.

Answer: 9 . 9  x  10-6.
7. An oil-powered ship obtains energy at the rate of 4 x 10” Cal/lb from its fuel. A
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nuclear-powered ship obtains energy by converting about 0.0003% of its fuel from

moss to energy. For o given moss of fuel, calculate the ratio of the distances the two
sllips should be able to travel.

Answer : Nuclear-powered ship travels 7,320 times QS far.
8. In ct certain kind of instrument used for focusing o beam of high energy particles onto

o point, the maximum  kinetic energy for which the instrument works is T = 1.22

times the rest energy. ‘What speed do particles of this kinetic energy have?

Answer : 2 . 6 8  x  lo*  m/set.
9. Show that in terms of the kinetic energy, T, the magnitude of the momentum is

pc  = -6&T, where mc is the rest mass.

10. Find the correction terms of order v’/c4to the kinetic energy expression % mOvz in
the correspondence limit.
Answer : Vi  mOc2  (v’/c’).

11. If o particle has a momentum of 5.60 x 1 O-l9 kg-m/see and a kinetic eneirgy  of

7.52 x 10-l’  i, find its speed. Find its rest mass in kg.
Answer : 2 . 2 4  x  lO*m/sec;  1 . 6 7  x  10mz7  k g .

12. An electron has a kin’etic  energy of 1.6 :X 10-I3 i, and is incident on a proton at
rest in the laboratory. The center of momentum frame, an inertial frame in which the

teotal  momentum of b’oth  particles is zero, is moving with what speed relative to the
laboratory? The rest moss of the electron is 9.11 x  1O--3’  kg, and that of the (proton

is 1.67 x 1O-27  kg.

Mnswer: 4 . 5 4  x  lo5  m/set.
13. Using the equations for transformation of velocity components, show that when

E2 = p2c2 + mic”,  for on inertial system in which p has the components p.,  pr, p.
and  the energy is E, then in another system moving at velocity v in the positive x

direction relative to the first, the momentum and energy ore

*dm,p,!  =  py,  pj = pz, a n d  E’  =  ( E  - VP,)/
dP:  = 2(PX2  - vE/c2)/

1 - v /c . Note the
similarity to the x, y, z, t transformations.

14. LJsing  the Lorentz tronsformotions  for coordinates, show that

dr =  Z/dtz-(dx2+  dy2 +  dz2)/c2  =  did-

is invoriont  under lorentz  transformations. Here dx, dy, dz ore infinitesimal dis-
placements of D  particle and v is the speed of an inertial system relative to the rest

frame of the particle. Show that the momentum and E/c = dpz + mic’  are given

by p = m0 dr/dr,  E,/c  = me(cdf)/dr.  Thus, since dr is an invariant, the momentum

and  E/c transform like r and ct. This is an olternate way of working Problem 13.
15. Suppose 0 particle of rest moss mc, moving in the positive x direction, has o total

energy (rest plus kinetic) of E, It hits o similar particle (rest moss mo),  which

is at rest. Express the total momentum pX ond the total energy of the two particles
in terms of E, and met’. Using the results of Problem 13, f ind, in tel*ms of

If, a n d  m0c2, the speed v of the system in which the momentum is zero, i.e.

’ = 0. Also find E’ in terms of Et,  moc2,
‘hji,+I

and v.  El iminate Y to show thai  E ’  =

muc )(moc2).  This total energy in the center of momentum system is im-

tportont in studying nuclear reactions.

v+,  /c;N2  -
2 /

Answer : mic2; Et  +  mcc ;Y =  CY ET- mic’/(E,  + met’).
In the following collision problems, use the facts that total energy and total momentum
are conserved. -By  squaring the energy equation twice, quantities like fl?ii
con be eliminated. An alternative procedure would be to tronsform to the center of

momentum system css  indicated in Problem 15. The solution is much simpler in that system.
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16.

17.

18.

19.

20.

21.

2 2 .

2 3 .

A particle with speed v hit!,  another at rest. If both have rest mass mc,,  and the final

velocities are along the same straight line, what are the final velocities?

Answer: 0; v.
A particle with momentum p and rest mass ml hits anothqer  at rest with mass m2.

If the final velocities are altlng the same straight line, what are the final momenta’?

Ill2 +
A n s w e r :  2pm, - - - -

(

dJ/42  + m:

rn:  +  rni  +  2m2~@/c)’ +  rn:) ’

m: - m;
P----

rn:  t rn:  + 2ms ~(P/c)~  + mf

Two particles have momenta p and -p.  They collide elastically. What are Ithe  magni-

tudes of the final momenta, and what is the angle between them?
Answer : p, p, 180” (this is the center of momentum frame for these particles).

Two particles of rest masses m t and m2 have momenta pt and p2,  respectively. If the
final velocities after an elastic collision are along the same straight line, what is the

final momentum of particle l?

Answer:

pi = pl(mY  - njZ)c”  +  2p+p1p2  +  rn:c’  +  t’x+  m:c’  G-tTzp)-.-___._ .-__

mfc2  + mic’ - 2PlP2  + 24 p: + my-v$yc&~ .

Two particles with rest masses ml and m2 have momenta ,p,  and p2,  respectively,

along the same straight line. What is the final speed of the combination if they stick
together on collision? What is the rest mass of the combination? (It is not m, + m2 .:I__--
Answer: c(pl -I-  p2)/(dp:  + mfc’ + q+ mzc’);

~-~~~__- _ _  ._
VG:+ rnz - -  2(p,p2  - dp:  + mfc’  t/b>:  +  rnpz’.

Two particles of the same rest mass, mc,  collide elastically. One particle was

initially at rest, and the other had momentum p. If the final velocities are the same
in magnitude, what is the angle between these velocities? Nonrelativistically, ttlis

would be 90”.

Answer : (1)  = cos-

(

dj7TYp - mot
--r_

X/p2 + rnic’  + 3moc ).

In Figure 4.1 I is given another bubble chamber photograph of the production and
decay of a :I0 hyperon.  Using the method illustrated in the text, find the rest mass
of the A0 from this photograph.

Verify that light moving parallel to the y axis in one inertial system goes at the angle

relative to the y’ axis in a system moving with velocity v along the x axis relative

to the first system. In the first system, E, = E, = B,  = 8,  = 0, B, = E,/c  #  0.

The transformation of the f eld components perpendicular to v is:

E,
I

= (E:f  v x B). BI, = P-  v x E/c2)__-
f-2  ’

v 1 - ” /c .\/;--y?Ic?
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Figure 4.1 I. Bubble chamber photograph of A0 decay.
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Find what the transformation  of the E components parallel to v must be for the liclht
wave to be trclnsverse in the second system. If E,  = E,  = 6,  := B,  = 0,
B, = E,/c  #  0, find how the B component parallel to v transforms.

Answer: Ei = Eli, fl’l = IT,,  .
24. A light source emits light in its rest system of 4000 Angstroms wavelength at the

violet end of the visible spectrum. If in a second system the light goes perpendicular
to the relative velocity and has a wavelength of 7000 Angstroms at the red end of the
visible spectrum, what is the relative velocity?

Answer: 2 . 4 6  x  10’  m/set.
2 5 . Due to the sun’s rotation, CI  point at the surface of the sun on its equator has a speled

relative to the cerlter of 1 .85 km/set.  If an atom at rest emits light of wavelength
5400 Angstroms, what is rhe  wavelength difference for this light emitted from op-

posite edges of the sun’s equator as seen from the earth?

Answer: 0.0666 Angstrom.
26. light at the natural wavelength 6328 Angstroms is emitted from a source which is

approaching at 0.45 the speed of light. Calculate the observed wavelength alld
frequency. If the light source were receding, what would be the observed enlergy
of single photons received from the source?

Answer: X =  3 8 9 7  A n g s t r o m s ;  v =  7 . 7 0  x  1014 set -l; 1.93 X lo-I9 i =
1.21 eV

2 7 . Light of wavelength 5000 Angstroms from a flashlight you hold hits a mirror moving

away from you at 0.8~.  What is the frequency of the light reflected back to you?
Answer: 6 . 6 7  .K  1013 set-’

28. The phase of-plane  sinusoidal  wave, k,x +  k,y  + k,z - wf with c = w/k =
o/Gk; + kz,  is invariant under a Lorentz transformation. A wavecrest  in
one system must look like a wavecrest in another system. Show that this is so if

k,,k,,k,, w/c  transform under a Lorentz transformation just as x, y, I, ct  do. !jince

k = 27r/X,  the magnitude of the momentum of a photon i:j  kh/2T, and likewise tlhe

energy is hrf  = hph/2*.  Verify that these are consistent with the transformation
equations for momentum and energy.

29. Consider two twins R. and G., and let G. travel with speed v out towardc  a di!;tant

light source, for a total distance I as observed by R. G. then returns along the same
path to his starting point Nith speed v. Suppose both G. and R. observe light of a
definite frequency coming from the distance source. Use the equations of the longi-

tudinal DGppler  ei?ect,  and the fact that at the end of the trip both G. and R. will
have counted the same total number of wavecrests, to show that the travelling twin
is younger by the factor t’K-m--21- v /c .
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The classical electrodynamics of Faraday, Ampere and Maxwell-as expressed

in Maxwell’s equations--was successful in predicting the existence of electro-

magnetic oscillations, and led to many useful applications, culminating in the

invention of radio in 189t5.  By the early part of the twentieth century, however,

other electromagnetic phenomena had been discovered, which could not be ade-

quately explained by the classical theory. Among the most significant of ,these

phenomena were the emission of electrons from a metal surface when irradiated

by light (photoelectric effect), the change of wavelength of light scattered by free

electrons (the Compton eRect), the discreteness of optical spectra emitted by hot

gases, and the energy distribution with frequency of radiation emitted by hot

bodies.

An important prediction of the classical theory was that an accelerated charge

should always emit radiation. If an atom is pictured as a heavy positively

charged core with an electron revolving in some orbit about the core, then the

electron should emit energy because it is continually being accelerated toward

the core by the Coulomb attraction. This energy loss should cause the electron

to spiral in toward the core and eventually collide with it in about lo-” seconds.

Thus this classical model contradicted the fact that an atom can be a stable

physical system. Further, the theory predicted that all frequencies should be

present in the emitted radiation, corresponding to the fact that all rotation fre-

quencies are possible in the classical orbits. This is in contrast to the observed

fact that often a hot gas emits light only at a discrete set of frequencies.

Another important consequence of the classical theory was that the intensity

of energy transported by a light wave through free space is proportional tso the

square of the amplitude of the oscillating electric (or magnetic) field. Also,

these electric and magnetic field amplitudes could have continuous arbitrary

numerical values, not dependent on the frequency. This led to serious difficulties

in explaining the observed properties of the electromagnetic radiation contained

in a cavity inside a hot body. The classical theory of this “black-body” radia-

tion assumed that the radiation inside a large cavity consisted of standing elec-

tromagnetic waves with a continuous distribution of energies. The resulting

theore*ical  calculations gave a distribution of energy with frequency which dis-

agreed with experiment, except at very low frequencies.

110
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M a x  Planck  was the f i r s t  to give an acceptable quant i tat ive explanat ion of
black-body radiation. Instead of assuming that the distribution of energies of the
standing waves i s  cont inuous,  he assumed that the waves could have only dis -
crete energies, differing in ama’unt by integral mult iples of hu,  where v is the fre-
quency and h i s  a constant blaving  the value 6.63 x lo-”  ioules-seconds.  The
result of Plan&s  theoretical calculation agreed with experiment in all respects.

Thus, when electromagneti,: waves of frequency Y are emitted or absorbed1 b,y
matter,  the energy has to be emitted or absorbed in amounts f =  hv .  Silnce,

when a part icle is  emitted or absorbed by matter,  a definite discrete amount of
energy is  t ransferred, a l ight wave appears in this  respect to act very [much  1ik.e
a part icle, when interacting ,with  matter.  When propagating from one point I O

another,  however,  i t  must  st i l l  behave l ike a wave because i t  i s  capablle  of ex-
hibit ing interference and diff raction. The standing waves of f requency u insidle
a cavity can be thought of as consisting of a number of quanta, or photons, eac:h
of energy hu.  When energy hi  is  emitted by one wal l  of the cavity,  the number
of photons of this f requency ins ide the cavity wi l l  increase by unity. Photons of
many different frequencies can be present in the cavity. The subsequent absorp-
tion of energy hu by another wal l  of the cavity can, in some respects, ,  be con-
sidered equivalent to the pa:,sage  of a particle (a photon) from one ~1311  to an-
other. The real ity of this portic:le-like  picture of the states Iof  the electromagrletic
field has been verified in many experiments.

In th is  chapter we shal l  begiln by examining, f rom the point of v iew of special
relativity, the hypothesis that light waves are particles whic:h carry energy in dis-
crete amounts E = hu.  If the t,elation  E = hu is to be a valid physical law, it fol-
lows f rom the f i rst  postulate of relat iv i ty that i t  must be val id in any inert ial
frame. The equations of rela4vity  tel l  us how to relate space and t ime measlure-
ments, and hence also frequency, wavelength, energy, ancl momentum measure-
ments,  made by observers in relat ive motion. We may then apply the relativistlic
transformations to the Plan&  relation E = hu, to see i f  i t  i s  form-invar iant with
respect to Lorentz transformati~ons.

i.1  ENERGY TRANSFOE!MATICBN  FOR PARTICLES OF
ZERO REST MASS

In the previous chapter,  t ransformation equations for energy and momentum of
part ic les were obtained. We now wish to invest igate the poss ibi l i ty that,  ac-
cording to Plan&s  hypothes is ,  a l ight  wave can be con’sidered  to a’ct  like #o
particle which, because the particle has speed c, must have zero rest mlass.  ‘rhiis

may be seen from the comparkon  of the two alternate expressions for energy

E = d(pq2  + (moc2)’  = s’:,, (.5.11)

In order that the energy and rnomentum be non-vanishing for m,  = 0, we mwst
have v = C, in which case the latter expression becomes indeterminate:
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2 zero
E=Am;,7-

zero
l(5.2)

But then the former expression reduces to simply E  = pt.

The relat ion E  = pc is entirely consistent with the classical electromagnetic

theory of a plane electromagnetic wave, where

(Energy density) = c x (Momentum density) l(5.3)

or, in 0 given volume, E =: pc for electromagnetic waves.

Since for zero rest moss part icles we have E = pc, then p. = p cos 8 =

E cos O/c, where 19  is  the direction of t ravel of the part icle with respect to the x

axis in R. Also, in the G coordinate system, pi = E’  cos et/c.  Subst i tut ing into

the trallsformation  equation (Equation 4.57),  we get

E ’ (E/c2)(l  - v / c  cos0)
.- = -___

C2 Ifi- v2/c2

Note the similarity to the transformation equation for frequency,

V(1  - V/CCOS@

l(5.4)

l(5.5)

5.2 FORM-INVARIANCE OF E = hu

In fact, i t  is at once clear that i f  Plan&s  equation E  =  hv for a s ingle photon is

valid in the system R, then upon using the transformations (5.4) and (5.5),  the cor-

responding relation in the G system must be E’ = hu’. The Planck equation is

thus rellativistically  invariant, provided the constant h has the same numerical

value in all inertial frames.

Furthermore, i f  the energy is a function only of f requency, the relat ion IE =

hv is  the only possible relat ion between energy and frequency which is Irela-

tivist ically invariant. Suppose, for example, that Planck had proposed E  =  hu”,

where n is some exponent not equal to unity. This relat ion would not be Irela-

t ivist icolly form-invariant,  and therefore could not be a valid physical law, as i t

leads to the relation

E’ = h (v’)” (LYLYL)‘- 115.6)

in the other reference frame. Thus, i t  is a remarkable fact that the only possible

relativist ical ly invariant relation between energy and frequency is precisely the

relation which enabled Planck to explain al l  the propert ies of black-body radia-

t ion.  Fur ther,  i f  E = hv,  there is a definite relation between momentum and

wavelength, which can be derived by noting that E = hv = pc, and XV := c.

Solving for p in terms of the wavelength X,

,ALb$”
C x

(5.7)
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Since this relation be*tween  momentum and wavelength i s  equivalent to E =  h,v,

it is also form-invarialit.
We may conclude that, i f  there exists a discrete energy related only to file-

quency  for light,, which is considered to be a particle of zero rest mass, then to be
relat iv i s t ical ly  invar iant,  the o~nly  possible relation is E =  hu,  where h is  a uni-
versal constant. Also, the only possible relat ion between momentum and wavee-
length has to be p = hX.  Thus:

) ti = hv  ==  pc p = h/X for photons (5.8)

These relations for a s ingle photon state the relationship of momentum and en-
ergy to wavelength sand  f requency under the assumption that l ight t ransports
energy and momentum in discrete amounts. I f  there are rt  photons, the expres-
sions for E and p should each be mult ipl ied by n. Note that the express ion for
energy does not contain the amplitude of the electromagnetic f ield osci l lations.
On the other hand, in classical electromagnetic theory the energy is proportiontal

to the squared amplitude of the f ields. Therefore, the physical meaning of the

squared amplitwde will have to be reconsidered.

The relat ions,  Equat ion (5.811,  are subject to ver i f icat ion by experiment.  In the
fol lowing sections, we shall  consider experiments in whic:h  the quant izat ion of
energy carried by photons is important, and in which the value of h can be d’e-
termined independently.  The value of h obtained from black-body radiat ion
e x p e r i m e n t s  w a s h  =  6 . 5 4 7  x 10ey  ioules-seconds.

5.3 THE DUANE-HUNT LAW

One phenomennn wbiich  rna>f  be explained by us ing the quantum relat ion li =
hu is  the short-wavelength cutoff  (high-frequency cutoff)  o’f  the continu’ous  x-ray

spectrum. Figure 5.1 represents a typical x-ray tube, consist ing mainly of a hot

h 13

t

Figure 5.1. Production of x rays by stopping fast electrons in dense materials.
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cathode which emits electrons, and a source of potential  which can accelerate
the electrons from the cathode up to many thousands of electron volts klinetic
energy. The electrons then str ike a dense target, usual ly made of tungsten or
molyb~denum,  and are blcought  suddenly to rest, i .e. they are decelerated. Ac-
cording to classical theory, such a decelerated charge should emit radiation, and

this is what is observed experimentally. If the accelerating potential V is upwards
of 10,000 volts, then the frequencies of emitted radiation lie in the x-ray region.

Suppose I(X)dh  is  the amount of energy emitted with wavelengths in the

range from h to A + dX. This intensity /(A,)  i s  a quant i ty  which can be ob-
served experimental ly;  a typical set of experirnental results is  given in F igure 5.2,

TUNGSTEN TARGET

A-20 KILOVOLTS
B- 25 ” -
c-30  ”
D-m35  I’ -
Ez4D ”

.2  .3  .4  .5  .6  .7  .a .9 1 .o

WAVE LENGTH IN ANGSTROM UNITS

Figure 5.2. Intensity distribution of x rays produced at different accelerating voltages.

in which I (A) is plotted as a function of A. Note that as the accelerating voltage
V is increased, there is a general increase in the intensity of x rays produced, and
also that there is  for each V a minimum wavelength (or maximum frequency)
emitted. This can be understood as fol lows: We assume that the x rays are
radiated discontinuously in the form of quanta of energy hv  when the electron

comes to a stop. Some electrons may emit many quanta, but i t  i s  poss ible that
an electron is stopped so suddenly that al l  i ts k inetic energy goes into a s ingle

q u a n t u m  o f  e n e r g y  hv,,,,.  T h i s  u,,, would be the maximum frequency of a

quantum which could be (emitted. The electron is initially accelerated and is {given
kinetic energy by passage through a difference of potential V, so the kinetic
energy it  gains there wil l  be T =  eV.  By conservation of energy, i f  in the coll is ion
all this is given to a single quantum of frequency umax,  then

hu,,,  = eV (5.9)
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This equation is  cal led the mDuane-Hunt  kaw.  I t  can be checked against the
experimental data given in F igure 5.2. From the graph, which is  plotted in terms
of wavelength, the minimum wavelengths can be read off for given accselerating

Potential.  In terms of vmox,  Xmi, =  C , so in terms of Xmi, the constant h could b’e
“mox

expressed as
eVLh=- (5.10)

C

For example, at V = 40,000 volts,  x,i,  from the graph is 0.31 Angstroms. This
gives, using e = 1.6 x lo-l9 coul.,  a value for  h:  h = 6.61 x 10m3’  i-sec. Sim-
ilarly, other values for h can be obtained from the data of Figure 5.2. Thle reslJlts
are given in Table 5.1; the values all agree reasonably well with each other and
with the value of h determined from black-body radiation experiments.

TAEI1.E 5.1 Duane-Hunt  Law
- - - _ _ _ - _ - .--_

V xtnin
(volts) (Angstroms) h =  eVX,i./c

- - - - - _ _ ~-_

2 0 , 0 0 0 .62 6.61 X 10m3’i-sec.

2 5 , 0 0 0 .49 6 . 5 3 x lo-“i-sec.

3 0 , 0 0 0 .405 6 . 4 8 x 10m3’i-sec.
3 5 , 0 0 0 .35 6 . 3 5 x lo-”

lo-”
i-sec.

4 0 , 0 0 0 .31 6.61 X i-sec.
5 0 , 0 0 0 .255 6 . 8 0 X lo-” i-sec.

6 . 5 6  X 10m3’  j-sec.(avera!ge)
- - - - - _ _ .--_

.4  PHOTOELECTRIC EFF:ECT

Historically the f irst alDplication  of Planck’s equation E =  hu to another phe-
nomenon was made by Einstein, when he showed how the photoelectr ic effect

Metal

Figure 3.3. Photoelectric Effect: A single incident photon of energy hv con (cause  on
electron to be ejected from a metal surface if the frequency is sufficiently  high.
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5.4.1

may be explained. In the photoelectric effect, light is allowed to fall on a metal

surfac:e  as illustrated in Figure 5.3, and electrons of various kinetic energies are

then e jected  f rom the  sur face  due  to  absorpt ion  of  l ight  energy .  One may

measure  the  k ine t i c  energ ies  T o f  the  e jec ted  e lec t rons ,  and the numbers of

ejected e lectrons,  as  funct ions of  both  the  f requency,  and the  in tensi ty ,  o f  the

incident  l ight .  F ive important  features of  th is  ef fect  could not  be expla ined by

the classical theory. We shall consider these features one by one, and show how

they rnay be explained using E = hu and the concept of the photon, or quantum

of light.

Emission from a given surface does not occur unless the frequency of the light is

greater than a certain critical frequency denoted by v,, which is independent of

the intensity of the incident light.

That is, no matter how intense the light is, no electrons will come off unless

the frequency exceeds v,. This is difficult to understand classically, because the

more intense the light is, the more energy should be available to make the elec-

trons come off.

Electrons are  normal ly  kept  f rom f ly ing of f  the  sur face of  a  meta l  by  the

Coulomb attractions between the electrons and the positive ions. It takes la cer-

ta in  amount  o f  energy  to  overcome th is  a t t ract ion  a t  room temperature ,  and

from experiments on thermionic emission these energies can be measured. The

minimum energy required to remove one electron is defined OS the work function

@ of the metal. Typical values of the work function are given in Table 5.2. These

work functions are typically of the order of a few electron volts. These are only

the minimum energies required to remove an electron from a metallic surface.

I t  mig,ht actua l ly  requi re  more  energy  than hu,  to  remove  an  e lec t ron ,  because

an e lect ron far  down ins ide  the  meta l  might  have  to  co l l ide  wi th  severa l  ob-

stacles, thus losing energy, before it could get out. Also, some electrons inside

the metal have less kinetic energy than others to begin with.

TABLE 5.2 Work Functions for Some Typical Metals

Element Work Function

Molybdenum
Nickel
!iilver
Tungsten
Zinc

4 . 2 0  eV
5 . 0 3  eV

4 . 7 3  eV
4 . 5 4  eV
4 . 3 0  eV

Suppose an electron absorbs one photon,, which  g ives  i t  just  enough energy

to overcome the work function and escape. The energy of this photon is E = hv.

In terlms  of  Cp,  hu = Cp.  I f  hu were l ess  than  9,  the  e lect ron could  not  escape.

Therefore ,  there  is  a  cr i t ica l  f requency,  V,  ,  de te rmined  by  v, = a/h,  such that

for  lesser  f requencies ,  an  e lect ron cannot  escape by  absorbing a  photon.  For
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example, the critical frequency ,for  Zinc is

a e X 4.310  eV 1.60 x 10.-19  coul  x 4.30 eV*, = - = - - - -  =
h h 6.63 x lo-” i-set

= 1.04 x 10’5  set -1

(Note that work functions in the table are given in units of electron volts.)

The incident light beam, olt  a frequency lower than the critical frequency,

could be made more intense Iby  increasing the number of quanta in the beam.

!<o  if n quanta per unit area pelr  unit time fall on the metal, the intensity is given

in terms of n and v by I = nhlj. Since the light is absorbed in quanta of amount

hv, and not nhu, increasing the intensity of the beam will not cause electrons to

come off in this case.

Suppose that we consider next the case of incident frequencies greater than

the critical frequency. Then electrons can come off when quanta are alpsorbed.

In general, the electrons will come off with a distribution of energies be’cause  of

losses due to collisions inside thle  metal, and so forth. So we shall consifder  only

those electrons coming off with maximum possible kinetic energies, T,,,.  The en-

ergy absorbed from the light, hu, goes into overcoming the work functioll and in

giving kinetic energy to the electron. Thus, by conservation of energy,

hu  = T,,,  + @

This is known as the Einstein pIbotoelecfric  equation.

(5.11)

Poe If Cp  = 2.04 eV  and visible light of wavelength X = 4000 Angstroms is used, then

the maximum kinetic elnergies  are

(6.63 x 10m3”  i-set) x (3 x 10’ m/set)
= __--_ - 2.04 eV

(4 x 1 O-’ m) X (1.6 X lo-- I9  i/eV)

= 1.07eV

For such problems, since T,,,, is a few electron volts, while the rest energy of an

electron is 510,000 eV,  we can use the approximate nonrelativistic ex.pression

for kinetic energy, 7 = % m,,v’, to obtain the maximum electron velocity. Then

the photoelectric equa,tion  can be written in the form:

1
1

max  == - mo&,  = hu - +
2

(5.12)

.2 T,,, does not depend on the irltensity  of the incident light.

Classically, it would seen that the more energy contained in the incident light,

the more a particular electron could absorb. However, the photoelectric equation

does not predict any dependence of J,,,  on the intensity, I =: nhu.
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5 . 4 . 3 T,,,,,  increases with increasing  frequency of light.

This fol lows directly from the photoelectr ic equation. If  T,,,  is  measured1 and
plotted as a function of frequency, the slope of the curve should be equal to h.
The intercept on the frequency axis  should be Q/h. The energy T,,, may be
measulred  by placing an electrode near the metal  surface and applying to i t  a
negatilve potential, -V, with respect to the metal. This is  i l lustrated in Figure 5.4.

/

/

-e

Figure 5.4. Rough diagram of apparatus for measul.ement of h/e.

This stopping potential V is increased until no current is collected by the electrode,

that is ,  unti l  V is just large enough to turn back electrons with the energy T,,,.
Then the change in potential energy as the electron travels from the metal surface
to the electrode is just eV, and is  equal to T,,,. So eV = hu - a., and if V is

1.5 L

P
0

; l.O-

P
E
5
a

P
'B  0.5 -

i

I I
7.10'4

Frequency in cycles/second

Figure 5.5. Graph of stopping potential vs. frequency.
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measured and plotted as a function of frequency, the slope of the curve should
be equal to h/e. In Figure 5.51 are given some experimental data for the measure-
ment of V as a function of frequency for a particular metal surface. IFrom  the
data, using the knowrl value of the electronic charge e, Plan&s  constant can be
independently determined. The value obtained from the graph is  h = 6.65~ x
10e3’  i-sec.

1.4 The number of photoelectrons emitted per second is proport ional to the intensity
of the light.

Classically, this is consistent with conservation of enell.gy,  but it is not clear why
the increase in avai lable energy as the intensity is  increased shouldn’t increase
T,,,. i f ,  however,  the intensity is  nhv,  w i th  v > uc, tlhen  for every ph’oton ab-
sorbed, only one electron can be given off. If the inten!,ity  is then doubled, keep-
ing the frequency fixed, the number n of quanta is doubled, so that the number
of electrons given off should also be doubled. Thus, the,  quantum theory explains
this fact completely.

1.5 Emission of photoelectrons may occur immediately, r(sgardless of the intensity
of the light.

This means that i f  the intensity is  made smaller and smaller,  then no matter
how small it is, immediately after the light is turned on, some electrons may come
‘off. It  is not too diff icult to arrange for the intensity tc’  be so low that i t  should
take several hours for 5.0 eV 131:  energy to be absorbecl  by an atom in the metal
- - that  i s ,  provided the intenGty  is  proport ional to the square of the amplitude.
However,  on the basis  of the cluantum picture, i f  therr,  is  any l ight at al l ,  there
,will  have to be at least one quantum present, so an electron could absorb it and
lleave  the surface.

Suppose, for examlzJe,  that the intensity were so low  that 5.0 eV of energy
every ten minutes were incident on a surface of work function 2.5 eV, ond that
,the  frequency of the inciden?  l ight were such that hv  = 5.0 eV.  Then, on the
average, s ix electrons would come off every hour;  but i t  turns out to be impos-
!sible  to predict exactly when thlese electrons would come off. They would do so at
[random t imes, rather than regular ly every ten minutes. Hence, only the prob-
abi l i ty of eject ing an electron at a given instant can be predicted. This  prob-
lability  can be correcily calculated using the class ical formula, which says the
square of the amplitude is  proport ional to the intensity.  The intensity is  related,
Ion the average, to the number ‘of  quanta present. This will be discussed below iln

detai l .

5.5  COMPTON EFFECT

I f  l ight waves str ike a free electron, as in Figure 5.6, then, according to classical

electrodynamics, the electr ic (Geld  vector should cause the electron to osci l late.
Hence the electron will be accelerated, and should emit radiation at the same fre-
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ti

I

1
E

-- oe

--

Figure !i 6. . Electric field in an electromagnetic wave striking an electron causes the elec-
tron to accelerate. Classically, radiation of the same frequency should be emitted, but a
shift of wavelength with angle is observed.

quency  as that of the incident l ight.  However, exper imental  observat ions Ishow

that the light reradiated by the electron is changed in frequency (and so in wave-
length). For example, considering only the l ight scattered at 90” from the inci-
dent direct ion, experiments show that the change of wavelength of the l ight is
LIP  = 0.024 Angstrom. This, of course, i s  a very smal l  sh i f t  in wavelength.  In

order to observe this shift ,  i t  i s  necessary to do the experiment with x rays.

The effect can be understood as the absorption of a photon of energy, E =
hu,  and momentum, p =  h/h, a subsequent re-emission of a photon of different

energy, E’ = hu’, and momentum, p’ = h/X’ , with a recoil of the electron from

hv’,  hf  A’

mc’, rnv

Figure 5.7. Diagram of collision between a photon of energy E = hv and a free electron.
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the state in which i t  was in i t ial ly at rest- i .e.  a relat iv ist ic col l i s ion between two
part icles. We shal l  tIpeat  the electron as CI  relat iv ist ic part icle which, after the
collision, has velocity v at on angle 4 relative to the incident direction. The rela-
tivistic mass m is then

m =
m0

41 - vz/c2
(5.13)

Let us write down the conservation of energy equation. Referring to Figure 5.7,
before the col l is ion the total energy is that of the photon, hu,  and that of  the
electron at rest, mc,c2. After the collision, the new photon has an energy hv’,  and
the energy of the electron is mc’. So the law of conservation of energy is

hu  + m,c 2 =  hu’  +  mc2 (5.14)

or since u =  c/~A  and u’ =  c/X’,

h/X’
4

mv

/

\

!- -
h/h

Figure 5.8. Momentum conservation diagrams for photon-free electron collision.

(5’.15)

Next,  we write down the conservat ion of momentum equations.  The relat ion-
ships between the momentum vectors are diagrammed in F igure 5.8. The init ial
momentum is that of the incident photon only, since the electron is initially at rest.
This initial momentum is equal to the vector sum of the final momenta, of magni-
tudes h/X’  for  the photon and mv for the electron. The x component of mo-
mentum is conserved. This gives the conservation law,

h h- :=  -
x  A’

cos 0 + mv cos 4

For conservation of they cotnponent  of momentum, we have
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0 = h sin 0 -- mv  sin C#J
A’

(5.17)

These equations can bme  manipulated in var ious ways to yield useful  informa-
tion about the col l is ion process. Note that the equations combine relati,ristic
mechanics for the electron, with the equations E =  pc = hu for the photons. For
our purposes, we wish to calculate the wavelength X’  of the scattered photon in
terms of X and the angle 0, through which the photon is  scattered. This  means

that in the above three equations, (5.15, 5.16, and 5.17),  we must eliminate the
var iables  4 and v.  There are several  ways to proceed with the algebra; the re-
sult  i s  given in Equation (5.23).  The quickest way to el iminate the angle 4 is to
use the vector tr iangle in F igure 5.8, and upply  the law of cosines, which irl this
case gives us

PZ
h2  h2 2h2

= (mv)’ = - + -- - -  cos /I
0 0x A’ X’h

(5.1 8)

The f inal momentum, p, of the electron in Equation (5.18) can be el iminated by
m e a n s  o f  t h e  r e l a t i o n  EZ =  P2c2  +  mic’  o r  pz  =  E2/c2 - mot  .’ ’ T h e n ,  s i n c e
E  =  mc’,

P2 z m2y2 = m2c:) - m2c20 (5.19)

We may now obtain an express ion for p2 In terms of the in i t ia l  and f inal  wave-
lengths, X,X’. Write the conservation of energy equation (5.15) as

h h
mc = mot  + - - -

x A’

Squar ing this  last  equation and solv ing for mic2 - mf,c’,  we gel

2 2m c - m2c2o =  2m,c(f  - $) +  (a - b)

Thus, combination of equations (5.19) and (5.21) gives us

p2  =  m2v2  =  2moc  (t  - $) +  (i  - x”;)

(5.21)

(5.22)

Then, el iminating p2  between Equat ions (5.22) and (5.18),  after some cancella-
t ion and redvction  to common  denominators, one may solve for X’  - X. The re-
sult is

A’ - x = & (1 - cos e)
0

This last equation gives the change in wavelength in terms of the universal con-
stants,  h/mot,  and the scatter ing angle 0. In the der ivat ion, apart  f rorr  the

r e l a t i o n s h i p  p2  =  E2/c2 - rnic’, we used conservation equations for energy
and momentum, and s imply el iminated the unwanted var iables involv ing the
momentum of the electron.

At a scattering angle of 0 =  90”,  Equation (5.23) predicts that A’ - 1 =

h/mot.  For the electron, m0 = 9.1 1 x  10 m31  kg, and h = 6.63 - 1Om34  joule-set;

calculat ing X’ - x in Angstroms gives us
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Ct.63  X 10m3”i-setA’  - h = ____-.- - =  .0243  A n g s t r o m  (!j.2!4)
9 . 1 1  x  10m3’kg  x  3  x  108m/sec

This is in extremely glood  aslreement  with the exper imental  value for the shi f t  at
90”.

Silver Radiator

Figure 5.9. Modified and unmodified Compton lines.

The constant h/m,c  =  2.42;  x 10 I2 is  cal led the Compton wavelength and lis
a  characteristic quantum length associated with the electron.

In F igure 5.9 are shown graphs of intensity versus wavelength of the l ines ob-
served at a scattering angle of 90”, for scattering by the electrons in a number

of substances. Notice there are two lines, one at a position corresponding to zero
change in X, the other slightly displaced from it. The displaced line is that  due to
Compton scattering from free electrons, and is called the modified line. The other
is called the unmodified line, (2nd  is due to scattering from bound electrons. Here,
in place of the moss m0 for electrons in the Compton wavelength, a mass com-

parable to atomic mosses  should be used, so the shift of wavelength is negligible.
In elements with higher valuer of Z, and hence with more tightly bound electrons,
there are relatively fewer free electrons, and so the intensity of the modif ied

line becomes smaller in comparison to that of the unmodified line.

I.6 PAIR PRODUCTION AND ,ANNIHILATION

Another phenomene2n  in whllch  the quantum propert ies of l ight enter is  pair

,production,  where a  photon of suff iciently high energy (called a gamma ray),
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reacts to form an electrcsn and another part icle, a positron, which has posit ive

charge 1 e 1 and rest rrlass  equal to the rest mass of the electron, mo. Sym-

bolically, the process is represented by

where “e --I’ represents the electron and “‘e”” the other part icle, a positron. Let

us ask whether such a process can occur in free space. In this process, we assume

the photon of energy hrt and momentum hu/c  disappears, and, for simplicity,

that the positron and electron continue along in the same direction together, with

equal speeds v as in Figure 5.10. Applying the conservation laws, we have, for

Figure 5.10. Pair produc,tion by a photon in free space is impossible as energy and
momentum cannot be simuh~neously  conserved.

conservation of energy,

2moc2
hv  =  __-__-__

VL v2/c2

Conservation of momentum gives

hv 2mclv
C 47-7p

El iminating the frequency v from the above equations, one can solve for the

speed v. This can be done, for example, by dividing the second equation into

the first, giving us
2

c = Y-

V
(15.27)

or v = c. This immediately implies that the rest mass must vanish, and henc’e  we

arrive at a contradiction: The process as we have assumed it  to occur is impos-

sible. This is because energy and momentum (cannot simultaneously be conserved

in free space in this process. Assuming dif ferent speeds or directions for the two

particles would not alter .these conclusions.

However, i f  the high-energy gamma ray passes near a very heavy particle,

then the heavy particle can soak up all  the momentum without carrying away a

signif icant amount of energy. To show this,  the process is  pictured as in Figure

5.11: The y gives much of its momentum to the heavy particle, and almost all



5.6 Pair production and  ormihi/arion 125

IFigure  5.1 1. A high-energy gamma ray passing near matter can create an electron-
positron pair-material nuclei soaking up momentum but not energy.

i ts  energy to the electron-posit ron pair . let  us  see why th is  i s  so.  The rat io R

Iof energy carried off by the heavy particle to energy available is

l/2 Mv2
R=-

hu
(5.28)

where we may use the nonrelativistic expression for the heavy particle if the most

energetic y rays we lconsidelr have energies of no more than about ‘IO M’eV,

which is small compared to the  rest energy of a heavy particle such as a proton.

If all the momentum of the x ray is assumed to go into momentum of the heavy

part icle, then hvjc  = Mv. Solving this last equation for v, we have v = hu//Mc.

ljubstituting v into the ratio R, after some cancellation, we get

R = ~‘W’WW2  = 1 hv__I
hu 2 MC’

Thus, since hu  << MC’, the ratio R is very small,  and the fraction of energy

carried away by the heavy particle  is negligible, even when i t  takes up al l  the

momentum. In general, not all the momentum is given to the heavy particle, but

it takes up enough to allow the reaction to take place.

Having accounted for mom#entum  conservation with the presence of the heavy

part icle, we have only to consider energy conservation in the pair creatlion

process.  Thus,  i f  v+ arld  v_  are the velocit ies of positron and electron, respec.0

tively, then

moc2
hu = ---;-

-\/‘I  TV:/7 + ygv3/;i

The minimum gamma-ray energy required to create a pair wil l  occur when the

final energies of both part icles. are minimum. This wi l l  occur when v+ =  v- = 0.

Such a minimum kinetic energy for a process to occur is called the threshold

energy, and

illlq threrhold = 2mOc2
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Since the rest energy of an electron is 0.511 MeV,  the threshold gamma energy

is 1.022 MeV.  I t  i s  indeed observed exper imental ly that when gamma rays of
energies greater than 1.022 MeV  pass  through matter-so that  many heavy
part icles are present-electron-positron pairs are created.

An electron and a positron can also combine  in a col l is ion in which they
annihi late each other arld give off a burst of radiat ion. Suppose the electron
and positron were init ial ly at rest. T h e i r  t o t a l  e n e r g y  i s  1 . 0 2 2  MeV.  I f  t h e y
annihilate each other, giving off one photon only, momentum could not be con-

served because the init ial  momentum is zero, whereas the f inal s ingle part icle
would have to possess some momentum. Thus,  at least two photons must be
emitted. I f  two photons are emitted, then in order to conserve momentum they
must go off in opposite directions, with momenta of equal magnitudes. Thus, their

energies wi l l  be equal (see Figure 5.12).  Each photon wi l l  then have to carry
away an energy of 0.511 MeV.  This  i s  observed experimental ly.

Before

Figure 5.12. Pair annihilation ot rest causes  at least two photons to be given off, which

travel in opposite directions with equal energies.

Whereas the phenomena of pair  creat ion and annihi lat ion do not give an

independent way of measur ing Plonck’s con:#tant,  because the frequency of the
photon is much too high-1  to be measured, they show clear ly that the photon

must carry energy and momentum, and that total energy and momentum of the
particles in a reaction are both conserved.

5 . 7  U N C E R T A I N T Y  P R I N C I P L E  F O R  L I G H T  W A V E S

I t  i s  a general physical fact that any measurement of a physical quantity
generates uncontrollable disturbances which may alter the value of the physical

quantity being measured. For example, to measure the temperature of a gas, a

thermometer must be introduced into the gas, which may decrease the volume
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s l ight ly and hence heat up the gas. In addit ion, there might be slome  heat

exchange between gas and thermometer.  When analyzed in detai l ,  al l  phys ical
measurements can be shown to have a s imi lar disturbing character.  We are
interested here in the uncertaint ies introduced into the values of f requency
(energy) and wavelength (momentum) of l ight waves by attempts to measure
their values, v and X.

Consider a measurement (of frequency. A frequency is a number of ‘cycles  per
unit of time, so to measure a frequency, we have to count the number N of wave
crests that pass a gtiven  point in a given t ime Al; then the f requency wi l l  be
given by

N
“=-

At
(5.30)

Here, At is  the t ime interval mover  which the measurement extends.  In count ing
N, the number of crests,  var ious diff icult ies may arise. I f  the wave is nlot a  Ipure
sine wave, then it will consist, perhaps, of a superposition of several frequencies,
and repeated measurements of N will not agree. Even if the wave is a pure sine
wave, when we count crests  over a f ixed t ime interval  At,  then for  a iparticular
measurement we might not know whether we should include the last portion of a
wave as a crest  or  not.  To put i t  another way, suppose we chop the pure s ine
wave so that i t  only lasts  a t ime At.  Then the sharp var iat ions in ampl i tude
at the ends can be represented in terms of a superposit ion of waves of many

different frequencies, so that repeated measurements of N would not always give
the same value.  I t  i s  Inot  diff icult to make an order-of-magnitude estimate of the

range of uncertainty, AN of N. It  wi l l  be about 1, s ince in counting crests
we may miss one or more Icrests at the ends. Thus,  i f  the uncertainty in IV is
AN e 1, there wi l l  be a corresponding uncertainty Av in our measurement of
frequency, and this will be

(5.31)

Thus, the product:

AvAt  ‘u 1 (5.32)

This result arises purely becc’use of the wave nature of the l ight;  i t  i s  not only
val id for l ight but for al l  other class ical wave disturbances, and also for other

waves such as those oNrising in quantum theory.
From Equation (5.3$2),  we scan  obtain a corresponding uncertainty relation for

energy. The energy of a photon of frequency v is E =  hu,  so the uncertainty
in energy wi l l  be related to the uncertainty in frequency by AE = h Au.
Therefore,

AEAt ” h (5.33)

This result  states that the product of the t ime Af over which the measurement
is conducted, t imes the uncertainty in the measurement ot energy of a photon,

is approximately h.
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T A B L E  5 . 3 Typical Data From a Frequency Counter: Time Interval

At = 1 .O sec. Numbers of counts in repeated measuremenIts:

1 0 0 4 0 4 1 0 0 4 8 5 1 0 0 4 8 5 1 0 0 4 8 2 1 0 0 4 8 5
1 0 0 4 8 5 1 0 0 4 8 5 1 0 0 4 8 4 1 0 0 4 8 3 1 0 0 4 8 5
1 0 0 4 8 6 1 0 0 4 8 5 1 0 0 4 8 6 1 0 0 4 8 4 1 0 0 4 8 4
1 0 0 4 8 4 1 0 0 4 8 5 1 0 0 4 8 5 1 0 0 4 8 2 1 0 0 4 8 5
1 0 0 4 8 5 1 0 0 4 8 6 1 0 0 4 8 4 1 0 0 4 8 2 1 0 0 4 8 4
1 0 0 4 8 5 1 0 0 4 8 5 1 0 0 4 7 9 1 0 0 4 8 4 1 0 0 4 8 5
1 0 0 4 8 5 1 0 0 4 8 4 1 0 0 4 8 2 1 0 0 4 8 3 1 0 0 4 8 4
1 0 0 4 8 5 1 0 0 4 8 4 1 0 0 4 8 2 1 0 0 4 8 4 1 0 0 4 8 6
1 0 0 4 8 5 1 0 0 4 8 5 1 0 0 4 8 3 1 0 0 4 8 5 1 0 0 4 8 5
1 0 0 4 8 5 1 0 0 4 8 5 1 0 0 4 8 3 1 0 0 4 8 5 1 0 0 4 8 5
1 0 0 4 8 5 1 0 0 4 8 4 1 0 0 4 8 4 1 0 0 4 8 5 1 0 0 4 8 6

Average number of  cawnts  = 100484.3 1
RMS  deviation from the mean of the number of counts = 1.28 counts.

In Table 5.3 are given the numbers of counts in repeated measurements by an
electronic wave crest counter, which has counted crests of a wave put out by an

audio signal generator over a time interval at  = 1 .OO sec. The root mean square
deviat ion from the mean of N can be taken as a measure of the uncertainty in
N. From the table, one can find the uncertainty in frequency of the measurements;
l i t is 1.28 set-‘. Thus the uncertainty product is

AuAt  - 1.28

in accord with the uncertainty principle, Equation (5.33).

5.8 MOMENTUM, POSITION UNCERTAINTY

An uncertainty relation may  be obtained in a s imi lar way, which relates mornen-
turn and distance. Imagine freezing a pure sine wave and measuring the number
of wave crests ,  N,  within the distance Ax on the meter st ick.  Then the wave-
length X i s  g iven by X =  ax/N.  The momentum wi l l  be

However, again because near the endpoints it will not be clear whether we have

included the last wavecrest correct ly or not,  repeated measurements may give
differ ing values for N. Again, the uncertainty in N wil l  be roughly AN * 1,
and the corresponding uncertainty in momentum will be

or

Ap = -At

ApAx  N h (5.34)
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Figure 5.13. Basic uncertaint ies ar ise in at tempts to measure wavelength or  momentum.

I f  we take OS  a measure of Ap and Ax the rms deviat ions f rom the mean,
this uncertainty relation can be made more precise. As one might guess, there
is  a wave shape that makes the uncertainty product -Ix  Ap a minimum. lt  turns
out that th is  minimum occurs  when the wave shape is  a s ine wave m~odulated

by a gaussian, of the form CC??~‘~“~, wi th  c and c constants.  For th is  wave,
Ax Ap = h/4a. So, in general, ,  we could say that Ix -Ip  2 h/4x.

In terms of wavelength, the Iuncertainty  in X  is

and this gives, in terms of the measured value X = Ax/N,

AXAX  > x’
4ir

(5.35)

(5.36)

The uncertainty relation -I/I  .1x >h/4r  for light waves, states that a measure-
ment of momentum of a l ight wave which is  carr ied out over a spat ial  interval
Ax wi l l  have an uncertainty such that the product of Ax t imes the uncertainty
in momentum is greatser  than h,/4Ir.

These results show that there are basic l imitations on our abi l i ty to s imulta-
neously measure certain propert ies of l ight waves; later,  we shal l  see that very

similar uncertainty relotions hold for material part icles such as electrons,, protons
and atoms. No conceivable measurement process can give r ise to knowledge of
physical quantities which violates these relations.

i.9 PROBABILITY INTERlPRETATllON  OF AMPLITUDES

We have seen in detai l  how l ight waves carry energy E = hv  and momentum
p =  h/X,  and that when they interact with matter ,  photons are emitted and
absorbed and have Imany part icle- l ike propert ies.  We now have to reconci le
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these results with the fact that in calculations of interference and dif f raction,

the experimental results are very well  explained by using wave-l ike propert ies,

namely superposit ion of wave amplitudes. In a diffraction calculation, i l lustrated

in Figure 5.14, the square 1 #(6’)  1 ’ of the amplitude #(O)  is proport ional to

Figure 5.14. Double-slit diffraction pattern for light must be interpreted in terms of
probabilities.

the intensity of the l ight arr iving at the screen at the angle 0, where $(/I) i s

obtained as a l inear superposit ion of contr ibutions #;/i(S)  from each of the

individual point sources of Huyghen’s wavelets. Mathematically, the intensity is

given by

where k is some proportionality constant. In order to explain the form of the

diffraction pattern, i t  is said that the energy going into the angle 0 is  propor-

tional to the absolute square, or magnitude of the square, of the total amplitude

#.
However, if, according to the quantum theory of light, we are actually dealing

with photons of f requency v, and i f  the flux  of photons going into the olngle

0 is n, then I  = nhu;  thus the square of the amplitude would be proportllonal

to the number of photons going into the angle 19.  Imagine that the screen on

which the photons are al lowed to fal l  is  f luorescent,  so that whenever a photon

str ikes the screen at some point, this is made evident by a visible f lash. Then,

when the intensity of the incident photon beam is large, there are many photons,

and there wil l  be many f lashes on the screen. The number of f lashes at a given

point is proportional to the square of the amplitude calculated classically.

Suppose now that the intensity of the beam,  is reduced to such a low value that

only one photon at a t ime goes through the sl i t  system. Then only one f lash at a

time wil l  be seen on the screen, at some definite posit ion. Sometimes, the f lash

will be at one point, sometimes at another. That is, the exact position at which a

given photon str ikes the screen wil l  be unpredictable. However, suppose the

screen is replaced by a f i lm and a long exposure is made, so that over a long
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period many, many photons hit  the f i lm, one at a t ime. When this experiment
is performed, the pa,ttern  on the f i lm is precisely that predicted classical ly, i .e.
the diffraction pattern. Thus, even though only one photon at a time goes through
the s l i t  system, so that one might think photons could not interfere with each

other, one still obtains the diFfraction  pattern.
Therefore, the squared amplitude does not tel l  exactly where a photon wi l l

go--which i s  unpredictable---  but i t  does tel l  what happens on the average to
many photons.  I t  can only lbe  interpreted as a probabi l i ty.  The square of the
a m p l i t u d e ,  1 IF/(@ 1‘,  i s  thus proport ional  to the probabi l i ty that a given photon
will be found at the angle 8. +(B) is th en referred to as a probability amplitude.

To obtain the probabi l i ty that a photon wi l l  be found at the angle 8, one
calculates the sum, or superposit ion, of al l  the probabi l i ty ampl itudes which
contr ibute to $(0).  Then 1 $(0)  / ’ =  ( c; G;(0)  j ’ i s  proport ional to the prob-
abi l i ty of f inding a given photon at posit ion 0. This  probabi l i ty interpretat ion
of the amplitude squared is verified by many experiments.

THE PLANCK RELATION EIEiTWEEN  ENERGY AND
FREQUENCY FOR LIGHT

In order to explain the observed propert ies of black-body radiat ion, Planck
postulated that l ight carr ied energy in discrete bundles cal led quanta, or
photons. I f  the frequency of the l ight is u, then the photon energy is  E =  hu.
The total energy could be nh,v, where n is some integer. This law is relativistically
form-invar iant.  S ince E = pc for photons where p is  the momentum, it  fol lows
that p = h/X.  The presently accepted value of h is:

h = 6.6262 x 1Om34  joules-sec.

Another useful constant is:

h c
- := 1 . 2 3 9 9  x  10m6 i-m/coul.
e

DUANE-HUNT LAW

If electrons are accelerated through a potential difference V, they acquire kinetic
energy eV.  Then, if thsey  are susddenly  stopped, the maximum energy that can be
emitted by an electron will be eV = hu,,,.
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PHOTOELECTRIC EFFECT

The work function @ of a metal surface is defined as the minimum energy

necessary to remove one electron from the surface. If  l ight of frequency u is
incident on the surface, electrons may be ejected. The maximum kinetic energy
T,,,  of an electron is given by the Einstein photoelectric equation,

1 max = hu - +

If hu < a,  no electrons can come off. The crit ical frequency v,, at which some
electrons are barely able to escape, is given1  by hu,  =  a.  The value of  T,,,, is

independent of the intensity of the incident light; the number of electrons emitted
is proportional to the intensity nhv  of the light.

COMPTON EFFECT

When a photon of  in i t ia l  wavelength X is s,cattered  by a free electron, itself
initially at rest, then the scattered photon has its wavelength changed an amount
given by:

A’ - x = $c (1 - cos 0)
0

where 0 is the angle through which the photon is scattered.

PAIR PRODUCTION AND ANNIHILATION

A photon of energy greater than 2moc2  can, when passing near a heavy particle,

be changed into an electron-positron pair .  An electron and positron at rest can
annihi late each other to produce two or more photons. I f  two photons are pro-
duced, they each have energies of mOc2.

UNCERTAINTY PRINCIPLE

A single measurement of frequency of a photon, which lasts over a time interval,
At, necessar i ly has on uncertainty given by .AuAt  ) 1. Then the energy is  un-
certain by an amount LIIF,  where AEAt 2 h. In a measurement of mome’ntum
of a photon, where the posit ion of the photon is  known to within an acculracy

Ax,  there will be an uncertainty Lp  in momentum given by LIP,IX 2 h/4*.

PROBABILITY INTERPRETATION OF AMPLITUDES

Experiments performed with low intensity l ight waves indicate thot the squared
amplitude of the wave may be interpreted a’s  the probability that a photon will

be found at a certain position.
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1 .

2 .

3 .

4 .

5 .

6.

7.

8 .

9.

What energy would an electron require in order to have the same momentum as

an 8 MeV photon?
Answer : 8.0163 MeV.

Find the wavelengths for plhotons  of the following energies: (a) 10.2 eV  corre-

sponding to the shortest waIvelength  emitted by a hydrogen atom; (b) 100 keV
x ray; (c) 500 MeV gamma my.

Answer: (a) 1216 Angstroms;(b) 0.1243 Angstroms; (c) 2.49 x 10-s  Angstroms.

Find the kinetic energy in MeV of an electron with momentum equal  to c  times its
rest mass. Compare with % m(,vz.

Answer: (v’?F - -  l)moc2  =  0.212MeV;  % mev2 = 1/4m,,c2  =  0.128MeV.
Two particles travel in the lab system with equal but opposite speeds and collide.
If the kinetic energy of each particle is 9 times the rest energy (moc2) as observed
from the lob, then what is the kinetic energy of one of the particles as observed

from a system in which the other particle is at rest?
A n s w e r :  198moc2.

A proton with total energy ,ymoc2  and momentum ym,,c2,  where y = l/-\/‘EF
and v is the proton speed, hits a proton at rest in the laboratory system. Use the

transformation equations for the total energy, (y +  l)m0c2,  and momentum,

ymov,  of the two-proton sy!,tem  to find the energy and momentum in a frame moving
with speed v’ relative to tble laboratory system. Take the relative velocity parallel
to the velocity of the first proton. Show that if v’ = yv/(y + l), the momentum

is zero. This center of momenfum  system is classically the center of mass system.
Show that in thot system,

1 (Y+ 1)--/l’zry’2/C2  =
r2

and thus that the total energy in the center of momentum system is

fi(y + l)moc2

An electron has a klinetic  energy of 1 MeV in one inertial system. Find the magnitude

of the momentum of the electron in MeV/c in a system moving relative to the first
at c/2, (a) in the same direction as the electron velocity in the first system; (b) per-

pendicular to the electron velocity in the first system. The electron rest mass
corresponds to 0.51 1 MeV.
Answer: (a) 0.770 MeV/c;  (b) 1.669 MeV/c.

What would be the wavelength of the most energetic x rays produced by electrons

of 50 keV kinetic energy striking a lead target?
Answer: 0.249 Angstrom.
For what wavelength of inc:ident  light will photoelectrons ejected from zinc have a

maximum velocity of y,, of the speed of light?

Answer: 4.83 Angstroms.
A gamma ray of energy 5.7 MeV is Compton scattered at an angle of 60” from free

electrons. Find the energy in MeV of the outcoming photon.

Answer: 0.867 h4eV.
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10. F ind  the  leas t  f requency  o f  inc ident  l igh t  that  w i l l  knock  e lect rons  out  o f  the  su r face

o f  a  m e t a l  w i t h  a  w o r k  f u n c t i o n  o f  3  eV.

Answer: 7 . 2 4  x  1C”sec-I.

1 1 .  T h e  p o t e n t i a l  b a r r i e r  o f  e l e c t r o n s  a t  t h e  s u r f a c e  o f  a  m e t a l  w h i c h  l e a d s  t o  t h e

w o r k  f u n c t i o n  i s  d u e  t o  e l e c t r o n s  w h i c h  g e t  s l i g h t l y  o u t s i d e  t h e  s u r f a c e ,  i n d u c i n g  a

pos i t i ve  charge ins ide  the  su r face.  Th i s  leads  to  a  fo rce wh ich  i s  the  same as  i f  an

image charge equal  arld  o p p o s i t e  t o  t h a t  o f  t h e  e l e c t r o n  w e r e  a t t r a c t i n g  t h e  e l e c t r o n ,

a s  s h o w n  i n  t h e  d i a g r a m .  V e r i f y  q u a l i t a t i v e l y  t h a t  t h e  l i n e s  o f  f o r c e  b e t w e e n  e l e c t r o n

Metal surface

Electron

:\.Ke

and image charge wou ld  sat i s fy  the  cond i t ion  that  they  must  be perpendicu la r  to  the

conduct ing sur face.  Shmsw  that  the  e lect ron  has  a  potent ia l  energy  o f  -e2/(167rt0x)

w h e r e  x i s  the d i s tance to  the meta l  su r face.  Th i s  image force shou ld no longer  be

present  once the e lect ron i s  a  d i s tance f rom the su r face comparab le  to  the meta l

atom spac ings ,  say  1  Angs t rom.  Compute  the  e lect ron  potent ia l  energy  at  that

d i s tance and compare in  o rder  o f  magni tude wi th  work  funct ions  g iven in  Tab le  5 .2 .

A n s w e r :  3 . 6  eV.

12.  F ind the max imum k inet ic  energy in  eV  o f  e lect rons  knocked out o f  a  s u r f a c e  w i t h

a  work  funct ion  o f  1 .5  eV  b y  l i g h t  o f  w a v e l e n g t h  6 0 0 0  A n g s t r o m s .

A n s w e r :  0 . 5 7  eV.

1 3 .  T h e  t h r e s h o l d  wavelerlgth  f o r  e m i s s i o n  o f  e l e c t r o n s  f r o m  a  C s  s u r f a c e  i s  6 5 4 0

A n g s t r o m s .  C a l c u l a t e  ,the w o r k  f u n c t i o n  o f  C s  i n  eV,  a n d  c a l c u l a t e  t h e  m a x i m u m

energy in  eV  photoe lect rons  wou ld  have  i f  photons  o f  wave length  4000  Angsiroms

were  inc ident  on  the  su r face.

A n s w e r : 1 . 9 0  eV; I  .20  eV.

1 4 .  A n  x - r a y  p h o t o n  i s  s c a t t e r e d  b y  a  f r e e  e l e c t r o n  a t  r e s t  t h r o u g h  a n  a n g l e  o f

60” .  The  wave length  changes  by  15%.  What  i s  the  inc ident  wave length?

A n s w e r :  0 . 0 4 8 6  A n g s t r o m .

1 5 .  C o m p u t e  t h e  w a v e l e n g t h  s h i f t  f o r  p h o t o n s  b a c k s c a t t e r e d  (0 =  1 8 0 ” )  f r o m  f r e e

pro tons .

Answer: 2 . 6 5  x  lo-’  A n g s t r o m s .

1 6 .  S h o w  t h a t  w h e n  a  p h o t o n  i s  s c a t t e r e d  b y  a  f r e e  e l e c t r o n  a t  r e s t ,  t h e  p r o d u c t

of  the  in i t ia l  f requency and e lect ron  res t  mass  d iv ided by  the  product  o f  the  f ina l

f r e q u e n c y  a n d  f i n a l  e l e c t r o n  m a s s  i s  1  - v,‘c  c o s  @,  w h e r e  v i s  t h e  f i n a l  ele,:tron

speed and @  is the angle between the scattered electron and photon.
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17. A 150,000 eV  photon collides with a free electron at rest and scatters at 90”. What
is the final kinetic energy of the electron?
Answer: 34 ke’r’.

18. Derive an expression for the kinetic energy of the recoil electron which has just
been Compton scattered, in terms of the initial photon energy hu and the initial
and final wavelengths, X, .h’  of the photon.

A;\
A n s w e r :  J  =  /IV  - - - - -

A+ A h ’
where AX = X’  - X.

19. An electron traveling with speed Y = (‘L )c is hit hiead-on  by CI  photon of energy
hu  and is brought to o dead <stop.  There is a scattered photon which goes back
along the path of the incident photon. Calculate the energy hv of the initial and
hv’  of the final photons in MeV.
Answer: hu =  0.17MeV;  hv’  ==  0 . 5 1 1  MeV.

20. A positron of kinetic energy 1 MeV annihi lates with an electron at rest.  I f  the
resulting two photons have equal energies find the angle between their momenta.
Answer: 90.6”.

21. A 2 MeV photon creates an el’ectron-positron  pair. If the resulting electron has a
kinetic energy of !/4 MeV,  what is the kinetic energy of the positron?
Answer : 0.728 MeV.

22. In the hydrogen atom the light given off when an electron goes from one energy
state to another is not quite monochromatic. Estimate the wavelength spread in
light given off at close to 6563 Angstroms using the uncertainty principle, if it
takes around lo-*  seconds for such a transition between energy states to take
place.
Answer: 0.001.4  Angstrom.

23. I Suppose that the position of an object is to be
measured by means of scatter ing single
photons from it and observing the photons
through a microscope. The radius of the obiec-
tive lens subtends B at the object. Show that
due to the scattering  of a photon with momen-
tum hu/c, the Iuncertainty  in momentum of the
object is of order Ap = (hv sin /3)/c.  Show
that in a plane perpendicular to the lens axis,
the distance between field maxima for the scat-
tered photon can be OS high CIS  Ax = X/sin 8.
This  can be tmoken  as the error in posit ion
measurement of the obiect. Find AxAp.



6 matter waves

I l t has already been seen how in some situations electromagnetic f ield quanta
may have part ic le- l ike attr ibutes: They carry energy in discrete amounts IE  =
hu,  and are emitted and absorbed by matter as though they were part icles.
When travel ing through a s l i t  system, however,  they can st i l l  behave l ike waves,
in the sense that the probabi l i ty that a photon wi l l  be found at some angle 0

from its original direction is proportional to the classical ly calculated diffraction
intensity pattern.

Another remarkable fact of nature is that part icles such as electrons, neutrons
and others can also display wave- l ike character under appropr iate exper imental
condit ions. S ince experimental ly i t  is  found that atoms emit l ight at only discrete
frequencies, just as a stretsched  string only emits sound waves at a discrete se?  of
frequencies,  i t  might be expected that a wavel ike character of part icles would
provide the key to an understanding of atomic spectra. Just as the discrete fre-
quencies of a stretched str ing are due to standing ‘waves on the str ing, so the

discrete frequencies of atomic spectra could be due to standing waves within
the atoms.

The wavel ike propert ies of part icles were postulated by Louis de Brogl ie in
1924. He was led to this discovery when he noted certain similarities in the prop-
ert ies of part icles and waves, under Lorentz transformations. We shal l  take up
the fundamental study of these waves-de Brogl ie waves- in this  chapter.  De
Broglie assumed that, associated with a particle of speed V, was a wave having
some phase speed not equal to c. This phase speed w is related to V by a silnple
equat ion,  which we shal l  der ive below. That a pha!je  speed can be associated
with a particle in a consistent way depends on some special features of the rela-
t iv ist ic Lorentz transformations. Let us begin by examining the transformation
propert ies of plane waves of any kind under Lorentz t ransformations between
inertial frames.

6.1 PHASE OF A PLANE WAVE

A plane wave may be conveniently described in terms of its propagation vector k
and angular f requency, ~1  =  27rv. I f  the wavelength in the inert ia l  rest  system R
is X, then the propagation vector i s  def ined as a vector of magnitude 2r/X,
point ing in the direct ion of propagation of the wave. The propagation vector

far a plane wave is thus normal to the wave fronts.

136
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For  a wave propagat ing along the pos i t ive x clxis,  one possible s inusoidal
like wave form has tile wcrve  amplitude, or wave function,

* = Aec!xp[;(zp - 2f)]
where A is CI  constant and u =  w/27r  is  the frequency. This wovefunction is  more
simply expressed in terms of the angular frequency w and the  wavenumber  k  =

1 k /:

$,  = &“‘”  - Wt) (6.2)

The term kx can be written in vector form, since in this case, k is parallel to the
x axis. Thus, if r is the position vecior  of some point in space, then

kx = k,x  = k,x  +  k,y + k,z  = k.  r

because k, := k, = 0. The wavefunction in terms of k . r is

(6.3)

(6.4)

S ince the wavefunct ion i s  now wriitten  in terms of ve’ctors,  Equation (6.4) gives
the wavefunction no matter what the direct ion of propagation is .  For example,
i f  the wave were propagating in ,the  x-y plane at an angle of  0 re lat ive to the
x axis, then the x and y components of k would be

k, = k  cos I), k, = k sin H (6.5)

S o ,  i n  t e r m s  o f  k  a n d  0, k  r  := k x  c o s  0 +  k y  s i n  8, a n d  t h e  w a v e f u n c t i o n
would be A exp [i(kx  cos  0 + ky siln 0 - w t ) ] .

The function k. r -.  wt  i s  cal led the phase of the wave; that i s ,  the phase is
the coefficient of i in the exponent of the wavefunction. If the wave amplitude has
a  t r i g o n o m e t r i c  f o r m  s u c h  a s  $ =  A  c o s  (k. r  - cot),  t h e n  t h e  p h a s e  i s  t h e
argument of the trigonometric function. Each time the phase of the wave changes
by 27r,  the wave amplitude goes through one complete cycle of oscillation. If we
fix our attention on a locus of points of constant phase, such crs

k. r  - wt  =  c o n s t a n t (6.6)

then, as the t ime increases, the posit ions r  which sat isfy this  equation move with

a velocity w, called tile phase velocity. These points of constant phase define a
wavefront, and hence the phase velocity is just the velocity with which the wave-
,fronts  propagate. The phase speed can be written in terms of k and w by us ing
,the  definit ions:

w = ux  =
2iTu.  x u-= -

27r k

This could also be obtained by differentiating Equation (6.6):

k.$=w (6.8)
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Since the velocity dr/df  for the wavefront is parallel to the direction of propaga-
t i o n ,  kw =  w.

example If, at a fixed point r, the amplitude is observed for 12 periods of oscillation, what
is the net change in phase of the wave?

SOIU~;O~  T h e  p e r i o d  i s  T  =  27r/w;  o b s e r v i n g  f o r  a  t i m e  At =  1 2 T  =  24x/w  r e s u l t s  i n  a

change of phase A (k. r - wt)  = -wit  = -24x.

I f  N wavecrests  propagate past  a given point ,  th is  means that the phase has
changed by 27rN. Thus we arr ive at the main point of the discuss ion so far:  The
change in phase of the wave is proportional to, and hence is a measure of, the
number of wavecrests which pass a given point.

6.2 INVARIANCE OF THE PHASE OF A PLANE WAVE

A pure s ine or cosine wave in an inert ial  f rame R wi l l  also appear to be a pure
sine or cosine wave in another frame, i f  the ‘wave  amplitude is the solution of a
wave equat ion which i s  re lat iv is t ical ly  invar iant.  We wi l l  assume this  to be the
case. Then, by considering Figure 6.1, i t  is  easy to see that the phase of a  p lane

Figure 6.1. A plane wave observed in two inertial systems.

wave is o relativistic invariant; that is, it has the same numerical value at corre-
sponding physical points in al l  inert ial f rames. Zeros of the amplitude in F!  wi l l
appear to be zeros of the ampl i tude in G, and silmilarly for the maxima and

minima. So for every wavefront in R,  there wi l l  be a wavefront in G. For  ex-
ample, suppose the wavefront of zero phase passes the or igins 0 and 0’ in F ig-
ure 6.1 at the instant 0 and 0’ coincide. I f  this  wavefront is  observed at some
later t ime at posit ion P’(r’,t’)  in G, which coincides with P(r ,  t) in R,  then
it  wi l l  st i l l  have zero phase. The same holds for every other plane of constant
phase,  at  any point  in space and t ime. Thus,  the phases of  the plane wave as

observed in the two inert ial  f rames are equal,  and the phase is  a relat iv ist ic in-
var iant.  This  invar iance wi l l  a l low us to der ive some interest ing things about the

transformation properties of k and W .



6.3 Transformation eqoofi0n.s  for wavevector and frequency 139

I f  t = t’  = 0 when the or igins coincide, and the phase in G is  k’ . r’ - w’f’,
the phase in R is k. r - wt. So in mathematical form tile invariance of the phase
can be written as:

k’ ’ r’ -- w’t’ = k. r - wt (6.9)

This  equation ref lects the fact that a wavefront,  such OS  a maximum of the
wave amplitude, has physical reality, and all observers, can agree on the number
of wavecrests which pass by a given physical point. Hence, they can agree on the
value of the phase.

~3 TRANSFORMATION EQUATIONS FOR WAVEVECTOR AND
FREQUENCY

Use of the invar iance property,  Equation (6.9),  allows  us to obtain the trans-
formation equations for k’ and w’ in terms of k and w. We first write out the in-
var iance equation in more detai l ,  us ing components of k: k, ,  k , ,  k , ,  and of
k’: k:  ,ki, k: We get

k:x’  +  k;y’  +  k;z’ - - w’t’ = k,x + k,y + k,z - wt (6.10)

This equation is valid for ail  values of the two sets of space and time coordinates
which refer to the same physical point and which are, therefore, connected by the
L o r e n t z  tramsformations. I f  w e  e x p r e s s  x,y,z  a n d  t i n  t e r m s  o f  x’,y’,z’  a n d
if’, then,  s ince R moves with speed v re lat ive to G, we have the Lorentz  trans-
.formations,  Equations (3.16) and (3.18):

1
x  =  --=  ( x ’  +  v i ’ ) ,

fi~-i-,y

Y = Y’

z = z’

(6.1 1)

ljubstitution of these values of x,y,z,  t into Equation (6.10) gives the result,

k:x’  +  k;y’ +  kjz’  - ~‘t’ =: k,

- -__~ --~

( x ’  +  v t ’ )  +  k,y’ +  k,z’

(6:12)

This  last  equation must now be .true for al l  values of x’,y’,z’  and t’ .  For  ex-
ample, i f  we consider an observation on the z axis when the or igins coincide so
t h a t x ’  =  y ’ =  f’ = 0 wi th z’  f 0, the equation reduces to

k:z’ = k,z’ (6.13)

After cancellation of I’,  we obtain

k; =  k, (6.14)
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S imi lar ly,  by taking x’ = z’ =  t’ = 0,  y’ # 0,  we can show that

k; = k, (6.15)

To obtain k: in terms,  of k, and w, we set y’ = z’ = 1’ = 0 with x’ un-
equal to zero. We get

k:x’  =
k,x’ wvx’/c2

VT-  v2/c’- -  - TTT
(6.16)

(6.17)

Lastly, using x’  = y’ = z’ = 0 and t ’  # 0, we can f ind w’ in terms of (r: and
k,. The result is

w’ = +-&=Y~ (w - vkx)

Collecting the four results, we have the transformation equations:

k: =

116.18)

(6.19)

k; = k, (6.20)

k: = k, (6.21)

(6.22)

These results  were obtained s imply by showing that the phase of any ‘Plane
wave, going with any phase speed, has the same numerical  value in ail  inert ial
frames. In other words, the phase (k .  r - wt) i s  a relat iv ist ic invar iant.  Com-
bining this with the Lorentz transformations, we were led directly to the trans-
formation equations for k and w, by equating coeff icients of x’,  y’,  z’  and t’
on both sides of the equation.

If  we considered these equations in the l imit ing case of phase speed w =
w/k = c, the speed of l ight,  they would lead back to the equations for the

Doppler effect for light found in Chapter 4.
Equations (6.19) throlJgh (6.22) resemble very closely the relativist ic ,trans-

formation laws for momentum and energy of a particle, which are:

I
Px =

P:  = Pr

P:  = P.
(6.23)

This is a very suggestive comparison.
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.4  PHASE SPEED OF DE BROGUE WAVES

With the transformations in Equations (6.19)-(6.22),  ‘we  can examine in detai l
the hypothesis of de Brogl ie, namely that with each part icle there can be asso-
ciated a wave which travels along with the particle as the particle moves, with
some phase speed w which may be different from the particle speed V. The trans-
formation equations suggest that the wave vector k and angular f requency w
might be closely related to the momentum p and energy E of the part icle. In
fact, we will see that if particles have waves  associated with them, the only pos-
sible relations must be of the form

p=hk  E=%w

where%  is a constant.
Let us first derive the relation between phase speed and particle speed. In the

above transformation ‘equations,  w’/c2  is analogous to El/c?,  and k’ is  analo-
gous to p’.  I t  was proved eor l ier  that c~(E/c~)~  - p was a re lat iv i s t ic invar i -
ant .  In  the same way,  we could show that c’(w/c’)’  - k2  is a relat iv ist ic in-
var iant or that i t  has the same value in al l  inert ial  f rames. Mathematical ly,  th is
ceon  be expressed as:

(6.24)

where C is  a constant independent of the inert ial  f rame in which w and k are

measured.
In the special case of light, which consists of zero re:;t  mass particles, the value

of the invar iant,  w2/c2  - k’, i s  equal  to zero.  Th is  suggests  that when a wove
of angular  f requency w and wave number k i s  associated with a mater ial
part ic le,  then the value of  the invar iant w2/c  - k2  might be related to the
particle’s mass.

De Brogl ie’s hypothesis was that, associated with OI  part icle having speed V,
was  a  wove hav ing  ph’ose  speed w. He assumed that  the energy in  the wave
troveled  along with o group speed vg  =  dw/dk, which was ident ical  with the
p’orticle  speed V. The group speed vg  = dw/dk  can be calculated us ing the in-
var iant express ion in Equat ion (6.24),  by differentiatling  with respect to k. The
result is

2w/c 2 dw- - 2k = 0
d k

(6.25)

Solving for the group speed, we get

d w 2kvg  =:--=c  -
dk W

Since the phase speed is w = w/k, the group speed in terms of w is

C2

vg  ==  w
(6.27)
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If we identify the particle speed V with the group speed, then

“!3
=“A

w
(6.28)

o r

W V  =  c2 (6.29)

This relation, W V = ci, i s  form invar iant,  s ince i ts  der ivat ion was based on a
relat iv ist ic invar iant.  Thus,  i f  in another inert ial  system G the part icle speed is
V’, then upon identify ing the group speed dw’/dk’ in G with the part icle speed
V’, one would obtain,  by an analogous argument,  w’V’ =  c’.

Since part icle speeds must be less than c, in general the phase speed wi l l  be
greater than c. Indeed, for part icles whose velocit ies approach zero, the corre-
sponding phase speed must approach inf inity.  Although the phase speed is
greater than the speed of l ight,  this  does not contradict special relat iv ity,  be-

cause the energy travels along with the particle speed V, which is identical with
the group speed. The individual wave crests travel with the phase speed, whereas
the energy travels with the speed of the envelope of the waves, the group speed.

To i l lustrate the relat ion between phase and group speeds, imagine the
analogy, as in F igure 6.2,  of a plane l ight wave travel ing with speed c incident

Figure 6.2. A plane wave hitting a screen obliquely.

upon a screen at an angle i from the normal. The point of intersection of a wave-
front with the screen travels along the screen with a speed w = c/sin i. This speed
can approach inf in ity,  i i  i approaches 0.  However,  the energy t ravels  along the

screen only with the speed V = c sin i. Hence, in this example, W V = c’.
From Equation (6.29) a useful  relat ion between energy, momentum, wave-

length and f requency of a part ic le can be der ived. We know that w = w/k, E =

tllC2, and P  =  mV. By means of these three relations, we can el iminate w, ‘V  and
cz  in W V = c2.  The result is (w/k)(p/m)  = E,lm, or

w E-=-

k P
(6.30)
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1.5  PARTICLE INCIDENT ON I’NTERFACE

The discussion above had to do with arbitrary particles (waves) traveling through
free space, and we have established that for a wave of phase speed w to be as-

sociated with a part icle of speed V, i t  is  necessary that WV = c2. Now we wish to
show that relat ions of the form p = hk and E =  hw,  where A is a constant, are

valid.
We can obtain more informiation  about p and k by consider ing a s i tuat ion in

which the particle (wave) is ncident  on a piece of material which acts like a re-
fractive medium for the wave. This refraction simply corresponds to a (change in
phase speed. As far as the oarticle  is concerned, the refraction takes place be-
cause the new region has a different constant potential  energy U than the po-
tential energy in free space. (\Ne use IJ for potential energy here, since V is used
for particle speed.) For electrons, for example, this s ituation could be real ized
approximately by letting an electron pass into a metal. Let’s first treat the situa-
t ion assuming we are deal ing with part icles. In F igwre 6.3, p, is  the incident

Potential
v/o

Figure 6.3. A  particle  pass ing f rom one region of  constant  potent ia l  energy in to another

of  d i f fe rent  potent ia l  energy.

momentum at an angle of i f rom the normal to the surface. The quantity p2 i s

the momentum after the part icle passes into the region of constant potential
energy, U # 0, at an angle r from the normal. The only force acting on the
particle is one acting normal  to the surface, as the part icle passes the surface.
There is no force acting pclrallel  to the surface, so the components of p, and p2
parallel to the surface are equal. In other words, the components of momentum,
in the directions along which no force acts, are conserved. In terms of i and r ,
the angles of inciclence  and refract ion, this  can be wr itten mathematical ly as

pj  sin i = pz  sin r (6.31)

o r

P2 sin i-=  _ _
Pl s in  r

( 6 . 3 2 )
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6.6 WAVE RELATION AT INTERFACE

Next,  let us t reat the s i tuat ion assuming we are deal ing with waves. In F ig-
ure 6.4,  OA is  a wavefront in f ree space, and A travels with speed w,,  f rom A

J

i

Figure 6.4. A wave passing from one medium into another, where the phase speed is
different, changes direction tly Huyghen’s principle.

to 6 in t ime Lt. Angles OAB and OCB are r ight angles, and side OB  is common
to both tr iangles. Thus, s ince angle A06  = i and angle OBC = r, we h a v e
w,At =  O B  s i n  r a n d  w,Lt  =  OB  s i n  i. T h i s  l a t t e r  s e t  o f  e q u a t i o n s  c a n
be written, by dividing out At and 06,  as

w2 sin I T-= -_ ((5.33)
Wl sin i

I f  th is  result  i s  appl ied to l ight waves, i t  i s  just  Snel l ’s  law. The der ivat ion is  the

same as that used in deriving Snell’s law.
Combining the results of Equations (6.32) and (6.33),  we can write

P2 sin I ;-  = -_ (16.34)
Pl s i n  I

w2 sin r- _ - - (6.35)
WI sin i

and therefore,

PIWl  = PZWZ (15.36)

Thus,  as the part ic le (wave) t ravels  into the region of nonzero  potent ial ,  the
product pw remains constant. In terms of k and w,  w = wk, so the product pa/k
remains constant. Now if  a l inear boundary condit ion is  assumed, such as as-

suming that the wave amplitude or its derivative is continuous across the surface,



6.7 De Broglie  relation 145

the frequencies w, and wz  must be equal;  otherwise, the amplitudes would get
out of phase and the boundary condit ion could not be satisf ied for al l  t ime. Al-
though we do not yet know all the physical laws obeyed by de Broglie waves, it
wi l l  be seen later that l inear boundary condit ions do exist  and, therefore, the
frequency remains thle  same. Hence, s ince pw/k does not change in crossing the
surface, the quantity p/k remains the same, or, in terms of p,,p?,  k, and kZ,

PI P2-=-
k, k,

6.7 DE BROGUE  RELATION

As the electron moves across  an interface between two media, the rat io p/k re-
mains constant. I f  i t  tllen  mo,fed  into a third medium, p/k would st i l l  remain un-
changed. Thus,  no matter what the speed of the part icle is ,  p/k wil l  remain
unchanged. Since p/k  remains unchanged, we can write:

L

__-
p =hk de Broglie Relation

I
(6.37)

-

whereh  (read h bar) is a coristant  independent of speed. This is precisely the re-
lat ion assumed by de Broglise.  Since a general inert ial frame of reference was
used, this result is independxent  of the frame of reference and should be rela-
t iv ist ical ly invar iant.  The theoret ical discuss ion does not tel l  whether A depends
on the kind of particle or is a constant independent of particle type. ThIe  answer
to this question must be obtained by performing experiments on various particles.
Experiments show that the constant is independent of particle type, and1 thus this

J? is the same as that discussed in connection with photons, with

(6.38)

a universal constant. CJne  such experiment is discussed in the next section.
If  de Brogi ie waves carry momentum p = %k, we can der ive a corresponding

relation between energy and f,requency.  It was shown that in free space, w/k  =
E/p [see Equation (6.:30)].  Thus, s ince p = hk,

I-

___~

E = hw de Broglie relation
1

(6.39)

In terms of the frequency, u =: w/2~,  the energy can be written as:

E =  21rtiu =  hu (6.40)

If  E =  kw and p  =: h  k in the inert ial system R, then from the comp’arison  of
the transformation equations for energy and momentum with the transformations
for k and w in Equations (6.19) through (6.22),  the relat ion between E’ and W’

in G must be

E ’  =  $0’ (6.41)
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and the relation between p’ and k’ must be

p ’  =  I=,k’ (6.42)

The de Brogl ie relat ions are thus relat iv ist ical ly form-invariant.
Finally, if E = Iiw and P  = Ak, then the invariant,

E2- - P2 = m2c2
C2

0 (6.43)

can be used to calculate the unknown constant C in Equation (6.24). The result is

From Equation (6.38),  we see that for electrons the constant m,c/%  is 27r divided
by the Compton wavelength, h/m,c.

To summarize briefly the logical arguments leading to de Broglie’s relations,
if a particle has wave-like properties so that a wave of phase speed w is associ-
ated with the part icle in Free space, then WV = c’,,  where V is the particle or
group speed. If these waves carry energy and momentum, with E = trw  and p =
.fik, then the transformation laws for k and (I) are equivalent to those for  p and
E. So, instead of two different sets of transformation equations, there is only one
set.  Further,  al l  these relat ions are relat iv ist ical ly form-invar iant,  provided the
constanth  has the same value in every other inertial frame.

6 . 8  E X P E R I M E N T A L  D E T E R M I N A T I O N  OFti

De Broglie predicted that electrons would behave like waves with a wavelength
X = h/p. When these waves enter a crystal  with regular latt ice spacing, they

should scatter and show interference, much as l ight does on a grating. These
matter waves were demonstrated in 1927 by Davisson  and Germer,  who ob-
served diffraction peaks in a beam of electrons scattered from a Nickel crystal.
The experimental arrangement is  diagramed in Figure 6.5. The hot cathode F
emits electrons which are accelerated through the electron gun, which str ike a

crystal of Ni and are diffracted back at an angle 4 into a detector. Knowing the
accelerating potential V, one may compute the electrons’ momentum, and know-
ing c$ and the lattice spacing of Ni, one may compute the wavelength X, or k =
2-n/X.  Hence, one can measure the value of h for ellectrons.  The posit ions of the
diff ract ion maxima are determined by construct ive interference between waves
scattered from different sets of paral lel planes within the crystal. This is cal led
Bragg diffraction.

In the next  few paragl*aphs,  we shal l  deri,ve  the relat ion between the diff rac-
t ion angle $ and the wavelength X, of the incident electrons. Anyone not inter-

ested in the details of this derivation should sk.ip  to the result in Equation (6.48).
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1.
.‘-. To golvanometer

Nickel

crystal

Figure 6.5. The exper imental  avangement  in  the e lect ron d i f f ract ion exper iments  o f

Dsavisson  and Germer .

? BRAGG EQUATION

Let the wavelength of the particles be X, outside the crystal, and let the wave-
length inside the crystal be X2.  The wavelength is, in general, different inside the
crystal, because the electron hcls different kinetic energy inside. The electrons are
incident normally on the crystal surface and pass straight into the crystall.  They

thlen  undergo Bragg diffraction from some set of parallel planes of atoms inside
the crystal (See Figure 6.6). Let 0 be the angle of incidence between the incoming

. . . . . . . . .

Figure 6.6. Incident  and reflecte,d  e lect ron beams near  the sur face of  a n ickel  crys ta l  in

the Davisson-Germer exper iment .

beam and the normal to some set of paral lel planes. We wil l  f i rst f ind the Bragg
equation for diffraction maxima. Figure 6.7 is an enlarged picture of a port ion of
two atomic planes, P, and P,.  Lines A and B are two part ic le wave rays which

reflect part ial ly at 0, on plane P,  and at 0, on plane P,, respectively. For
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Figure 6.7. Beams incident on different partially reflecting parallel planes interfere due
to different path lengths.

the two ref lected rays to add construct ively,  the path dif ference, QO,S,  of the
rays must be an integral number n t imes the wavelength X,.  From triangle
O2  0, Q, the distance 001  is d cos 8. The path difference is then twice this dis-
tance, or

QO,S  =  2 d  c o s  0 (6.44)

Then the Bragg condit ion is 2d cos 0 =  nX?,  n  =: 1,2,.  .  .

The most intense diffraction peaks wil l  occur due to reflections from planes
rich in atoms. It is  found that the dominant diffraction comes from the planes
indicated in the diagram of Figure 6.6, where the dots indicate l ines normal to
the paper containing nickel atoms. The distance D between planes of densest
packing in the diagram is D = 2.15 Angstroms for nickel. The spacing between
diffracting planes can be expressed in terms of the distance D between atoms in
the crystal, For the two parallel planes in the diagram, in terms of 0,

d  =  Dsin6’ (6.45)

Therefore, for Bragg diffraction, in terms of D and the angle 28  (2 cos 0 sin 0 =
sin 28),

I-IX,  = D sin 28 (6.46)

6.10 DIFFRACTION OF ELECTRONS

The diffracted electrons come back toward the crystal surface; their anglse of in-
cidence on the surface ils i =  20, and their angle of refraction is 4, the angle of
observat ion,  as shown In Figure 6.8. From Equation (6.33),  there wi l l  be CI  w a v e -
length change when the electrons pass back into the free-space region. Since the
frequency does not change, from Snell’s law,

A, XIV Wl sin 4-c--z -=-
x2 bu  W ? sin 28

(6.47)
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Fllgure  6 . 8 . When the electron wove exi t s  f rom the crys ta l ,  Its  angle of  incidence is  26’

and the angle of refraction is 6, the angle of observation.

Eliminating A, and 0 from equations (6.46) and (6.47),  we obtain

nX,  = D sin4 (6.48)

Equation (6.48) can be usecl ‘to exper imental ly determine the wavelength. The
quantity A, is the wavelength outside the crystal, i.e. it is the wavelength of the
incident electrons. The angle #J is the angle of observation of the diffracted elec-
tron beam and n, which is the order of the diffraction peak, will be equal to 1 in
this case.

In F igure 6.9 are the experimental results.  The intensity is  plotted for var ious
accelerating voltages V (in volts) in polar coordinates. It is seen that a diffraction

4 o v 4 4 v 4 8 V 54v 6 0 V 6 4 V 68V

Filgure  6 . 9 . Curves,  p lot ted in  polar  coordinates ,  showing the in tens i ty  of  the scattered

beam at different angles of scattering.

maximum occurs when V = 54 vo l t s  and $J  = 50”. These results may be used to
calculate the constant,  27rIi.  The latt ice spacing D of nickel is known from x-ray
diffraction analysis to be 2.15 Angstroms. Taking n = 1 in Equation (6.48) for
the first order maximum, we find for the wavelength:

A, := 1.65 x lo-”  meters (6.49)
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Next we calculate the momentum, knowing that the accelerat ing potent ial  was
54 V. So the electron’s energy was 54 eV,  which is much smaller than the rest

energy. Hence, we can use the nonrelativistic kinetic energy change to find the
momentum:

p’-  = eV,  or
2m0

p = GoeV

Using e = 1.6 x lo-l9  coul,  m,, = 9.1 1 X:  1 O-3’ kg, the result is:

p  =  3 . 9 7  x 10~m24 k g  m/set

The numerical value of 2~h  for this case is obtained from p = hk  =
Xp  =  2xh,  and we f ind:

2ah  =  ( 3 . 9 7  x  lo-“)  x  ( 1 . 6 5  x lo-“)  i-set

=  6 . 5 5  x  10-34i-sec

(6.50)

(6.5 1)

2rli/X  o r

(6.52)

Within experimental accuracy this value of 27rfi is equal to the value of 2x5  we
would have obtained i f  we were deal ing with photons where Xp = h, Planck’s
constant.  In their  or iginal experiment,  Dovisson and Germer observed about 30

diff raction peaks under varying condit ions of detector or ientation and incident
electron energy; these experiments, as wel l  OS  others using neutrons, protons,
electrons, etc.,  show the same numerical value for 27rA  as we obtaineol here.
Thus,  nature appears to be such that instead of several  constants relat ing
momentum and wavelength, there is  only one universal  constant,  P lanck’s
constant h. Hence, experimentally, in terms of Planck’s constant,

i
2rh =  h Planck’s constant (6.53)

--___

In fact, usually%  is defined as an abbreviation for the symbol h/2r.
In terms of h, the wt3velength  of an electron can be computed from the de

Broglie relation, X = h/p, just  as for a photon.

exomp/e  1. A particle has III mass of 1 kg and a speed of 30 m/set, about l ike a softbal l .
What is the wavelength of the de Broglie wave associated with the particle?

dJiiOll T h e  m o m e n t u m  i s  mv =  3 0  kg-m/set. T h e n  t h e  w a v e l e n g t h ,  u s i n g  h  =
6 . 6 3  x 1Om34  i-set, i s

X =  % =  2 . 6 1  x  10e3”  m e t e r s

A wavelength as smal l  as 1O-34 meters could never be measured in a direct ex-
periment because the smallest diff raction gratings avai lable are crystals,  which
have a grating space of about lo-”  meters.

example 2. Neutrons have a mass of 1.675 x 1O.-27 kg. S low neutrons coming out of a

nuclear reactor have kinetic energies of about T = 0.0466 eV.  What is the wave-
length of such a thermal neutron?



Figure 6.10. Superposition of two photographs of diffraction patterns produced by beoms of particles  passing through polycrystolline oluminum.
The upper half of the photograph is the pattern produced by diffraction of a monoenergetic electron beam; the lower half is the pattern produced
by x rays. The appearance of diffraction rings of similar radius is a direct demonstration of the wave nature of electrons. The slight discrepancies in
the radii of the rings results from the use of electrons and x rays of different wavelengths.
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so/ution  T h e  n o n r e l a t i v i s t i c  e x p r e s s i o n  f o r  k i n e t i c  e n e r g y  m a y  b e  u s e d ,  h e n c e  p  =
2/2moT =  5 . 0 0 x 1 O-“’  i-sec.  Then

x =  + =  1.33A

This wavelength is  comparable to crystal  atom spacings, and could therefore be
observed.

6.11 UNCERTAINTY PRINCIPLE FOR PARTICLES

We have seen how particles of energy E and momentum p have associated with
them waves of f requency v and wavelength X.  Hence, one could measure the
energy of a particle by measuring u, or one could measure p by measuring X.
When we discussed l ight waves ear l ier ,  we saw that in a s ingle measurelnent
which lasted over a t ime At, an inevi table uncertainty Sv  in the measured fre-
quency would be present.  This  uncertainty was such that,  to within an order of
magnitude, Avat  N 1. S ince E = hv, in terms of the uncertainty of energy,

AE, the product of AE and at  must be AEat  N h. Similarly, for a measure-
ment of momentum in a single measurement which takes place over a spatial in-
terval ilx,  the uncertainty in momentum LIP  for a light wave is given by

(15.54)

These considerat ions were based pr incipal ly on the wave nature of l ight and
did not depend on the wave speed. In a s imi lar  way, part ic les have de Brogl ie

waves associated with them, with energy related to f requency, and momentum
related to wavelength in just the same way as for light. So we would expect an
uncertainty principle for matter waves similar to that for light.

6.12 UNCERTAINTY AND SIINGLE-SLIT  DIFFRACTION

Due to their  wavel ike nature, part icles can undergo diff raction. To i l lustrate the
uncertainty principle for part icles, imagine, for example, a beam of part icles

represented by a plane wave propagating in the +x direction, as in Figure 6.1  1.

-+i

--X

Figure 6.1 1. A beam of particles traveling  in the x direction is represented by a plane
wave propagating in the x direction.
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In  th is  p lane wave, the ampl i tude or wavefunct ion,  by def in i t ion,  does not de-
pend on y or z, so tile particles  in the wave all have y components of momenta
equal to zero. However, since the wavefunction does not depend on y, one knows
nothing about the y coordinates of the particles. There is just as likely to be a par-
t icle at y = + 1 lm as at y =: Om. So i f  the uncertainty in the y positilon  of the

particle is Ay, Ay =: r . The y momentum, however, is  definitely known: pY  =
0, so the uncertainty in y momentum is ApY  = 0.

Let us imagine making a measurement of y posit ion. This we could do by put-
ting a slit of width a in the path of the beam of particles, as in Figure 6.12. Then

i

Figure 6.12. A slit placed in the path of the particle beom causes the particles passing
through the slit to have their y positions measured to an accuracy of Ay z the slit width.

only those part icles wi l l  get through whose y posit ions are somewhere inside the

slit. Thus, all particles passing through have had their y coordinates measured to
within an accuracy equal to a, the width of the s l i t .  For these part icles,  the un-
certainty Ay is then roughly,

Ay e a (6.55)

On passing through the s l i t ,  the part icles wi l l  be diff racted due to their
wavel ike character.  Exper imental ly,  i t  i s  found that upon us ing a beam of many
electrons, a s ingle-s l i t  diffraction peak is observed which has the same form as
that observed for l ight.  Mor#t  of the part icles wi l l  go into the central diffraction
peak as illustrated in Figure tj.13.  Thus, in order to account for the particles going

other than in the straightforward direction, we must assume that the part icles

wi l l  have acquired some indefinite amount of y momentum in passing through
the s l i t .  To make a rough est i rnate of the uncertainty in this momentum, Apv,  let
us assume that al l  the part icles go into the central diffraction peak. Then the
maximum magnitude of the momentum pr, such that a part icle goes into this
region, is  roughly equal to the uncertainty Apr  in y momentum. From the dia-
gram, if p =  h/X, and /I  is the posit ion of the first diffraction minimum, it fol-
lows that, in terms of 0,

and so,

h sin 19
Apv”  x (6.57)
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Figure 6.113. A  beam of part icles passing through a s l i t  g ives r i se to a s ingle-s l i t  d i f -

fraction pattern.

But from the study of s ingle-sl i t  diffraction, it  is  known that the f i rst diffrac:tion
minimum occurs at

‘Vi X = a sin 19  or xa =  - - .
2 sin ti

(6.58)

Thus, combining this result with Equation (6.57),  we find that

Since a is  the uncertainty in y posit ion, a = Ay, we obtain the fol lowing rough
uncertainty relat ion:

which is of the order of magnitude of Ii.
In this hypothetical measurement of y posit ion of a part icle, an uncertainty in

y momentum is introduced by the measurement process. More r igorous calcula-
tions show that the correci  uncertainty relation is

In general, it can be shown that there is one such relation for each coordinate
of a part icle, so we also have for the uncertaint ies,  LIP.  and AZ,  the relation

ap,  nz  ;> %  A, and similarly for Apx  and LIX.  As in the uncertainty pr inciple
for l ight, the uncertaintier,,  Ax,  Ap,, etc. are defined to be the root mean square
deviations from the mean. In our discussion above we used only order of mogni-
tude values for  ay  and Lip,.  Analyses of other kinds of measurements always
show that there are uncertaint ies in momentum and posit ion connected by the
above relations.
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13 UNCERTAINTY IN BALANCIING  AN OBJECT

To i l lustrate one effeci  of the uncertainty principle, consider the problem of bal-
ancing an icepick  on its  point.  Let the icepick  be an itdeal  one cons is t ing  o f  a

single particle of mass m concentrated at the position of the center of mass of the
icepick,  with i ts  point a distance ! away. (Reasonable values for  m alnd  C  are

,m  = 100 g, and 4 = 20 cm.) C:lassically,  to balance the icepick  one has to place
,the  part icle exactly above the point  of contact of the point with the tabletop,
and one also has to place the part icle at rest.  I f  the part icle is  not at rest,  the
icepick  wi l l  fal l  over because of the init ial  velocity.  I f  the part icle is  not exact ly
over the point of contact,  gravity wi l l  make i t  fal l  over.  This  means that to bal-
ance an icepick,  both the position and momentum of the particle must be exactly
determined. However,  according to the uncertainty pr inciple, both the posit ion
and the momentum cannot be determined precisely at the same t ime, so i f  the
position of the particle is such that the particle lies exactly over the point, then
Ap z h/2Ax E ti/O.  The uncertainty in momentum of the part icle wi l l  become

very large; and hence the mc~mentum  wil l  l ikely be large, so the icepick  wil l  fal l
over.  I f  the part icle is  exactly at rest,  then the posit ion of the part icle is  unde-
termined, so gravity wi l l  make the icepick  fal l  over. (See Figure 6.14.) Thus, it  is

.\⌧  0 l I) \x\P,zh
IP,  0 il

( b a l a n c e )  ”

i 7

“.. (falls)

/

w

- - -X

Figure 6.14. The uncertainty prlnmciple  implies that an icepick cannot be balanced on its

point, for both position and momentum of the center of moss would then have to be

clefinitely  known, which contradicis  the uncertainty principle.

impossible to balance an icepick  on its  point!  I t  i s  not too hard to c:alculate
roughly the average time one c:an expect to keep the icepick  on its poinit  if one
starts with the smallest possibl:z  AxAp;  it is approximately

or about 5 seconds with the reasonable choice of 4 and m given above  (see

Problem 6.15).

4 ENERGY-TIME UNCEiRTAINTY

I t  i s  also ordinari ly true for part icles, as wel l  as for l ight waves, that AEAt ‘u  ft.

One way to interpret this  i s  as fol lows. Suppose a wavetrain, i l lustrated in F igure
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-- -__ Af--------

Figure 6.15. Amplitude of 01  wove train passing on observer in time At.

6.15, passes the position of the observer, and that the wave train lasts for a time
At. Then it is  impossible to associate a def in i te f requency with that wave t rain,
since it lasts only for o bite  time. The train can be thought of as a superposition

of woves of many frequencies and the spread in frequencies AU is roughly given
by AvAt  N 1/27r. Since the corresponding spread in energies is SE = hAu,
then to within an order of magnitude, AEAt  ‘v h. For example, nuclear inter-
actions may  sometimes be thought of OS due to an exchange of 7r  mesons. If the
mesons exist only for a t ime 10mz3 set, then for AEAt  zz  ii/2,  the uncertainty
i n  t h e i r  e n e r g y  w o u l d  b e  r o u g h l y  5  x  lo-”  ioules, o r  i n  e l e c t r o n  v o l t s ,
3 x 10’eV.

example If a  hydrogen atom with a diameter of about lo-”  m moves at about lo3 m/set,
considered as a wave train, it takes about lo-l3 set  to pass by an observer;  then
the spread in f requencies of the wave tram is  in order of magnitude about lOI
set -‘.  The uncertainty in energy is roughly,

ti 1 o-34__  = ~ zz
1 o-l3 1 o-l3

1 Oe2’  joules

In electron volts,  this uncertainty in energy is  lo-“/l.6  x  lo-l9  = 0.006 eV.
This uncertainty may be compared to the average thermal energy of an atom in
a gas of hydrogen atoms at room temperature, around 293 K, which is ksl’, w i th
ka = 1.38 x 1O-23 j/K.  The uncertaint ies are about the same to within an order
of magnitude.

6.15 PROBABILITY INTERPIRETATION  OF WAVE FUNCTIONS

Since particles have waves associated with them, one might expect a wavefunc-
tion #to  exist which could be used to describe whatever quantity it is in o particle
which is  wavel ike. One should be able to descr ibe such phenomena as dif f rac-
t ion through a s l i t  in terms of this wave function. If  one performs a single s l i t
diff raction experiment with a  beam of electrons, in which the intensity of the

beam is so low that only one electron should go through the s l i t  system at a
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t ime, then the electrolls as they pass through seem to go randomly in var ious
directions. Thus, it appears that we cannot predict exactly where any one elec-
tron wi l l  go. However,  i t  i s  folJnd  experimental ly that after observing many elec-

trons,  the probabi l i ty with whi’ch  they go into some small range of directions is
just proportional to the calculated diffraction intensity for waves. For lighlt  waves,
the same thing happened; the diff raction intensity was  found experimental ly to
be proport ional to thle  probabil i ty of f inding a photon in the small  range of
angles. In that case, i f  $ is .the  wavefunct ion descr ib i r ig the l ight wave at the
screen, the intensity is proport ional to 1 rl/ / ‘.  I t  i s  thus natural  to assume that for
a part ic le there exists  a wavefunct ion # such that ( 4 , ’ is propo&onal  to the
probability of finding a particle near a point.

Thus,  one cannot predict the pos i t ion of  any one part ic le,  but with the wave

ampl i tude, $,  one can say that the squared magnitude 1 G(O)  ) ’ times some
range d6’  of the cont inuous var iable d  is  proport ional to the probabil i ty of f ind-
ing a part icle in the range of Ipositions  do. Therefore, I I / for part icles is  cal led a
,probabi/ity  amplitude. No better interpretation has ever been found for #.

Suppose we had a Idouble  ht  set up so that, as in Figure 6.16 at the observa-
t ion point P at  19,  the probabi l i ty amplitude for f inding a part icle is  $, when

I 1

I

----:'1---6-11  p,-~:;-~,-~----  ---- -- --...------

I

2

- I

Figure 6.16. Wavefunctions $,  and $2 from two sources add at P.

s l i t  1 only is  open, and #2 when s l i t  2 only is  open. When both s l i ts  are open, i t
i s  observed experimental ly that i f  the beam intensity is  high, so that there are
Inany  part icles incident on the s l i ts ,  then the usual double-s l i t  intensity pattern is
seen. I f  the beam intensity iz, so low that only one part icle at a t ime can go

through the s l i ts ,  then the individual part icles pass ing through go off  in var ious
directions.  However,  after ob,;erving  for a long t ime, i t  is  found that the prob-
abi l i ty with which they go into some range of directions dB i s  just proport ional
to the calculated diff ract ion intensity for waves. We may conclude that these
waves obey Huygen’s pr inciple, and that they obey the pr inciple of superposi-
t ion. Then to explain mathematical ly the double-s l i t  dif f ract ion pattern which is
actually observed when both slits are opened, the total probability amplitude at
P must be

$ = $1  + $2 (6.24)
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and the probabi l i ty for f inding a  part icle in d0  wil l  be, in terms of $1  and #?,
p r o p o r t i o n a l  t o  1 $1 +  $1  / ‘do.  I f w e  h a v e  a  wavefunct ion or  probabi l i ty
ampl i tude G(x)  which is  a function of the s ingle posit ion var iable x,  then the

wavefunction can be used to calculate the probability density, so that the prob-
abi l i ty of f inding a part icle in the range dx wi l l  he given by 1 IJ 1 ‘dx.  Sum-
marizing the properties of the wavefunction $ which describes the wavelike prop-
erties of (3 particle, we can say:

(1) The wavefunction b)(x) is called a probability amplitude because the obso-
lute magnitude squared of the wavefunct ion 1 #i(x)  / ‘,  t imes the differen-
t ial  dx, is  proport ional to the probabi l i ty of f inding a part icle within the
range of coordinates dx.

(2) The probabil i ty amplitude obeys the principle of superposit ion: e.g., i f

$1 (x) and $2(x)  are the wavefunctions when slit 1 only is open and when
sl i t  2 only is  open, respectively,  then when both s l i ts  are open, the wave-
f u n c t i o n  i s  t h e  s u m  $1 ( x )  +  $2(x),  a n d  t h e  p r o b a b i l i t y  o f  f i n d i n g  a

particle in dx is proportional to

I #I(X)  + b(x) I “dx

6.16 EIGENFUNCTIONS  OF ENERGY AND MOMENTUM OPERATORS

Since particles have wavelike character, in effect, it is possible for a particle to go
through both s l i ts of a double s l i t  system, and interfere with itself in doing so.
This is a  type of behavior which is  impossible to explain on the basis of s imple
mechanical laws of the type, F = dp/dt.  Therefore, we must f ind an equation
which describes the behavior of these probability waves. This equation should be
a wave equation of some kind, but in situations where ti can be considered to be

negligibly small, it shoulcl  predict the same results as ordinary mechanics based
on F = dp/dt.  We shall now discuss this wave equation.

There are a number of criteria that the wave equation must satisfy, which will

give us some clues as to what form the equation must have. For example, the
equation must be consistent with the previously discussed wave propert ies of
part icles moving through free space and passing into a refractive medium. Also,
i t  must agree with Newtonian mechanics in some l imit .  We wi l l  obtain the wave
equation by analogy wittl  the equations of motion of ordinary mechanics.

Let us f i rst  t ry to f ind o wavefunction # which corresponds to a beam of par-
t icles of exactly known momentum. This function wi l l  be cal led a momentum
eigenfunction, and the corresponding value of momentum wi l l  be callecl  the
momentum eigenvalue.  Thus, consider a wavefunction descr ibing a beam of
part ic les which are t ravel ing with exact ly known momentum in the pos i t ive x
direction. In this  hypothetical s i tuation, the uncertainty in x momentum is :zero;
so by the uncertainty pr inciple, the uncertainty Ax in the x posit ions of the par-
t icles is  inf inite. Hence, the part icles are spread out al l  along the x axis.  I f  there

are no spatial  boundary condit ions such as ref lecting wal ls ,  which could rnake
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some x coordinates Ipreferred  over others,  and i f  the part icle beam is prepared
so that it is of uniform interlslity,  then there should be a completely uniform dis-
tribution of particles along the x axis. Thus, the particles must be distributed with
equal  probabi l i ty  everywhere along the x axis ,  and the square of the wave-
function, / #(x,t)  1 2, must t’e  a constant, independent of x.

‘This means, for example, that #(x,t) could not be of the form of a sine or

cosine function, because then / #(x,  t) 1 2 would be a varying function of x. How-
ever, $(x,  t) could be of a complex exponential form, say:

,$  = Ae’+‘(““)

where A is a constant. This satisf ies 11+1’=  IAl =: constant. I f  this  function
is to describe a wave with phclse  speed w traveling in the positive x direction, the
phase @(x,  t) must be of the form:

@(x,t)  =  f ( x  - wt)

where, so far, f  is  some arbitrary function. Therefore,

(6.61)

$ = Ae”(“-“‘)

We also know that the part icle speed must be equal to the group speed of this
wave. Then, if the function $ corresponds to an exactly known group speed, the
momentum wi l l  be known exactly.  In Chapter 1 the express ion vg  =  dw/dk,  for
group speed, was der ived for a packet of s inusoidal waves grouped closely
about a central  f requency, Y =z:  w/27r.  The expression vII  =  do/dk  becomes exact

in the l imit as the frequency spread approaches zero. Hence, for a packet of
known momentum, we need to consider a wave of def inite f requency, but with
z e r o  f r e q u e n c y  s p r e a d .  A  p h a s e  f ( x  - wf) =  k x  - wt  =  27r(x/X  - vf)  w o u l d
then correspond to an exactly known group speed and hence to an exactly

2 2known momentum. Let us check that this group speed is correct. Since kj2  - k c

i s  a constant, us ing E =  fiw, p  =  hk,  we h a v e

dw kc2 hkc2  pc2 mVc2
‘““-=,=~=~= V

d k hw E

2 _

IllC

for a part icle with energy mc’ and momentum mV. The wavefunct ion then takes
the form:

,$  =  Ael(kx--Yf) (6.64)

Since the connection between momentum and wavelength is  p = ill/X, and
that between energy land  frequency is .f = hv,  the above wavefunction could be
written in terms of momentum p and energy E as follows:

$ = Ae ,(2*/h)(  px - Ef) (6.65)
o r

$ =  A~~(P~-E~)F (6.66)

This  wavefunct ion represents  a wave of def in i te wave length,  travelilng  in the

x direction, which means that the x component of momentum is definitely known.
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We see that the wavefunct ion $ =  Ae’(pxmE’)” satisf ies all the requirements for
it  to represent a beam of part icles of definite x momentum. Only a complex
,wavefunction  of this form can have the correct probabi l i ty interpretation-

that  1 $ 1 ’ is  a constant representing part icles whose posit ions are completely
wnknown. Also, the frequency is definite, which means that the particle velocity V,
which equals the group speed vg  , has a definite value.

6 . 1 7  E X P E C T A T I O N  V A L U E S  F O R  M O M E N T U M  I N  A  P A R T I C L E  B E A M

In practice, waves will usually consist of superpositions of perhaps many different
frequencies, and hence many different momenta. We might be interested in the
average value, or expectation value, of the momentum. To see how this may be
calculated, suppose there were two sources of partic:les,  as in Figure 6.17, each

1

Source 1 r------- P,

-X

c-I
S o u r c e  2 -  P,

1

Figure 6.17. Considerotion of the superposition of two beams of particles of different
momenta gives rise to differential operators representing observable physical quantities.

producing uniform beams travel ing in the x direction, with $,  the wavefunct ion
from source 1 when source 2 is off, and $2 the wavefunction from source 2 when
source 1 is off. Then the tcstal  wavefunction I,LJ~ when both sources 1 and 2 are on
is, by the principle of superposition,

#r = $1  + .G2 (68.67)

The probability of finding a particle in dx with both sources turned on would be
equal to

/ $1  + $2  I ‘dx

This  interpretat ion must st i l l  be val id,  even when the sources do not produce
electron beams of the same  momentum. So let us assume the individual wave-
functions are:

,$, = ,qe*~:~l~-E,‘)fi,  $2 =  A2e’(P2x-E2’)/h (6.68)

where A, and A2 are constants.  Then 1 Al / 2dx  would be the probabi l i ty of

f inding a particle of momentum p, in dx when source 2 is  turned off. Simi-

larly, 1 AZ I ‘dx  is the probabil i ty of f inding a part icle of momentum p2  in  dx
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when source 1 i s  turned off.  ‘The total probabil i ty of f inding a part icle in some
interval  0  5 x  <  L when both sources are on would be proport ional to

J“l$, +  $2  I  2dX =  &/XI  I$1 I 2 +  I#2  I  2 +  +:+2 +  +GIcII) (6.69)

In this expression, the asterisks mean complex conjugates. Consider these inte-

grals one at a t ime. In calculat ing ) 1c/, ) ‘, all the x and t dependence goes out,
b e c a u s e  1 ei(plx-Er’)‘h  1 ’ =  1, S o ,

[‘dx  1 $1 1 ’ = 1 A, I 2L (6.70)
0

Similarly,

I

-1
dx  / $2 / 2 = I A2 / ‘L (6.71)

. 0

However, when calculating an,  integral like:

J‘
1 dx#;rl’2  = j-&,A,kA2exp ‘(-PI (6.72)

0

+ p2)+  + ‘tE1  ; E2)f
h I

i f  we assume I to be large and p, i s  not equal to ~2,  then the exponent ial  wi l l
oscillate so that on the average  the x integral will be zero. (This is in agreement
with the general considerations  in Appendix 2.)  We shal l  assume this  happens
here. Then, for large L, we have:

(6.73)

Thus the total  probabi l i ty of f inding a part icle in the interval 0 5 x  I I is

equal to

s
o  ’ 1 yj,/  2dx  = L( 1 AI / ’ + 1 A2 / ‘) (6.74)

This is just the sum of the probabil i t ies for f inding part icles of the two momenta
in the interval, as we might have expected.

S i n c e  ( A ,  ( 2 is  the probabil i ty of f inding a part icle of momentum pr in the

i n t e r v a l ,  a n d  1 A2 / ’I S  the prtobability  of f inding a particle of momentum p2  in

the interval, then the average value, or expectation value, of the momentum of
this beam of electrons should be:

( P )  =:
PI  1 Al  1 ‘I  + p2 1 AZ  ‘L

/ A, / 2L + / A2 / 2L
(6.75)

In the above expression, the factors L all cancel out, so the expectation value of
momentum reduces to

(‘) =

PI  I AI  1 2 + p2 / A2  I :’
1 A , 1 2 + 1 A? 1 2

independent of the imerval  considered, provided it is sufficiently large.
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6.18 OPERATOR FORMALISM FOR CALCULATION OF MOMENTUM
EXPECTATION VALUES

Now we shal l  demonstrate a s imple formal way to calculate expectat ion values
which agree with the express ion in Equation (6.76),  us ing the wavefunct ion $.
Consider the wavefunction $, , which has a definite momentum p, . Let us dif-
terent iate the exponential  function $, =  A, exp [i( p,x  - Elt)/h]  with respect
to x, keeping t constant. Since for any constant a, we have

(6.77)

it follows that

(6.78)

We may write this last equation as

4 ~;w,t) = Pl$lb,f) (6.79)

The constants h/ i ,  mult ip l ied by the x der ivat ive of #, have the effect of mult i-

plying $ by a number equal to the x component of momentum. I f  “;  $ #,  =

p,$,, where pl  has exact ly the same numerical  value for  al l  values of x and
f, then we can say that the wavefunction represents a state of def in ite momen-
tum. If  the effect of the differential operator (h/i)(r3/ax)  on the wavefunct ion
were to give something other than p, $,  , then we could not say that the x mo-
mentum had the value p,.

The operator (ii/i)(d/dx)  is ordinari ly cal led the p.  operator, or momentum
operator, or pXoP. When this  operator acts on a funct ion and gives a constant
times the same function, the function is called an eigenfunction of the momentum
operator. The constant is called an eigenvalue.

example  Which of the fol lowing functions are eigenfunctions of pX,,, and what are the
corresponding eigenvalues? (a) IF/0  = s in kx; (b) $b  := exp(-6rr  ix/L);  (c) ICC  =

In(x/L).

solution Only It/b  is a momentum eigenfunction:

so the eigenvalue is  pb  =  -67&/L.  II/. and d/b  are riot  eigenfunctions, because
when differentiated they do not yield a constant times the same wavefunction:

A ;I$. iik-_-=  -
; ,3x i

c o s  k x  # const.  x  #a
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3 arCc  1--_= -
i ax

# const.  X +<
x

The eigenvalues p.  and pb  corresponding to #.  and $,b  therefore, do not exist.

In the case of Figure 6.17, with superimposed beams of different momenta, if
the momentum operator acts cm  the total wavefunction,

rF/T  := 11,  +  ic/2  =  A,e8(P~X-El’i/k  +  Aze’(P2”-b’)fi (6.80)

then it does not give just a nulnber  times tiT;  instead, the effect is:

Hence $1 + $2  is  not a momentum eigenfunction. Now, mult iply ing the above
equation on the left by #:  an’d  integrating from 0 to 1, we get:

(6.82)

When we integrate over some large length I ,  the r ighthand s ide of this  equation
has two terms which average to zero, because i f  p, ti p2,  they oscillate  sinus-
oidally with changing x.  Then the remaining two terms give:

J
‘L

W:P..,& =  L(P,  1 A,  1 2 +  ~21 A21 ‘10
Thus, from Equation (6.26),  we have:

J
‘L

dx#:pxop  tir0 PI 1 A,  1’ + ~2 I A2  I 2-~ -__

/
t 1 A, / ’ + / A2 I 2

(6.84)

dx$: $r
* 0

This  i s  just  the expectat ion value of momentum given iln Equation (6.76).  Thus,
expectation values may be written concisely in terms of operators. The procedure
would st i l l  hold i f  the .totaI  wavefunct ion $ were a superposit ion of many mo-
menta rather than just two. Thus,  in general,  the average x component of

momentum per particle for pclrticles  in the interval  0 < x  I L is:

(6.85)
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6.19 ENERGY OPERATOR AND EXPECTATION VALUES

Energy eigenfunctions con be discussed in a s imi lar way. The wavefunction $ =

exp(ipx  - iEt)/h i s  a wavefunction representing part icles of def inite known
energy. On differentiat ing part ial ly with respect to t ime, keeping x constant, we
get:

(6.86)

This equation could be written as:

ih&$  = E# (6.87)

Since this is true for all x and t, the wavefunction rlepresents  particles of definite
energy E. We could define an energy operator on the basis of the above qequa-
t ion.  I t  would be:

E,,  = ih -!-at

A function is said to be an eigenfunction of an operator i f  the effect of the
operator acting on the function is  to give a constant-the eigenvalue-multi-
plying the function. An eigenfunction of the energy operator jhd/at would be
Ae  -iEt/k.

Just as an expectation value of momentum could be written in terms of mo-
mentum operators, so can an expectation value of energy be written in terms of
E,,.  The expectation value of energy for part icles in the region 0 5 x  2 I when
L is large, if the wavefunction is I,L and the energy operator is ii%/&, is given by:

(6.89)

Clearly, if # is  an eigenrtate of the energy operator,  then the expectation value
of E is  equal to the corresponding eigenvalue. An expression such as (6.89) can
be interpreted in terms of probabil it ies; i f  P(x)dx  is  the probabi l i ty of f inding a
particle in dx, then the average of some property f(x) is just

(f)  = hx)fWx
--p&c

(6.90)

In this case, -/P(x)dx  is analogous to J+*$dx,  so P(x) is  analogous to g*#.
Also, if f(x) is represented by some operator f,,, then P(x)f(x)  is analogous to

#*fo,*.
These rules for computation of expectation values of a physical quantity have

shown that the combination of quantit ies $*f,,$  should be used rather than

some other combination, (For example, f.,($*$)  would be incorrect.)
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We have defined differential  operators for momentum and energy, given by
Equations (6.79) and (6.88).  .Similarly,  for y and z components of momentum, we
could write:

P zz tla  P--. =“_A
YCP i ay' zT i a2

In summary, when an operator acting on a  function has the effect of multiplying
that funct ion by a constant,  th is  constant i s  said to be the eigenvalue of the
operator,  and the function is  said to be an eigenfunction of the operator.  The
wavefunct ion e+‘(“~“~~~‘)~  represents a beam of part icles of definitely known

momentum pX, and definitely known energy E. I t  is  also an eigenfunction of the
operators pxop and E,,,.  The eigenvalues are just the physical volues of the mo-
mentum and energy, respectively, for this particular beam of particles.

When the wavefunction is not an eigenfunction of P,~,~,  the expectati#on  value
(average value) of  th’e x component of momentum may conveniently be calcu-
lated in terms of EqLlations  (6.85) and (6.89). These mathematical express ions
are important, becaur,e there are many times when we more  interested in particles
not having definite momentum or energy. Then the operators allow us to compute
expectation values.

20 SCHRijDlNGER  EQUATION

Now that the energy and momentum operators have been introduced, we can
attempt to f ind a wave  equation that the wave funct ion of a part ic le should
satisfy. Suppose we consider CI  number of regions separated by paral lel  planes
with a constant potential energy in each region. If a particle moves perpendicu-
lar to the separating planes, we need consider only the dimension paral lel  to
the part icle’s motion. Cal l ing this  the x di rect ion, we then have the potent ial
energy graph shown in F igure 6.18, where regions I ,  I I ,  I I I  are the constant po-

Figure 6.18. Graph of a poterltial  energy curve which consists of a number of constant
potentiol energy regions.

tential  energy regions. In any of these regions, i t  should be poss ible to have a
wavefunction which is  a momentum and an energy eigenfunction. That is ,  in

,terms  of momentum pA  and energy ET,
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In the expression for # we have now written ET  for energy to imply total energy

including rest energy. Thus, Er =  moc2 + E.. where E is the part of the energy
not including rest energy. That is,  for low-energy particles, E is the total energy
in the nonrelativist ic sense, kinetic energy plus potential energy. Let a wave-
function be written in the form I+& = #(x,t)  exp (-imoc2t/h).  It is convenient to
use #(x,t)  here instead of &, because then the rest energy need not be con-
s idered expl icit ly.  This is  ordinari ly done in non-relat iv ist ic quantum mechanics.
The energy operator acting on $r gives:

;f, f$ = (f, f$ +  mOcz$)exp  (w)  =  ( E  +  m0cz)$exp(T2)

(6.93)

After cancellation of the terms in m,,c2 and the phase factor exp(-im,,c’t/Ii),
the above equation can tie written as:

wiA;)+=E$ (15.94)

S i n c e  i?i  Cl/at  a c t i n g  o n  #T  i s  t h e  o p e r a t o r  f o r  t o t a l  e n e r g y ,  t h e  o p e r a t o r
I&  a/at  acting on # can be interpreted as the operator corresponding to the non-
relat iv ist ic total energy, ;)I a/nf  =  E,,.

Now we are in  a pos i t ion to obtain a nonrelat iv i s t ic  wave equat ion.  A wave
function $ which is an eigenfunction of pXoP  and Eop,  with eigenvalues pX  and
E, is given by

,J =  ~~h-‘x~-Ef)fi ((5.95)

It  should therefore be p,ossible  to f ind a solution of this form, of the general
wave equation, in each region of constant potential  energy (F igure 6.18).  Of
course, p. varies from region to region, while E must remain constant if energy
is  conserved. The nonrelc3tivistic  relat ionship between pX, E and V for a part icle
of mass m is

We shal l  assume that thi!,  same relationship holds in quantum mechanics i f  V is
constant.  Us ing pX,,  and E,,, a differential  equation which leads to this  re-
lationship for the wavefunction of Equation (6.95) is:

or writ ing out the differerltial  operators in ful l ,

tr2 a’*
2 m  ax2

+ v+ = ;j-y  “II/
sat

(6.97)

(6.98)
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Here the operator means that the function upon which this operator acts

is differentiated partially twice with respect to x:

0
‘& 2$ f ti

ax 2

Thus, for example,

-(  1 ‘h  -1. - )  a
2 2

e%uh  = _ _  ew/~Px

2mo  \I ax i 12m0

(6.99)

Suppose next that # were ok  combination of energy-momentum eigenfunctions,

corresponding to different energies E,, such as

(6.101)

Each ond every terln  in ttiis,  superposi t ion  sat is f ies  the  d i f ferent ia l  equat ion,

Equation (6.98),  in the constant potential energy region, provided

(6.102)

Therefore, any wavefunction describing motion of a particle in a constant poten-

tial energy region should satisfy the differential equation, Equation (6.98).

.2  1 SCHRiiDlNGER  EQUATIOIN  FOR VARIABLE POTENTIAL

We shall assume that for a continuously variable potential energy, V(x), the dif-

ferential equation still holds. This is reasonable but not Irigorous,  since in a certain

sense,  a  cont inuous potent ia l  energy can be  thought  of  as  a  large  number  of

narrow constant potential energy regions.

In three dimensions,, the relation between energy and momentum is:

& + v := & (pZ  + p; + pf) -t v = E

By the same line of argument which led to Equation (6.98),  the differential equa-

tion arising from this would tie:

(6.104)

or

Schrodinger

equat ion 1 (6.105)

This is called the Schrodinger  equation, after Erwin Schrodinger who first pro-

posed it. While our discussion rnakes Equation (6.105) appear to be a reasonable
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wave equation, the equation’s correctness depends o w n  whether or not it predicts
the experimental results.  As wi l l  be seen, it  agrees with experiment to a high
degree of accuracy; examples of this will be given in Chapter 8, on the hydrogen
atom.

In the SchrGdinger  equation, the operator,

ii2 a2--
,,s+$+fq

( z

has the physical s ignif icance of the kinetic energy operator. In three dimensions,
the wavefunct ion $ is a function of x,y,z  and t, and the probabi l i ty of f inding
u part ic le in the volume element dxdydz is  1 ic/  1 ‘dxdydz.  Hence, extending the
formalism for calculation tof expectat ion values,  for  ‘example,  we would expect
that i f  the wavefunct ion is  normal ized to unity,  the expectat ion value of the
kinetic energy would be

+ a’rC,  + !i?!?!
ay2 az2

dxdyd Z

If more than one particle is present, the relationship between the momenta und

the total energy is

P:  I P’, ;
2

2ml 2m2

. . . + $ + ‘J =  E
”

and the SchrGdinger  equation is obtained by the following prescription:

R e p l a c e  p:  b y

(6.106)

and let all these terms operate on the wavefunction $, which is a function of all
the variables:

$ =  45(x,,y,,z,,x2,y2,22 I . . . ,  x,,y,,z,,f) (6.1107)

Similarly, to find a relativistic wave equation for one particle, we can use the
relat ivist ic relat ionship between energy, potential  energy and momentum. This is

p2c2 +  mgc”  =  (ET  - V)’
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Here or includes the rest energy, moc2.  The corresponding wave equation is

(6.109)

i f  V does not depend on t.  This is  cal led the Klein-Gordon equation. I t  does not
have spin (intrinsic angular Imomentum)  appearing in it, and it applies to spinless
part icles.  Another relat iv ist ic wave equation, cal led the Dirac  equation, which
has spin included, applies tc relativistic electrons. We shall consider in detail only
the SchrGdinger  equation.

The wave equat ion,  Equat ion (6.105), d escribing  the propagation of matter
waves, i s  the equation we obtained from considerat ions of conservation of
energy. After el imination of the rest energy, the equation in one dimension takes
the form of Equation (6.98). Although Equation (6.98) was shown to be true in
a  region where V is constant, as already noted, i t  i s  also true when V is  varying.
If the consequences (of this equation turn out to agree with experiment, then we
can be satisfied that the Schrbdinger  wave equation is valid. In the next sections
w e  s h a l l  s t u d y  s o m e  s i m p l e  p r o p e r t i e s  a n d  c o n s e q u e n c e s  o f  Schrijdinger’s
equation.

.22 SOLUTION OF THE: SCHRiiDlNGER  EQUATION FOR A
CONSTANT POTENITIAL

Let us consider a state of definite energy E, so that

j&z, l+$=E$
af Op (6.110)

Here E is the total kinetic $-  ptotential  energy. The equation

must have a solution of the form:

I$ = @(x)e-‘E’F (6.112)

When this  i s  put back  into the Schrtidinger  equation, al l  t ime dependence wi l l
cancel out, and the equation will be one for the spatial part of the wavefunction,

F12  d2@((x)
-- -- + V@(x)  = E@(x)
2m dX2

(6.113)

This is  a second order differential equation, which cnn be written in the form:

(6.114)
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In this form, it  is  very s imilar to the differential equation for s imple harmonic
motion, which, for a displacement  a(t),  is:

(6.1 15)

In our case, however,  E - V may not always be a constant,  s ince the potent ial
rnay vary with x.  So in general,  the solut ions may be diff icult  to f ind. SuppsDse,
however, that in some range of x, V is constant. Then we can put

k2 = 2mF  - V)___-
ti2

(6.1 16)

and k will be a constant. We can then solve the Schlrtidinger equation by anal-
ogy, for the general solut ion of Equation (6.1 15) can be written in either the
form:

+ =  a  s i n  wt  +  b coswt (6.1 17)

with a, b arbitrary constants, or in the exponential form:

@ =  Ae““’ + Bem’W’ (6:l 18)

where A, 6 may be complex constants. This latter form is al lowed in our case,
because the wavefunction a(x)  may be complex.

By analogy, then, in terlns of

(6:l 19)

tor k constant, a general solution for the wavefunction Cp  (x) is:

<l)(x)  =  Ae”” + Bem’kx (6.‘120)

This is s imply a superposit ion of momentum eigenfunctions discussed previously,
with 1 k / = / pX  1 /ii.

Thus,  when E > V, we expect osci l latory solutiorls in  space.  What happens
when E < V? Although this  case would appear to v iolate our intuit ive feel ing
that k inet ic energy should be posit ive, i t  i s  st i l l  poss ible to f ind a wavefunction
which sat isf ies the wave equation in a region of suck, high potential energy. The

q u a n t i t y  k  =  -\/2m(E - V)/b2  d e f i n e d  i n  t h e  p r e v i o u s  f r a m e  b e c o m e s  lpure

i m a g i n a r y :  k  =  in =  i-\/%(V  - E)/k’.  T h e n  hik  := FK,  a n d  t h e  g e n e r a l
!solutions  are of the form of increasing or decreasing exponentials:

‘D(x)  =  AeXx +  Be-“’ (6.121)

where the arbitrary constants are A and 6.

6.23 BOUNDARY CONDITIO’NS

‘The arbitrary constants which appear in these solutions are determined by means

of boundary conditions, which are special conditions placed on the wavefunction
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due to the part icular physical s i tuat ion in which the part icles f ind themselves.
Suppose, for example, that the system is set up so that it is impossible for a par-
t icle to be found in the range of posit ions x >  x0.  Then the probabi l i ty,  ( $ ) ’ =
1 @  / ‘,  of f inding a part icle in the range of x >  x0  must be zero,  and so we
would conclude that:

@  = 0 for x > x0 (6.122)

Next, let us consider the behavior of # in a transition region where V is chang-
ing very rapidly f rom some value VI to some other value Vz. Suppose, for sim-
pl ic i ty that the bounclary  of t lhese regions is at x := 0, as in Figure 6.19. In

V

x=0

Figure 6.19. Potential  energy curve for V(x)  =  VI = const.  x 0;  V(x)  = const.  X 0.

region I, V = VI,  the ,wavefunc:tion  wil l  be of the form cb,  =  Ae”‘” + Be-“‘“,  a

superposit ion of momentum eigenfunctions. In region I I ,  where V = Vz  and the
corresponding wavenumber is  k 2, the wavefunction will be of the form:

q>,,  =  ce”z^  + De-W (6.123)

The value of the wavefunct ion at x  = 0 in region I I  i s  re lated to the value of
the wavefunction at x = 0, in region I, just on the other side of the boundary, by
I W O boundary condit ions whic:h  give us two relat ions,  between the constants
A, B, C, D. The two bolJndory  conditions are:

(1) The wavefunction is continuous across the boundary:

o r

@I  Lo  = @II lxco

(6.124)

(6.125)

(2) The derivative of the wavefunction is continuous across the boundary:

o r

(6.126)

(6.127)
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To understand the reosons for these two conditions, suppose $ changed nearly
discont inuously across the boundary.  This  would be the same as having a s lope
which is  arbitrar i ly large at the boundary, as in F igure 6.20. The sudden increase

Figure 6.20.

in the s lope, &&lax,  would in turn mean that a’$/dx’  would have to  be very
large. L ikewise, i f  the s lope were discontinuous at the point, az#/ax2  woLlld  b e
so large as to be undefined at the point. However, if the potential energy and $

do not become large at the point,  Schr6dinger’s  equation tel l s  us that d2$/axz
does not become large at the point. Thus, if the wave equation is to be satisfied,
1c/  and &J/ax  must be continuous.

A useful analogy might be to consider two str ings of different mass per unit
length, t ied together and sustaining wave motion whi le under tension. I t  i s  ob-
vious that the displacements of the strings on opposite sides of the knot would be
the same. This is  analogous to continuity of the wavefunction representing “dis-
placement” of a matter wave. Also, i t  i s  easy to see that the s lopes of the two
strings on each side of the knot would have to be equal (if the knot is massless);
otherwise, there would be an unbalanced component of tension acting on the
knot and producing an inf inite acceleration. This is  analogous to continLlity  of
slopes of the wavefuncti,3n.

Since the one dimensional SchrGdinger  equation is of second order in the de-
rivative with respect to x, if the values of 1c/  and &#/(8x  are specified at one point,
and there are no discontinuit ies,  a unique solut ion can be found by integrat ion.
Sothen  a given physical situation can be represented uniquely by a wavefunction.

Another condit ion on the wavefunction is  that,  as x,y,z  go to infinity, $i must
not approach inf in ity.  Cbtherwise, Id’ would give inf inite part icle densit ies,  or
else lead to inf inite total probabil i ty. In fact, for part icles which are restr icted to
a l imited region by some binding force, the wavefunction approaches zero at

infinity. A number of examples of these ideas will be studied in the next chapter.

PROPERTIES OF PLANE WAVES

A plane wave may be represented by a wavefunct ion of the form eick.‘-*‘);
the phase k .  I - of i s  a re lat iv i s t ic invar iant. I t  fol lows that the propagation
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vector k and frequency w satir,fy the following transformation equations between
inertial systems:

k;  = k,

w ’ := --+!i! (0 - vkx) k:  = k,

These equations imply that wi - k2/c2  is o re lat iv i s t ic invar iant ,  and hence that
the equation W V = cZ is invorioint.  Here, w is the phase speed of the matter wave
w = w/k,  and V =: dw/dk  is  the group speed of the part icle with which the
wave is associated. V i t ; identical to the particle velocity.

DE BROGUE RELATIONS

The momentum, propagation vector, and wavelength of a part icle (de Brogl ie
waves) are related by

p=+-1
x

and energy and frequency are related by

E = li)iw  = hv

where h = h/2x;  h is  P lanck’s constant.

DAVISSON-GERMER EXPERIMENT

In the Davisson-Germer experiment, electrons were scattered off nickel. The
existence of diffraction peaks showed that a wavelength was associated with the
electron, and the posit ion of the peaks showed that the wavelength was con-
sistent with X = h/p, where h IIS Plan&s  constant.

UNCERTAINTY PRINCIPLE FOR PARTICLES

In any experiment in which both the x component of position and momentum are
measured simultaneously, the Llncertainties  Ax in posit ion and ApX  in momentum
satisfy the inequality,

where Sp, and Ax are rms deviations from the mean. Simi lar ly,  in a measure-
ment of energy which lasts for #a  time At,

AEAt  = h
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PROBABILITY INTERPRETATION OF WAVEFUNCTION

Associated with a mater ial  part icle is  a wavefunction #. In one dimension,
I#I’dxisp ro or Ional  to the probabi l i ty of f inding the part icle in the range dx.p t’
I f  1F/,  i s  the probabi l i ty amplitude, or wavefunction,.  for part icles f rom source 1
alone, and #2 is that for source 2 alone, then when both sources are on, the total
wavefunct ion i s  obtainecl  by superposit ion of the individual contr ibut ions,  and is
lcil + $2.  The total  probabi l i ty of f inding a part icle in dx is  then proport ional

to 1 $1 + $2 1 2dx.

ENERGY AND MOMEINTUM  OPERATORS

The momentum pX  of a particle can be represented by the differential operator:

h a
Pxop  = - .-

i ax

The energy operator is:

When an operator acts cln a function to give a constant multiplied by that same
function, the function is said to be an eigenfunction of that operator and the con-
stant is  cal led the eigenralue.  The function $/  = Ae ‘(p~X~E’)F  is  an eigenfunction

of both pX and E,,, with eigenvalues pX  and E, respectively.  For any state of
indefinite zomentum  or indefinite energy, the average value or expectation value
of the momentum may conveniently be calculated in terms of operators as
follows:

SCHRijDlNGER  EQUATION

After el iminating the rest energy, the nonrelat iv ist ic:  wave equation sat is f ied by
the wavefunct ion $(x,  y, z,  t) ,  descr ibing a part icle having a potential  energy
V(x,  y, z), is obtained from the conservation Iof  energy equation:
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by replacing all  the quantit ies by their  corresponding operators and al lowing
them to operate on the wavefunction. In one dimension, the wave equation is:

;&= LT!?-  ?++v$
ift ( )2m i dx

BOUNDARY CONDITIONS

(1) The wavefuncticln  is continuous across a boundary at, for example, x = 0:

$1 lxx0  = $2  IrEO

(2) The derivative o,f  the wavefunction is continuous across the boundary:

rzf  JIEO = 5 Ixzo

(3) The wavefunction remains f inite or goes to zero as the coordinates go  to
infinity.

1. Use Equation (6.22) to derive the general Doppler effect; assume that in orle frame,
light of frequency o is propagating at angle H relative tc, the positive  x axis. Show
that in another frame, moving at velocity v along the x axis relative to the first frame,
the frequency observed is

Usew = 27rv =  k c .

y8 = 1 - YCOS  e/c
”

/-
__-

b 1 - v2/c2

2. I f  the group speed, vg  =  dw/dk, and phase speed, \Y  = w/k,  are related by
vgw  =  c’, where  c2 1s a constant, find the most general relationship between (L’
and k.
A n s w e r :  w2  = c”k’  + constant.

3. s uppose  that in the Iree parlicle  wave function, $=e rjkr-d) = ,GJ~  - Eyf/ff , the
nonrelativistic kinetic: energy, % my2 = p2/2m, were incorrectly used for Er What
would be the relationship between the momentum p  and the group speed? Find the
relationship between the group  speed and phase speed, w.
Answer : p=mvg;  w== %v,.

4. An electron (mass ==  .91  x 10 n30kg)  moves at a speed of 2 x 1 O’m/sec  i n  a
region  where the potential energy is zero. It hits the plane boundary of a region
where its potential energy is - 4.1 1 x 10 -14 ioules  at an angle of incidence of 60
Find its angle of refraction.
A n s w e r :  3 0 ’ .
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5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

What  a re  the  phase speed and wave length  o f  a  p roton mov ing at  a  par t ic le  speed,

( a )  1 0 0  m/set  ( b )  2  >. 1  O8  m/set?

A n s w e r :  ( a )  9  x  10’4m/sec, 3.96 x  lo-‘m,:

( b )  4 . 5  :<  lO”m/sec, 1 . 4 7 7  x  10m’5m.

An e lect ron  i s  acce le rated th rough 50 ,000  vo l t s  in  an  e lect ron  mic roscope.  What  i s

the  sma l le s t  d i s tance Ibetween ob ject s  that  cou ld  pos s ib l y  be  obse rved?

A n s w e r :  5  x  10-“cm.

W h a t  i s  t h e  k i n e t i c  ewrgy  in  e lect ron  vo l t s  o f  e lect rons  in  a  beam inc ident  at  ar angle

of  30”  re la t i ve  to  a  c ry s ta l  su r face,  re f lected coherent l y  f rom p lanes  2  angs t roms

apar t?  Assume th i s  i s  the  four th  o rder  re f lect ion ,  that  the  p lanes  a re  para l le l  to  the

sur face,  and that  no wavelength  change i s  su f fe red upon passage in to  the crystsal.

Answer: 201 eV.

E lect rons  h i t t ing  a  meta l  ta rget  p roduce x r a y s  w i t h  a  m i n i m u m  w a v e l e n g t h  o f  1

a n g s t r o m .  W h a t  i s  t h e  e l e c t r o n  w a v e l e n g t h ?

Answer: 1 . 1  x  1C9cm.

W h a t  i s  t h e  r a t i o  b e t w e e n  t h e  w a v e l e n g t h s  o f  1  O9 eV  e lect rons  and 10’  eV  photons?

A n s w e r : 1 + 1.3 x 1om7.

F o r  - & < x I &,  t h e  w a v e f u n c t i o n  o f  a  p a r t i c l e  i s  $ =  a (  X,’  - ~~)e’~‘-‘~‘.

If  l$12. 1s  a  p robab i l i t y  dens i t y ,  f i nd  a. F ind  the  expectat ion  va lue  o f  the  K com-

ponent  of  momentu,m,

Answer:
1

4

For  the  wavefunct ion  of  P rob lem 10 ,  f ind  IxAp,,  w h e r e  Lx and Ap,  are rms  dev ia -

t ions  f rom the mean.

Answer: fi
I / -

5 = 0.5986 > X/2.
14

An electron gun’ in a TV tube has an opening of  d iameter  a. E l e c t r o n s  c o m e  o u t  w i t h  a

speed Y of  100 m/set,  and the  d i s tance to  the  sc reen i s  1 =  1  meter .  What  shou ld the

diameter  a  be in  o rder  to  min imize  the s i ze  of  the spot  on the screen i f  there  i s  no

focuss ing? Take in to  account  that  uncer ta in t ies  in  the pos i t ion  of  e lect rons  at  the

sc reen a r i se  both  f rom uncer ta in t ies  in  the  in i t ia l  pos i t ion  o f  the  e lect rons  w i th in  the

g u n  a n d  f r o m  diffradion.

Answer: a ” z =  0 . 1 1  c m .
mv

What  i s  the  m in imum poss ib le  k inet ic  energy ,  cons i s tent  w i th  the  uncer ta in ty  p r inc ip le ,

of  a proton conf ined t o  a  reg ion  o f  s i ze  5  x  lo-I5 m e t e r s ,  w h i c h  i s  t h e  apprclximate

s i ze  of  a  nuc leus?

Answer: A b o u t  0.83  MeV.

A par t ic le  o f  mass  m Imoves  a long  a  ve r t ica l  w i re  i n  the  g rav i ta t iona l  f ie ld  o f  t h t ? e a r t h

a b o v e  a  r i g i d  imperletrable  f l o o r ,  w h i c h  i s  a t  h e i g h t  x =  0 .  H e n c e ,  t h e  p a r t i c l e ’ s

h e i g h t  i s  a l w a y s  greclter  than ze ro  and i t s  potent ia l  energy  i s  mgx. Us ing the uncer -

t a i n t y  p r i n c i p l e ,  e s t i m a t e  t h e  l o w e s t  p o s s i b l e  e n e r g y  o f  t h e  p a r t i c l e .  D o  y o u  t h i n k  t h i s

energy  i s  obse rvab le?

Answer: ‘1/L,m”3(gA)2’3,

An ideal  icepick  of  mass  m = 1 0 0  g  c o n c e n t r a t e d  a t  i t s  c e n t e r  o f  m a s s ,  w h i c h  i s  a

d i s tance r =  25  cm f rom the point  of  the icepick,  i s  se t  on  i t s  po in t  and an atttzmpt  i s

made to  ba lance i t .  Th i s  i s  imposs ib le ,  o f  cour se ,  because to  ba lance i t ,  the  center  o f

mass must be both directly over the point (L\X  = 0) and at rest (Ap, = 0). I f  s in 0
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2 0, s h o w  t h a t  t h e  Vewtoni~an  equat ion  of  ro tat iona l  mot ion  i s

d2H
-= yH

dt2

w i t h  t h e  s o l u t i o n  r6’ =  % (1.x  - lpjm  v r/g)emvg”  i- % (-1~  +  Lp/m\  r/g).-
e \/e”‘,  w i t h  Jx and -Ip  the in i t ia l  d i sp lacement and momentum. For  t x t/y/,,  the

negat ive  exponent ia l  can  be neg lected.  Use  the  uncer ta in ty  p r inc ip le  to  es t imate  the

max imum t ime,  on  the average,  dur ing wh ich the center  o f  mass  o f  the  icep i t k  moves

the  d i s tance ‘/2  r s i d e w a y s  i n  f a l l i n g ,  i . e .  t h e  t i m e  f o r  t h e  be:st ba lance you can expect .

A n s w e r :  t .- - 6  s e c .

1 6 . A  par t ic le  o f  mcrss  m has a wavefunction,

+ik,y+ik,z-

w h e r e  w i s  an angu lar  f requency.  F ind the potent ia l  energy  of  th i s  par t ic le  crs  a func-

t i o n  o f  x ,  a n d  f i n d  t h e  t o t a l  e n e r g y  f o r  t h i s  s t a t e .

A n s w e r :
2 2% mu x ,

17 .  The  wavefunct ion  o f  cr  t w o  p a r t i c l e  s y s t e m  w i t h  m a s s e s  ml, rn2 and pos i t ion  vecto r s

w h e r e  e2/4rt0  i s  o cons tant .  F ind  the  potent ia l  energy  ancl  t h e  t o t a l  e n e r g y .  W h a t  i s

the  phys ica l  mean ing o f  th i s  s tc r te?
2

-e

ty ,  - y2j2 + lL, ~~ z2)
4

1 mlm2 e h2k2
- - -__

2 m, + m2  (4,aceX)’
+

2(ml + m2)’



7 examples of the
use of SchrOdinger’s
equation

In this  chapter several examples wi l l  be presented to i l lustrate the use of the
Schrodinger equation and the application of boundary conditions. In the process
of studying these examples, the physical meaning of the wavefunction should
become clearer. For simplicity, a l l  t h e  e.xamples  w i l l  b e  d o n e  o n l y  i n  o n e
dimension.

7 . 1  F R E E - P A R T I C L E  GAU!iSIAN  W A V E  PAC:KET

In  Chapter 6 we saw that the nonrelat iv is t ic t imedependent Schrodinger equa-
tion for free particles moving in one dimension is:

h2 a’$--_ =: ;fi !P!!
2 m  8x2 a t

(7.1)

and that a typical solution is a wavefunction of the form

1c,  =  Ae’(WE’)”
(7.2)

where E = E(p) = p2/2m  is the nonrelativist ic kinetic energy. Physical ly, this
solution might correspond to a beam of part icles uniformly distr ibuted along the
x axis ,  moving with def in i te part ic le velocity,  v =  ,p/m, and with definite energy

E = E(p). The solut ion In Equation (7.2) is  thus both a momentum eigenfunction
and an energy eigenfuriction.

By superposit ion of such eigenfunctions corresponding to different values of
momentum (and energy), we can build up interesting solutions of the free-particle
Schrodinger equation. For example, as was also discussed in Chapter 6, the
wavefunction

1F/  = A, exp !(P -;'1"-']  + A2  ex,P [jk%’ -;:f/2m)] (7.3)

1 7 8
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w i t h  p, # ~2,  i s  l i k e w i s e  a  s o l u t i o n  t o  E q u a t i o n  (7.2),  b u t  i t  i s  n o  l o n g e r  a
momentum or energy eigenfunction.

We now wish to discuss the quantum-mechanical description of a free particle,

which corresponds more closely to our intuitive notion o’f a particle as being well
local ized in space. The solution in Equation (7.2) is  certainly not wel l  local ized,
because there is no information at all in this wavefunction about the x coordinate

of the particle; all x c#Dordinotes  are equally probable. A wavefunction describing
a local ized part icle,  with sclme  small  uncertainty L, x  in  pos i t ion,  must  have a
large uncertainty in momentum according to the uncertainty pr inciple, LIXLIP,  )
% h. To obtain a localized wave packet, we will consider a more general super-
posit ion of free-particle momentum eigenfunctions of many different momenta.

This superposit ion has  the form:

+(x,  t) =  c A, exp
[
;hx y?!z!Y1 (7.4)

where the numbers A, are arly constant coefficients. Since each term in Equation

(7.4) satisf ies the SchrGdinger  equation, which is  a l inear differential  equation,
the sum satisfies it.

We can also consider the superposit ion of wavefunctions with a continuous
distr ibution of momenta by passing from the summation in Equation (7.4) to an
integration:

Il/(x,f)  = ,“= dpA(p)  exp
i(px  - - ip2t/2m)
~--~ (7.5)

/ [ Tl I

where A(p) is any function of p.

Now to obtain a function which is  local ized in space, we shal l  consider the
superposit ion in Equation (7.5), w i t h  A ( p )  c h o s e n  t o  g i v e  a  d i s t r i b u t i o n  o f
momenta about some central value, pO.  If the momenta (appearing in the integral
in Equation (7.5) are dist r ibuted symmetr ical ly about the value p,,,  we would
expect the part icle to move witlh an average momentum pO  =  mv,.  Furthermore,
if there is a large spread in momenta, i .e. i f  Ap is  large, we would expect i t
to be poss ible to have IIX  s8maII.  We shal l  choose a distr ibution of momenta
given by a gaussian, as follows,:

A(p:l  = --L-
2*v'Gh2 1

While this is  only one of an inf inite number of choices, the choice in Equation
(7.6) is part icularly interest ing for several reasons and is not too diff icult to
handle mathematically. The constants in front of the exponential in Equation (7.6)
make the function It/(x, t) a normalized one, so that the total probability is unity.
Thus, we shall study the wave packet:

(7.7)
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7.2 PACKET AT t = 0

Consider first the resultin’  description of the particle at time t = 0:

The integral may be performed with the help of Table 7.1, after changing elP””
to e’pox’he’(p~po)x’h  and introducing a new integration variable by the substitution

Y = P - PO:

Clearly,  at this  t ime the wovefunction is  local ized in space, near the or igin at
x = 0.  The probabi l i ty density is

I  I) I 2 =  J& (?XP  (7;)

which is  a normal ized gaussian  distr ibut ion ‘centered at
(x)  = 0. To calculate A: at this time, we need

(7.10)

x = 0. Thus at t =  0,

1 ( 2 ‘12= dxx2--m-X
t/ffa \ ff2 )I = (r

d5
(7.11)

from Table 7.1. Thus, cz  i s  a measure of the distance within which the part icle is
in it ial ly local ized.

T A B L E  7 . 1 Some Integrals Involving Complex Exponentials

irex,, (-5  +  ;by)dy  =  &aexp[-($r],  Realpartofa’ > 0

~J.p  (-$) y’dy = i a36

l:yexp (-$)dy = Q

The osci l lat ing factor exp (ip,,x/Fr), which mult ipl ies the gaussian  in Equat ion

(7.9),  corresponds to the fact that the part icle has an overal l  momentum po,
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because, calculating the expectation value of momentum, we have:

( P )  = j5 $* +. $ d x  =  2; -[: e x p  ( -  “)  ( -  5 x +  PO)  dx = p0
-xx g! i lJ2

(7.12)

Thus the wavefunct ion corresponds to a part ic le with average velocity,  v0  =

pa/m.  The rms deviation from the mean momentum, or uncertainty in momentum,
is:

=  {j; -&,?Xp  (-;;;) 1-y  +  2;F + p; +  $1 dx  -p;}“2

Note that at  t = 0 the uncertainty product is  the mini rnum al lowed by the un-
certainty pr inciple,

ApA.x =: (7.14)

Thus, at first the gausslan  wave packet is actually a minimum uncertainty packet;
this is one of the reasons the gaussian  packet is of particular interest.

Summarizing our results so far, we have,  a t  t = 0,

(x) = 0,  Ax = L-
45

(P)  := po,  4~ = --&

(7.15)

(7.16)

.3 P A C K E T  F O R  t  >  0

Next,  we shal l  calculate the expectat ion values and uncertaint ies at any later
time t. We would expect that the average momentum and uncertainty in momen-
tum would not change with itime, s i n c e  t h e r e  a r e  n o  f o r c e s  t o  m o d i f y  t h e

momentum distributiorl.  This could be verified by detailed calculation using the I$
in Equat ion (7.18) below. To calculate x and Ax,  we need the wavefunct ion
J/(x, f)  at an arbitrary t ime and hence must perform ,the  p integral  in Equa-
t ion (7.7) at an arbitrary t ime. This  may be done in a straightforward way,
using the integrals in Table 7.1, although the algebra is a l i tt le messy. The
integral may be writtell  as:
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P O )  ;
i

Pot’

-4mfti

(7.17)

The first integral in Table 7.1 then gives us:

u
+ zm) exp

1  ( x  - pot/m)s2 Pit)- - + i (Pox  -

2 ff2 + iht/m  h 2m 1 (7.18)

This wave function leads to a probability density of

u
+*+ = / $1 2 = -~

VGVF+ ti2t2/m2
e x p  ~-

[

- a’(:~  - pot/m)2

(a4 +  A2t2/m2) 1 (7.19)

This distr ibution is centered  about the point  x  = ,p,,t,/m, corresponding to an
average part icle speed of p,,/m.  This agrees with the result  (p) of Equation

(7.12). The distr ibution c:enter, p0  t/m, is ,  of course, also the expectation value

of x. The rms deviation of x from its mean is:

=  4~~  + h2t2/m202

VT -
117.20)

This Ax is least at t = 0 and increases thereafter. This is  because of the
possible presence of momenta greatly different from p,, with in the momentum
distr ibut ion, result ing in the poss ibi l i ty that the part icle may be moving with

velocit ies greater or less than the average, pa/m,  and thus the poss ibi l i ty of the
part icle being farther and farther from (x) as t ime progresses. If  the particle is
very sharply local ized ill space init ial ly,  that is  i f  u is very small ,  then from
Equation (7.20) it is seen that the wave packet will spread very rapidly, because

at large times, Ax - t it/ma. This is  due to the complementary presence 0.f very
high momenta, which must be present in order that Ap be large, Ap > %/2Ax.
I f  the part icle is  not very wel l  local ized in it ial ly,  ( large a),  the wave packet
spreads slowly. We could expect that at sufficiently large times, the spread of the
packet would be on the order of Avt = Apt/m = ht,/2am.  The uncertainty Ax
in Equation (7.20) is of this order of magnitude for large t. The uncertainty
principle is satisfied at all times, since from Equations (7.12) and (7.20)---

ApAx  = f h
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Let us put some numbers in,  to see how long we can expect a part icle to
remain reasonably wel l  localised.  Suppose we consider an electron with mass of
about  10m3’ kg. I f  i t  has a few electron volts kinetic energy, such as it  might
pick up in a low volttage vacuum tube, it is moving with a speed of around TO6
m/set. Also, i f  in an experiment the electron is init ial ly localized  to with in a
distance Ax of 0.01 cm, then the spread in velocities, -Iv  = Ap,‘m = %/(2Axm),
is on the order of 1 m/set, vlery small  compared to the speed. Now, from Equa-

t ion (7.20) the spread in the distr ibut ion wi l l  be mult ipl ied by 16 when
iiif/m =  u2. S i n c e  (T  i s  o f  t h e  o r d e r  o f  0 . 0 1  c m ,  t h i s  t i m e  i s  o f  t h e  o r d e r  o f
10m4 sec. While this rnay not seem a long t ime, with a speed of lo6 m/‘sec, the
electron wi l l  have gone lo2 meters, or about 300 feet, in that t ime. During this
displacement, the packet wi l l  spread only about 40% in width. Thus, for most
macroscopic experiments, w’s  do not have to worry about the electrons’ be-
coming nonlocalized. For a macroscopic object, such as a stone of 100 gm mass,
the time required for Ax to increase by a factor of ~/‘2  is  around 1O25 set, o r
about  10” years. This indiecates why quantum mechanics is  ordinari ly unim-

portant for the descriotion of Imacroscopic  bodies. The spreading and motion of
a gaussian  wave packet is illustrated in Figure 7.1.

Pf

/

A -

Packet at t=O

- - -

,,,i

x

Packet at t>O

--Lk?‘1
0 x=p,t/m  - X

Figure 7.1. Graph of probability density in a Gaussian wave packet. The wave packet
Ispreads  in space as time progresses.

STEP POTENTIAL; HIGH ENEIRGY E > Vo

The f i r s t  example involv ing the matching of boundary condit ions wi l l  involve the

one dimensional potential energy shown in Figure 7.2. This is  cal led a step

potential, and corresponds to the particle experiencing a very large force over a

very small distance wflen  goirg from region I to region II. In region I the potential
energy is zero, and in region II it is the constant V,,.
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Figure 7.2. Step potential such that V = 0, .x  < 0; V = V, x  0

If the nonrelativistic wavefunction is of the form

+b(x,  t )  =  @(x)em’E’fi (7.22)

then the one dimensional differential  equation for the spatial  part of the wave-
function @P(x),  for a particle of mass m, is:

In region I,  s ince V = 0, the  equation is :

The equation can be rearranged by multiplying throlugh  by 2m/h2:

(7.25)

or,  with

k  =  +[2mE/tiZ]“2 (7.26)

In this form, it resembles the harmonic oscil lator eqblation  of classical mechanics,
j; + w’x  = 0, and has solut ions which are osci l lat ing in space,

@,  =  Ae”” + Be-‘k” (7.28)

where A and 6 are constants.
In region II, the differential equation is:

h2 #a,,
2 m  iix’

+ V,Q),,  = E@,, (7.29)



7.5 Beam  of incident parficles 185

o r
(7.30)

Since we are assuming E :, V,, the solutions are of a form similar to those in

Equation (7.18);  putt ing N =  +[2m(E  - V,/FI’]“~,  we have:

Qb,,  =T  Ce’“” +-De-‘“” (7.31)

where C and D are constants.

7.5 BEAM OF INCIDENT PARTICLES

The constants A, B, C, and D in Equations (7.28) and (7.31) are determined by the

imposit ion of physical boundary condit ions. As an example, we shal l  consider

what happens when a bearn of part icles of energy E is incident on the step
potential from the left.  The inc:ident  beam corresponds to a nonzero  vo lue  o f  A
in Equation (7.31); i .e.,  since,the  momentum operator is pX  =  -ihil/ilx,  the term
Ae””  corresponds to a beam of posit ive x momentum, pX  =  hk. The term Be-“”
would correspond to a beam of particles in region I traveling to the left, such as

could occur if the step could cause particles to be reflected. In Equation (7.31),
the term Ce’“” corresponds to a beam of part icles travel ing to the r ight, due to
part icles transmitted through the potential  barr ier,  whi le De-IO* corresponds to
particles incident on the barrielr from the right. If the experiment is set up so that
a source of particles is far tc’  the left ,  then we have to al low for a transmitted

beam in region I I ;  but there is no source for part icles incident on the step from
the r ight.  Hence, we must  h a v e  D G 0 in Equation (7.31).  Thus, for this  part icular
problem,

a,,  = Celar (7.32)

Now let  us apply boundary ,:onditions  at x  = 0 to f ind B and C in terms of A.
We must satisfy the condition!;:

and

With the subst i tut ion, .x  = 0,  thle  f i rst of these condit ions gives us:

A+B=C (7.35)

The second condition leads to:

ikA - ik6 = icvC (7.36)

If the two equations, Equations (7.35) and (7.36),  are usmed to find 6 in terms of A,

the result is:

B ~=  ’ - @lk)A
1 + (a/k)

(7.37)
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Likewise, the solution for C gives us:

(7.38)

Then the wavefunctions are:

(7.39)

Q),,  = A 2 O*
1 + (a/k)e

Thus, incoming part icles in region I  moving in the posit ive x direction are par-
tially reflected and partially transmitted into region II.

7.6 TRANSMISSION AND REFLECTION COEFFICIENTS

An interest ing relationship is obtained if  Equations (7.35) and (7.36) are mult i-
plied together and the resulting equation is multiplied by ft/im. Then

hk--A2 = !%B2 -+ %C2
m m m

This equation has a very simple physical interpretation. We shall, for convenience,

assume that A is real,  ard thus from Equations (7.37) and (7.38),  /3  and C must
a l s o  b e  r e a l .  I n  g e n e r a l ,  1 # / ’ i s p ro o r  ional  t o  t h e  p r o b a b i l i t y  d e n s i t y  o fp t’

part icles. Then, in the function @,  =  Ae”” + Be-““, A’ is proport ional to the
number of particles of Imomentum  Iik per unit  length along the x ax is .  Let  us
a s s u m e  t h a t  A  i s  normalized, s o  t h a t  A2 i s  e x a c t l y  t h e  n u m b e r  o f  inccmming
part icles per unit length. Since%k  is the mornentum, hk/m  i s  the part icle speed,

and the term, i’ikA’/m, in Equation 7.40 is  the speed t imes the number of in-
coming particles per unit length. This is equal to the Inumber  of incoming particles
arr iv ing at  x = 0 per unit t ime. Likewise, tlkB’/ m is the number of part icles per
unit  t ime ref lected back into region I  by the step at x := 0. Similarly, iiaC2/m is

the number of part icles transmitted through the step x = 0 into region I I ,  per
unit  t ime. Thus, the overal l  meaning of Equation (7.41) is  that the number of
particles reaching x = 0 per unit time equals the total number leaving that point
per unit time; i.e. the total number of particles is conserved.

One can define a reflection coefficient R to be the fraction of incident particles
reflected, or the ratio of the number of particles goming  back into region I  to the
number of incident part icles at x = 0. Thus, f rom Equation (7.37),

R =  PB'/m) ( 1  - a/k)'=  ~-~
(likA’/m)  ( 1  +  a/k)’

(7.42)

Likewise, the transmission coefficient T is defined as the fraction of inc:ident

particles which are transmitted, or the ratio of the number of particles going into
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h/k___-..-
( 1  + a/k)’

(7.43)

We see that T -I  R = 1; this is  another form of the conservation of part icles

equation. As the energy E becomes very large compared to the potential  height

V,,  we would expect the p#DtentiaI  to be less and le,ss important, so the trans-
mission coefficient should approach unity. Since a/k approaches one in this limit,
Equation (7.43) shows that this  i s  indeed the case. When E =  V,, o(  =  0.  Then
the transmission coeff icient is zero and al l  the particles are reflected. If  the par-

ticles obeyed Newtonian mechanics rather than qu’anium  mechanics, T would be
equal to unity for all energi(zs#  E _‘> VO,  and there woul’d be no part icles ref lected.
Thus, the wave properties c’f the particles cause reflections that would not occur
classically.

7 . 7  E N E R G Y  L E S S  T H A N  T H E  S T E P  H E I G H T

S u p p o s e  t h a t  E <  V0 f o r  t h e  s a m e  p o t e n t i a l  e n e r g y  f u n c t i o n ,  w i t h  a  s t e p
height V,.  Then, in classical mechanics, no particles could go into region II where
V = V,,  s ince there the kinet ic energy would have to be negative, leading to
imaginary speeds. Hence, Newtonian mechanics would say that al l  the part icles
are reflected. We shall  see ,that  quantum mechanics gives the same result .  I f
E <: V,,  we still have for the !solution  in region I,

a,  =  Ae”” + Be-“’ (7.44)

However,  in region I I ,  s ince E < V,,  the solut ions must involve real exponentials ,

a,,,  =  CemU”  +  D e ” ” (7.45)

w h e r e  p =  ~%~\l~->),%,  A s  x m-r  5,  etilX m+ +  x.  H e n c e ,  i f  D # 0 ,
there would be an inf initely large probabil i ty of f inding part icles inf initely far
inside the classical ly forbidden region. This is not reasonable, so D must be zero.
The remaining solution in region I I  is  the same as the solution for E >s  V,,  but
wi th  tl replaced by ifi. I f  the boundary condit ions are now appl ied at x = 0,

the equations relating A, B and C are:

A+B=C

and
ik(A - B )  =  -PC

Then, in terms of A, the solutions for the coefficients are:

(7.46)

(7.47)

6 = ------A;  C = --?-A1 - t . (p/ik)

1 - - (@/ik) 1 - - (,3/ik)
(7.48)
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In this case, even i f  A i:, real, 6 and C are both complex,  and so the number
of particles reflected back into region I per set is

hk 16 12  = !E! (7 49)
m ,m

The reflection coefficient is then:

R = @JB*/m)
(hkAA*/m)

[l +- WkNl  - Wk)l I.4  1 ’ _  ,z-
[l -- (P/ik)l[l  + (Blik)] 1 24  1 ’

(7.50)

All the particles are therefore reflected.
Even though the transn-iss ion coeff icient T i s  zero,  th is  does not mean that a

rneasurement would never show a part icle in region I I .  In fact,  the number of
p a r t i c l e s  i n  r e g i o n  I I  p e r  Jnit  l e n g t h  i s  1 a,,  1 ’ =  1 C  1 2e~2pX.  T h e  n e t  p a r t i c l e
c:urrent  to the r ight is s imply zero in that region. In Newtonian mechanics,  the
probabi l i ty of f inding a part icle in region I I  would be zero. Thus,  in quantum
mechanics, particles can penetrate into a region which is forbidden classically.

7 . 8  TUNNEUNG  F O R  A  S Q U A R E  P O T E N T I A L  B A R R I E R

One implication of this penetration effect is that i f  the higher potential region is

not very wide, part icles wi l l  have a poss ibi l i ty of tunnel ing through to the other
side, and of being transmitted. Classically, this would be impossible.

To i l lustrate quantum mechanical tunnel ing, we wi l l  use the potential  energy
shown in Figure 7.3, with V =  V,, a constant ,  between x  =  0  and x  =  a.  We

Figure 7.3. Square potertial barrier used to illustrate quantum mechanical tunneling.
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assume that elsewhere, V = 0. As was the case in the previous section, the solu-
tion in region I is now:

aI = Aelk’ + Be-‘k”;  k = t”2mE
h

In region I I ,  i f  E <: I$,,  the solution is:

(7.52)

H e r e  w e  c a n n o t  c o n c l u d e  t h a t  D  =  0 ,  s i n c e  remgion  I I  d o e s  n o t  e x t e n d  t o
x  =  + X.  If  the source of particles is to the left in region I,  and there is no

source far to the r ight, then we may al low for the possibi l i ty of part icles tunnel-
ing through the barrier and ceontinuing on to the right by taking the wavefunction
in region III to be

a,,,  = Fe”” (7.53)

A s  b e f o r e ,  %k  1 A 1 ‘/m is the number of part icles per unit t ime moving to the
right in region I  and hitt ing the potential  barr ier,  hk  / 6 ( ‘/m is the number

ref lected, and Ftk 1 ,F  / ‘/ m  i s  t h e  n u m b e r  t r a n s m i t t e d  i n t o  r e g i o n  I I I .  I n  t h i s
example, the particles in bo?h  regions I and III have momentum of magnitude Ak.

There are two boundary condit ions at x = 0:  cont inuity of the wavefunct ion
and of its derivative; and there are two similar conditions at x = a. They give

A+B=C+D
at x = 0

ik(A - 8 )  =  /3-C i- D )
(7.54)

Ce-@”  + hii”  = Fe’“”
clt  x = a

(j(-Ce-“”  +  D e ” “ )  z=  jkFe””
(7.55)

Solut ion of Equations (7.54) and (7.55),  for 6, C, D ancl F, in terms of A, gives us
after some algebra,

/:I t- (/3/k)2](1  - e-2pn)8 = .-~--_
[I  - (P/k)‘](l  - emzd”) +  ‘zi(fi,‘kGl  +  eeziT A

(7.56)

c =  .-~--_ 211  + GUk)l
[l - (P/kj’](l  - e-“O)  +  2i(P/‘k)(l  +  e-“T  A

2[1  - i(P/k)]e-‘@”D = ._~---
[l - (P/k:12](T  - e-‘“O)  +  2i(p/?;T  +  ee2’ia) A

(7.57)

(7.58)

F =  .-~--- 4i(/3/k)em(ti+rk)”

[l - (/3/kj2](l  - e-“”
- A

)  +  2i(P/k)(l  +  e-“O)
(7.59)

Whi le these results  are somewhat involved, i t  i s  easy to subst i tute them into

Equations (7.54) and (7.55) and to ver i fy that they are solut ions.  S ince the
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part icle speed is the sarne in I  and I I I ,  the transmiss ion coeff icient is  s imply
T =  FF*/AA*.  I t  i s

T= ~__ 16(P/k)2e  -“a (7.60)__-
[l - (/J,‘Ic)~]~(~  - e m2do)2  -t  4(fl/I~)~l:l  + em2o0)2

If  @a  is  large compared to one, the exponentiais in thle  denominator of Equation
(7.60) are very small cornFlared  to one, and can be dropped. In this case,

Because the exponential, e -2p0, rapidly becomes small  with increasing /3a, the
-~

traction of part icles gett ing through is very small  when /3a  =  d2m(Vo  - E)a/h

is large. Thus, as the enerfly  becomes smaller compared to V,, or the width of the

potential barr ier becomes greater, fewer part icles tunnel through. Of course, in
Newtonion mechanics no particles would get through.

example ‘ I .  When two mater ials  are placed in contact, an electron often has to go
through a potential barr ier of a few electron volts to get from one material to
the other. There are a nulnber  of sol id state devices which are made this  way
deliberately. For electronr,, m = 9.1 x 10m3’ kg anld Ii  = 1.05 x 1Om34  /sec.
Take V, - E = 1 eV ancl  a = 3 Angstroms, a reasonable distance between
atom layers. Estimate the value of the exponerltial  e m”da.

dh.Vl
2pa = 2 .\/2m(Vo  - E)(J

Ii

2-\/2(9.1  x  10m3’)(1.6 x  10.-19)(3  x  lo-“)=
1 . 0 5  x  1o-34

~-  =  3 . 0 8 .

Therefore, e -“O  = e m308 = 0.046. So the tunnel ing is  reasonably probable.

example 2. Hydrogen impurit ies in a sol id might diffuse through it by tunneling of the
hydrogen nucleus (the proton) from one latt ice s ite to another. The proton mass
is  about 1836 t imes that ‘of  the electron. Take the other parameters to be the
same as in part (1) of this Example. Find the exponential in this case.

so/utmn  Since the only change from Example 1 is in the mass, the exponent is  increased
by a factor of ~?836.  Then em”” = e-‘32  := 2 x 10m57. The proton in osci l-

lat ing about i ts  equi l ibr ium point in the sol id might h’ave  a frequency of around

‘1013  per second. This is  essential ly how many t imes the proton hits the barr ier
per second. The product of lOI and the exponential  is  a measure of the order
of magnitude of the probabil i ty of a proton jump per second. This is  of the
o r d e r  o f  10-44, complete y negl igible. I f  the quantity, V. - E, were lowered
by a factor of ten or more. this diffusion would begin to be more important.

7.9 PARTICLE IN A BOX

As a fourth i l lustration of the solutions of the on’e  dimensional Schrtidinger

equation, we shal l  consider the case of a part icle confined to a f inite region, a
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one dimensional box of length 1.  By this we mean that the part icle is  definitely
ins ide the box and is  kept there by r ig id impenetrable wal ls  at the ends,  x = 0
and x  =  1.  This is illustratecl  in F igure 7.4. S ince the part icle is  confined to a

To hfinity To infinity

i

”

,.
- - - -  x

I, x zz  L

Figure 7.4. Potential energy function for a particle in cl one dimensional box.

region of size L, the uncertclinty  in posit ion ax  is  about L,  so the uncertainty
apX in momentum pX  should lbe  about  h/L. Hence the part ic le  cannot  have a
definite momentum. It can, hc’wever,  still have a definite energy, as we shall see.

We st i l l  assume that the energy is definite, so $ z=  @(x)e-‘E”r’,  where cP(x)
i s  the spat ial  part  of  the wove funct ion. Hence, ins ide the box, where V = 0,
+ satisfies the differential equation:

We expect this equation to tell us what @( x ) I S  ins ide the box. The s i tuation is
somewhat analogous to the case oi a stretched string held rigidly at both ends. In
that case also,  a wave may exist  on the st r ing,  and :solutions  of definite fre-
quencies arise only when an integral number of half wavelengths of the wave can

fit  into the length L of a str ing. Thrs gives r ise to standing waves on the str ing.
A similar s ituation should hold for the de Broglie wave!; in the box of length L.
I f  A i s  the wavelength of a de Brogl ie wave, then in order for  the wave not to
interfere destructively with itself ,  an integral number n of  hal f  wavelengths

should fit into the box, or:

nX
-= L
2

The magnitude of the momentum would then be

h h n

p=x=z

The kinetic energy would be

(7.64)

(7.65)
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So only a discrete set of energies or frequencies would be al lowed. These would
be determined by values of the integer n.

7.10 BOUNDARY CONDITION WHEN POTENTIAL GOES TO INFINITY

Now let us see how this  same s ituation would be treated using the Schrodinger
equat ion,  Equat ion (7.6:!).  To solve a differential  equation l ike this,  we need to
have boundary conditions, statements analogous to the requirement that the dis-
placement at the ends of the stretched string must vanish. In our case, we know
the part icle is ins ide ra.pher  than outs ide the box.  The reason that Q,  is zero

outs ide the box is  that the wal ls  are assumed to be perfectly r igid, so thlclt  al l
part icles bounce elast ical ly off the walls,  or, equivalent ly ,  that  the potent ia l
energy is inf inite outside. The probabil i ty of f inding a part icle outside is there-
fore zero; so, for x outside the box, / a(x)  1 ’ =  0. Th is  impl ies that the value

of @  itself must be zero outside. Since the wavefun’ction  must be continuous, the
value of the wavefunction just inside the box must be zero at either end, so

@(x = 0) = @(x = I) =: 0 (7.66)

The slope of the wavefunction must also be continuous, and it might appear at

f i rst  glance that both th,:  wavefunct ion and i ts  s lope are zero at the endpoints;
but  th i s  would mean the wavefunct ion would vani rh everywhere,  an unreason-
able solution. To see why the slope of the wavefunction can be finite at the end-

points,  suppose the potential  energy outs ide the box were not inf inite, but  had
a large constant value. Then for x > L,  @  =  Cemdx  ,  wi th fl proport ional to the
s q u a r e  r o o t  o f  t h e  p o t e n t i a l  e n e r g y .  O u t s i d e ,  d@/dx =  -PCe-‘”  =  --pa.

Hence, although @ approaches zero as V, -+  ~3, /?  approaches inf in i ty and the
product p@  can remain f inite. Indeed, d@/dx must be f in i te everywhere, both
ins ide and just outs ide the box. The boundary condit ions for the case of the
part icle in a box are therefore given by Equation (7.66),  with no further avai l -
able information on the slopes d+/dx  at the endpoints ,  except that they are
finite.

7.11 STANDING WAVES AND DISCRETE ENERGIES

We now have a differential equation, Equation (7.60),  with boundary conditions.
For ease in writing the equations, let

k = P4”2- -
A

Then the SchrGdinger  eq(Jation,  Equation (7.32),  bec:omes:

d2@
-=
dx2

-k2+

(7.67)

(7.68)

This equation is the same as that discussed in connection with the step potential,

and has osci l latory solutions of the form of Equation (7.28). For the present
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appllication,  however, it is more convenient to write the solutions in trigonometri-
cal form, as a sum of a sine and a cosine:

@(.I() =  A  c o s  k x  + 6 s i n  k x (7.69)

where A and 6 are two arbitrary constants whose rat io is  to be determined
from,  the boundary condit ions.  One condit ion is  @(x ==  0) = 0.  This  gives us:

a(O)  := A cos (0) + 6 sin (0) = 0 (7.70)

or A = 0. The second boundary condit ion is @(x =  1.)  ==  0.  This  gives us:

‘S(L)  = 6 sin (kl) = 0 (7.71)

This could be satisf ied by settinsg  B = 0,  but then the whole wavefunct ion would

vanish, which is  not the desired solut ion. The other possibi l i ty is  s in (kL) = 0.
‘The sine function has zeros at vcrlues  of L such that:

kL = no (7.72)

,where n is  any integer not equal to zero. I f  n = 0,  again the whole wave-
funct ion would vanish,  so this, case is  excluded. The poss ible wavefunctions are
then:

n = 1,2,3,...

Only posit ive integers are taken, because negative integers just dupl icate the
same wavefunct ions with an o,veroll  s ign change; thle  overal l  s ign, however,  i s
not physical ly s ignif icant. The constant 6 can be determined by normal izat ion.
T h u s ,  i f  t h e  p r o b a b i l i t y  o f  fincling  t h e  p a r t i c l e  i n  t h e  r a n g e  d x  i s  1 @n  / ‘dx,
then for one particle in the box,

Using the formula

we find that

(7.73)

(7.74)

If, for convenience, 6 is taken 1’0  be real, the final fort-r  of the eigenfunctions is:

(P”(x)  = jqsin f?), n  =  1,2,3  ,...

The constant in front of the sine function is called the normalization consfanf.

Having solved the differential eqiJation  with boundary conditions, we can now
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find the allowed energies. From the definition of k, Equation (7.66),  the energy is:

o r

E _  h’k:’

2 m
(7.77)

(7.78)

This is the some CIS  that obtained by analogy with a st retched str ing. The main
point to be seen here is that because of the boundary conditions, only a discrete
set of energies crre possible; the energy is quanfized.  The smaller the size of the

box L, the larger wi l l  be the spacings between al lowed energies. Physical ly,  i t  is
the confinement of the electron to l ie within a small  region which gives r ise to

the discrete energy spacings. In classical mechanics, any energy would be pos-
sible for this mechanical situation.

7 . 1 2  M O M E N T U M  A N D  U N C E R T A I N T Y  F O R  A  P A R T I C L E  I N  A  B O X

To invest igate the momentum, the s ine function can be written as a super-
posit ion of exponentials.  For example, for n = 1, the ground state, the wave-
function is:

a,(x)  = - :
( 1
,;& (e’““,’ _ e-m;‘,‘) (7.79)

The term involv ing elnx” by i tself  would correspond to a value of momentum
given by:

(7.80)

The term e -In”’ would correspond to a value of momentum, px  =  -hir,IL.  S o
appearance of these exponentials in a,  with equal amplitudes corresponds to the
motion of the particle in either direction with equal probability; the wavefunction
aI  i s  a superposit ion of waves of equal but opposite momenta. Thus the expec-
tation value of the momentum is zero. This c:ould bme  ver i f ied directly by calculat-

J‘

I
ing Io  d x  #*()i/i)d#/dx.  T h e  d ’ f ference in the momenta of the superposed

waves should g ive us  a measure of the order of magnitude of the uncertainty
in px. Thus,  approximately,

(7.81)

Also, Ax is on the order of L, so AxAp,  z h, in agreement with the uncer-
tainty principle. A more’ careful calculation of the uncertaint ies using rms devia-
tions from the means could easily be made, but the crude argument given above

is sufficient to illustrate the uncertainty principle in this example.
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‘.13 LINEAR MOLECULES APPROXIMATED BY PARTKLE  IN A BOX

Frequently, physicists represerlt energy levels  by a diagram in which hor izontal
bars have a vertical spacing proportional to the energy spacing between levels.
This al lows one to see at o glance the energy structure of the system. In
Figure 7.5 an energy level diagram is shown for the part icle in o box,  where the

n 4

0

Figure 7.5. Energy level diagram and possible transit ions for D part icle in o one
dimensional box.

energies are E, = n2h2/8m1’.  Here the distance of the bars from the base l ine
corresponding to the zero of energy is proportional VO  n2. This is essential ly a one

dimensional plot of al lowed energies with energy increasing upwards. The par-
ticle can exist in stationary states, states of definite frequency, only if the energies
have these discrete values. If some external influenc’e  should disturb the particle,
then it might change from one of these states to another. For example, i f  the
particle started in the state labeled  by the integer II”,  and ended up in the state

nt  (u for upper, & for lower), then it would have to lose energy:

(7.82)

This energy could be given up in the form of a photon The energy of the photon
would be:

E =: hu = E, - Et (7.83)

Therefore, the differences betweerl  levels in an energy level diagram are propor-

tional to the light frequencies we rnight expect to see emitted from the system.
Physical systems for which the part icle in the box is a good model are found

in certain classes of long straight molecules of varying lengths L, which att ract
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electrons in such a way thot the electron moves back and forth between the ends

of the molecule in a standing wave. The observed energies are closely approxi-
mated by those of the part icle in a box, Equation (7.78).  When the electron
makes transit ions between these energy states, absorption and emiss ion of
photons are observed. I f  the upper state is  the n = 2 state, and the lower
state is  the n = 1 state, then for a molecule of length L the frequency of the
photon should be:

3 h
“Z--

8mL2
(7.84)

The wavelength of the photon would be given by:

A = c = 8m~2c
u 3h

(7.85)

(7.86)

For the electron, m = 9. I1 x  10m3’ kg. Then, for (2 molecule of length 1 =  7
Angstroms, this wavelength is in the visible region:

8(9.11  x  10m3’)(7  x  lo-I’)‘(3  x  10’)x _

[3(6.63  x lo-““)]

=  5 . 3 9  x  10m7 m  =  5 3 9 0  A n g s t r o m s

7.14 HARMONIC OSCILLATOR

The f inal example to be !,tudied  in this chapter is  thle  one dimensional harmonic
osci l lator.  The study of the quantum mechanical Iharmonic osci l lator is  very
important,  because a number of phys ical  systems can be considered to behave
like a collection of harm,>nic  oscil lators. For small ,vibrations,  part icles in Imost
potent ial  wel ls  have s imple harmonic vibrat ions.  For instance, a diatomic  mole-
cule has the energy level:,  of a one dimensional harlnonic  osci l lator (along with
rotational and atomic levels).  Also, quantized  sound waves (phonons)  and l ight
waves (photons) can be represented as harmonic oscillators.

The Schrodinger  equation for a one dimen!jional  harmonic oscil lator must f irst
be obtained. For a part icle of mass m with displacement x from equi l ibr ium,

the kinetic energy operator is -(t,2/2m)d”/ax2.  T h e  t o t a l  e n e r g y  o p e r a t o r
is it,a/(jt. Also, for o sFlring constant K, the harmonic osci l lator potential is
V = % Kx’.  These operators lead to the Schrtidinger  equation:

2 m  ax2

I f ,  again,  a stat ionary state with
+(x)em’E”“, the equation for ~1)  is:

Ii2  d2Q

2m  dx’

(7.87)

definite energy is assumed, so that $ =

t  ; Kx’+  =  E+ (7.88)
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Since  in microscopic  systems,  frequency  is more  easily measurable  than  spring
constants,  it  is desirable to eliminate  K by expressing  it  in terms of the angular
frequency  for a  harmonic  oscilla?or  from Newtonian  mechanics,  w =  -\//K/m =

27ru.  Then,  in terms of w,

hz2 d2+- - - - -
2m  dX2

+ i mw2x2@ := EG) (7.89)

Let us verify that  for the propelr  choice  of a, an  energy  eigenfunction  is:

a0  =  aoe-1/2crx2 (7.90)

where  a0  is a normalization constant.  The  first term  ill the differential  equation,
Equation  (7.89),  contains:

= aOe-li:!n’:2  tnzx2  _ (?) (7.91)

The  differential equation  then becomes:

h2nr2
a0e

I,2  ,x2 ---x 2 +  !!2Cu  +  1 m&)2,x2
2 m 2m 2

= aoe-1/2<XX2 E (7.92)

Since  this  must  hold  for any  arbitrary  x, in order  to have  a  solution the sum of
the coefficients  of x2 must  be  zel’o.  Thus,  -ti2cu2/:2m  + ?4rnm2  = 0, and this
leads  to a  value  for a,

Then  for the remainder of the equation  to be  satirfied,  the energy  eigenvalue
must  be:

E = E. = f wh (7.94)

Note  that  the probability density  1 @o  / 2 f or this solution to the Schrodinger

equation  is gaussian  in form. One  might suspect  that  for this  case the uncer-
tainty  product  ApAx would  be  a minimum.  Comparkon of the wavefunction  of
Equation  (7.90)  with  the free-particle gaussian  packet,  Equation  (7.9),  indicates

that  ‘1’2  r~ =  % cr2,  so for this  case,

(XI,  =  0 (7.915)&=.L I=-!-
VT-i ccy  VCG

(P;,  = ‘1

Hence,  again,  AxAp = ti/2.  In fact,  it is because  of the uncertainty  principle

that  the minimum  possible energy of the oscillator is greater than  zero. Clas-
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sically, the minimum ene’gy  state of an osci l lator would occur when the ~nass
was at rest (p = 0) at the posit ion of zero displacement (x = 0).  Then both
kinet ic and potent ial  energies would vanish,  and E,,,,  = 0. This is  not possible
in quantum mechanics, because then both posi t ion and momentum would be
known, with Ax = -Ip  = 0 v io lat ing the princ:iple  of uncertainty.

S i n c e  (x)  =  ( p )  = 0 f o r  t h e  o s c i l l a t o r ,  Apz  := ( p ’ )  a n d  Axz  =  (x2).
The average value for the energy in the grourld state is thus:

(E)  =  & ( p ’ )  + ;K ( x ’ )  =: & Ap2  +  ; KAx2

1 %*a  1 K=--.+  - -
2m 2 2 20

Since CY  =  mw/ii,

(t7.99)

(E)=~“~+~K~=ahw+ahw=~kw (7.100)

Thus,  in a  sense, the uncertainty pr inciple requires both (p’) and (x’ )  to  be
positive, and forces the ground state energy to have a positive value.

7.15 GENERAL WAVEFUNCTION AND ENERGY FOR THE
HARMONIC OSCILLATOR

The general solution of the one dimensional harmonic osci l lator Schrodinger
equation which sat isf ies the boundary condit ion, + l 0 as x * * x,  is, for
a = mu/h,

*“tx)  =  x,  o4 x2~e-1/2~=2, for n an even integer
&=a

(7.101)

@“(X)  = x % crAx2te -1mJ for n an odd integer (7.102)
&=O

By subst i tut ing into the Schrodinger equation, Equation (7.63),  one may f ind

the coefficients o4 in terms of a,, ,  and determine the energy eigenvalues. The
general expression for the energy is found to be:

E, == hw, n ==  0, 1, :2,3, . .

The first five of the eigenfonctrons  are given in Table 7.2, along with their energy
eigenvolues. The lowest (energy, %hw,  belongs to the state descr ibed by the
wavefunct ion @0  already discussed. This is ‘cal led the zero point energy. The
five lowest possible energy eigenfunctions of Table 7.2 are graphed in Figures 7.6

through 7.10, along with their  probabil i ty densit ies,  / @,  1 ‘.



X

FigtIre  7 . 6 . Wovefunction and probability density for the ground state (n = 0) of the
harmonic oscillator. The horizontal1 bar beneath the origin indicates the range of possHble
positions for classical motion with the r,ame  energy.
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with n = 1.

Wavefunction and probability d e n s i t y for t h e harmonic oscillator s t a t e
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Figure 7.8. Wavefunctian and Iprobability  density for the harmonic oscil lator sttrt’e
with n = 2.
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with n = 3.

Wavefunction clnd  probability d e n s i t y for the harmonic oscillator st.ate
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with n = 4.

Wavefunction and probability density for the harmonic oscillator state
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T A B L E  7 . 2 Eigenvolues  and Eigenfunctions for Fkst Five Simple Harmonic
Oscillator States

Quantum

Number

”
.__

0

Wavefunction

+‘n

Energy

Eigenvalue

E”

a l/4

0

- e
-1/‘2ax2

H
; hw

The coefficient aO, in the case of each eigenfunction a’,,  may be found by
requir ing that the total probabi l i ty of f inding a part icle be unity.  Thus, for a,,,
the probabi l i ty density is ,  f rom Equation (7.90),

ao*Qo  = 1 a0  1’ emax2 (7.104)

and the total probability is:

f rom Table 7.1. Therefore, assuming it  is  real and posit ive, the value of a0  for
this state is (a/~)““, as shown in Table 7.2. A s imi lar integration must be done to
determine a0  for each state.

7.16 COMPARISON OF QUANTUM AND NEWTONIAN MECHANICS
FOR THE HARMONIC OSCILLATOR

I t  is  of interest to compare the probabil i ty distr ibution from quantum mechanics
to that from Newtonian mechanics for a state of high n. If in Newtonian me&an-
its  the posit ion of the part icle is  measured at arbitrary t imes, one would expect
that the probability of finding it in dx is inversely proportional to the speed,. i.e.
proportional to the time dt = dx/(dx/dt)  that the particle spends in the range of
positions dx. In Problem 21 of Chapter 2 it was found; that the probability is then:

(7.106)

for an amplitude x0.  The class ical amplitude x,, for 11  given energy is founcl  by
equating the maximum pcltential  energy to the total energy:
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The probabi l i ty density,  l/(z’\/‘~~~~ xi),  is plotted in Figure 7.1 1 as the dctted
curve for E =  “I/;!  fiw,  corresponding to n = 20. The quantum density,  4b*@,

Figure 7.1 1. Comparison of cIazSsicoI  (dotted) and quanltum  mechanical (solid) distribu-
tion functions for the one dimensIonal  harmonic oscillator with n = 20.

i s  the corresponding sol id curve for n = 20. Between -x0  and x0  the main dif-
ferences are the oscil lations <and  zeros in the quantum curve. Outs ide this  range
of x, the Newtonian probabiliiy  density is  exactly zero; the part icle cannot go
into a region in which the kinetic energy would be negative. There is a tail to .the
quantum curve in those regions, however,  indicating a poss ibi l i ty for the part icle
to be found there.

In F igure 7.12 are given probmobility  density plots for a harmonic osci l lator
with1  n = 10, together with the ,corresponding  classical density. These plots corre-

spond to a particle which is free to move in the vertical direction but is bound by
the osci l lator potential  in the horizontal direction. I f  several thousand measure-

ments of posit ion of the osci l lator were made and plotted on a graph, the re-
sulting plot would have the appearance of the Figure.

The connection with Newtonian mechanics may be seen more easi ly by con-
sidering a gaussian  wave packet similar to that discussed for the free particle ot
the beginning of this  chapter.  The reader may ver i fy by subst itut ing into Equo-

tion (7.87) that the Schrodinger  equation is satisfied by:

4(x<+)  = (is  “4 exp
) [

- i a(.X - xg  co5  wty
7r

-; ( 1 - of + sin ot 1axxo -:2 4 (YX~ sin 2wt  11 (7.107)
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Distance in units of-

Figure 7.12. Density of points is proportional to the probability density for the harmonic
oscillator with n = 1; quantum mechanical density at the top of the diagram, classical
density below.

This function is  a superposit ion of many stationary states @n  exp(-iE,f/Fr),  and

thus does not correspond to a definite energy. The probability density is:

licl’= fi exp[-a(x  - x0  c o s  wt)‘]

This  i s  a wave packet of constant character ist ic width l/da = fi/mw,  with  i t s
center  moving with the Newtonian s imple harmonic motion, x = x0  cos wt.  For a

macroscopic mass of 1 kg and a spring frequency of 1 cycle/set,  the charac-
ter ist ic width of the gaussian  is  around lo-l7 m. Therefore, for al l  practical

purposes, the posit ion is known with negligible error.

What about the energy spread? The expectation value of the energy operator,
ihil/at,  is easily found with the help of Table 7.1 to be:

(E) = ; mw2x~  + a Aw

This is  the Newtonian energy plus one-half the zero point energy. S ince the zero
point energy for a frequency of 1 cycle/set  is  approximately 1Om34  i, one can
forget about it  for macroscopic bodies. The rms deviation of the energy from its
mean is:

This is ~‘2  t imes the square root of the Newtonian energy t imes the zero ooint
energy. For a macroscopic body, AE is negligible compared to E; i t  is  about

10-l’  i if E is  approximately a joule. On the other lhand, AE is very large com-

pared to the zero point energy. So we conclude that for macroscopic bodies, as
closely as we can measure,  quantum and Newtonian mechanics agree for the
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harmonic  oscil lator. Of course, ,for  microscopic bodies this is not true. In partic:u-
lar,  as the maximum classical displacement xg approaches zero, the wavefunc-
tion,. Equat ion (7.44),  approaches the ground state wavefunct ion and E ap-
proaches the zero point energy. Also, AE  approaches zero as one would expect
for the stationary ground state.

17 CORRESPONDENCE PRINCIPLE IN QUANTUM THEORY

The above discuss ions of the class ical and quantum descr ipt ions of a s imple

harmonic  osci l lator and of a gaussian  wave packet far  a f ree part ic le provide
i l lustrat ions of the appl ication ,to quantum theory of the correspondence princi-
ple, which was discussed in (Chapter 3, in connection with special  relat iv i ty.
According to this pr inciple, the quantum theory shauld  give essential ly the same
results as the classical theor--Newtonian  mechanics-- in s i tuations where the
classical theory is known to holcl,  such as in situations involving bodies of macro-
scopic mass and size. It was seen, for example, that a wave packet describing a

part icle of macroscopic mass had negligible spreading, and, s imi lar ly, that a

wel l- local ized osci l lator having negl igible spread could be obtained for an oscii-
lator of macroscopic mass.

These s i tuat ions almost always involve the superposit ion of an extremely larfge
number of stat ionary states, leading to large quantum numbers. Hence, anotiler

way of stat ing the correspontdence  principle is  that the classical theory must lbe
an appropriate l imit  of the quantum theory involvinlg  extremely large quantum
numbers. For example, in order for a particle of mass 1 g, in a one dimensionlal

box of length 1 cm, to have a kinetic energy of 1 erg (1 O-’  ioules), the quantum
number n must be determined through Equation (7.38),  and so:

o r

” rV (8)~~10~3)(10~2)2(10-7) -
( 6 . 6 3  x  10-34)2

(7.1 11)

t l  ‘X  102’ (7.1 12)

As another example, the classic:al  ‘osci l lator has an energy of order mw’xz;  for
this to be described by a packet or superposit ion of quantum osci l lators,  which
have energy of order nhw,  we must  have:

nfiw  ‘u mw2x~

or form = 1 g, w = 1 set-‘,  x,,  = 1 cm,

(7.1 13)

” ‘v y4: = (10-3)(1)(10-2)2
~ Ii 1 o-s4

= 102’

So in these examples n is indeszd large.

One can actual ly show r igorously that i f  the osci l lator wave packet,  Equation
(7.107),  is expressed in terms of a superposition of oscillator wavefunctions,

L

#(x,t)  = xA.@,(x)exp
n =o

(7.1 15)



2 0 8 Use of Schrtidinger’s  equofion

then to describe a  macroscopic part icle, the majority of quantum numbers n
which contribute to the above sum are given appro.ximately  by Equation (7.1 13)
above, and are hence very large.

Numerous addit ional examples of this  correspondence between quantum and
classical theories in the linit  of large quantum numbers wi l l  be discussed in later

chapters, in connection with statistical mechanics, lattice vibrations in solids, and
the hydrogen atom.

FREE PARTICLE

A free-part icle wavefunction with propertiess  s imi lar to those of a Newtonian
part icle may be formed with an init ial  gausSsian  dist r ibut ion. Subsequently,  the
wavefunction is  also gauss ian, with the character ist ic spat ial  width increasing
with t ime due to the uncertainty in the momentum. For macroscopic c:ases,

Newtonian and quantum mechanics agree.

STEP POTENTIAL

I f  E > V,,  the wavefunctions are s imple osci l lat ing exponentials  in the two
regions separated by the step. By using the conditions that the wavefunction and
its  der ivat ive are cont inuous at the step, one may f ind the ampl i tudes of the
ref lected and transmitted waves. The part icle current is  proport ional to the
magnitude of the amplitude squared times the speecl.  The ratio of the transmitted
current or reflected current to the incoming current is the transmission or reflection

coeffkient, respectively. The sum of these coefficients is unity, expressing conser-
vation of number of particles. For energies below the top of the step, E < V,,, the
reflection coefficient is unity.

SQUARE POTENTIAL EIARRIER

For a square potential barr ier of height V,, some of the incident part icles may
tunnel through to the other side even if E <<  V,,.  The fraction tunnel ing through is
of order Ed”‘,  where a is the barr ier  width and p =  \‘2m(v,--  E)/h

PARTICLE IN A BOX

A particle confined in o f inite region can have only discrete energies. This is

i l lustrated by the discrete energy eigenvalues of the part icle in the one dimen-
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sional  box. At the boundaries of .the  box, where the potent ial  energy suddenly
goes to infinity, the wavefun’:tion  must be zero. These boundary condit ions lead
to standing waves with the discrete energies,  E,  =  ~l,2n2/8m12,  wi th  n a non-
negative integer for a box of length 1.  The lowest energy is greater than zero.

H A R M O N I C  O S C I L L A T O R

Molly  physical systems approximate the harmonic osci l lator potential for srlall
vibrations, i .e. for low energies. This is  another system in which there are only
discrete energies. In this case, the levels  are evenly spaced; E, = (n + % )FIw,
where o is  the angular f requency which the harmoni’:  osci l lator would have in

Newtonian mechanics. Again in this case, a solutiorl lmay be found which i: of
gaussian  shape and moves l ike a Newtonian part icle.  Here, the uncertainty in
the momentum does not inc,rease  the gaussian  width because the part ic le 11s
bound. For macroscopic systems, Newtonian and quantum mechanics are
equivalent.

1 .  C o n s i d e r  a  p a r t i c l e  o f  m a s s  llO-”  k g  i n s i d e  a  o n e  d i m e n s i o n a l  b o x  o f  l e n g t h  3  c m .

Suppose i t  i s  i n  a  s tate  such that  i..s  speed i s  about  1  cm;sec,  t o  w i t h i n  0 . 1 % .  W h a t  # I S

t h e  c o r r e s p o n d i n g  q u a n t u m  n u m b e r  n ,  a n d  t h e  c o r r e s p o n d i n g  u n c e r t a i n t y  i n  t h e

quantum number?
A n s w e r : 9  x 10z3;  9  x 1  Ozc-so  q u a n t i z a t i o n  o f  F IS u n i m p o r t a n t .

2 .  A  s imp le  harmon ic  osc i l la to r  cons i s t s  o f  a  par t ic le  o f  ~rnass  m w i t h  a  p o t e n t i a l  e n e r g y

of  % kx’,  w h e r e  k i s  a  cons tant .  E s t imate  the  min imum energy  wh ich  the  par t ic le  may

have cons i s ten t  w i th  the  uncer ta in ty  p r inc ip le ,  i .e .  by  as suming  &J.  = L’ (p’>)”

7i/‘2Ax  a n d  m i n i m i z i n g  ihe e n e r g y .  ( U s e  t h e  e x a c t  f o r m  Ap,&  2 X/2)  I f

\/k/m  - lOI  per  set,  what  i s  the  magn i tude o f  the  energy  in  eV?

A n s w e r :  Emln  * ifi  +F; 0 . 3  eV.

3. Wr i te  the one d imens iona l  !jchrGlinger  equat ion for  a mass  m w i t h  a  p o t e n t i a l  ene’rgy

cor respond ing to  that  o f  (a)  the  g rav i tat iona l  f ie ld  near  the  ear th’ s  su r face;  (b)  the

in te ract ion  o f  an  e lect ron  w i th  a  f i xed  po in t  pos i t i ve  charge ,  q.

4 . L e t  p be  the  ang le  re la t i ve  to  the  x a x i s  o f  t h e  p o s i t i o n  o f  a  p a r t i c l e  i n  t h e  x y  plum:.

Thus ,  in  terms of  x and y,  (6 =  tan-’  (y/x) .  Show that  $ =  e’“@  sat isf ier,  the two
d i m e n s i o n a l  Schrodinger  e q u a t i o n ,  w i t h  V  =  0  f o r  o p a r t i c l e  c o n s t r a i n e d  t o  r-rove

i n  a  c i r c u l a r  p a t h  w h e r e  x2  +  y2  = R2  i s  a  c o n s t a n t .  h2/2m  (a’$/ax”  -1
-2

d iClay
2

+  E$  = 0 .  W h a t  i s  t h e  e n e r g y ,  15,  i n  t e r m s  o f  t h e  c o n s t a n t s ,  n a n d  R?

I f  t h e  w a v e  f u n c t i o n  c a n  have  on ly  one va lue fo r  a  g iven p, f ind  the poss ib le  va lues

t h a t  n can have.
2 2

Answer: ?-.n  = 0, * 1, +2,. .  .
2mR2’
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5. The r igorous  def in i t ion of  Lx i s  the  root  mean square dev iat ion  f rom the  average

o f  x ,  o r :

s im i la r l y  fo r  Sp. Find Lx,  -Ip,  and .Ix.Ip,  f o r  t h e  l o w e s t - e n e r g y  l e v e l  o f  o  particle

of  mass  m in  a one d imens ional  box of  width&.

1
____  =  0.567h  > ; fi,  t h e  m i n i m u m

poss ib le .

6.

7.

8.

Us ing  the  exact  t ime-dependent  gaussian  w a v e  p a c k e t  f o r  a  localized  f ree  par t ic le

g i v e n  i n  E q u a t i o n  (7.18),  c a l c u l a t e  ( p , )  a n d  .Ip,,  a n d  v e r i f y  t h a t  ther,e  e x -

pectat ion va lues  do not  change in  t ime.

A one d imens iona l  potent ia l  i s  V  = V o > 0 for x < 0 and x > L, and is 1’  = 0

for 0 < x < 1.  Show that if V, > E > 0, the energy E must satisfy tan(ltL)  =

2/3&/(k2  - @)  w h e r e  k  =  ~?%E/tr  andp  =  -\/2m(Vo  - E)/h.

F o r  t h e  w a v e  f u n c t i o n  o f  E q u a t i o n  (7.9),  Sx.lp  =  1/2  h w h e n  t  =  0 .  A l s o  f o r  t = 0 ,

s h o w  t h a t  ( E )  = (pji/2m)  + %h2/mc2, the  Newton ian energy ,  p lus  a  quantum

te rm as soc ia ted  w i th  the  wave packet  due  to  the  momentum d i s t r ibu t ion .  F ind  1E-..-  -
w h e r e  AE  = d=- (E))‘). In  addi t ion  to  the in tegra l s  g iven in  Tab le  7 .1 ,  use

s

I.
4 -*x2  dx =x e % t/*/tu  These results  are independent  of  t ime.

-L

9 . I f  I$,  a n d  icz  a r e  t h e  normalized  w a v e f u n c t i o n s  f o r  t h e  t w o  l o w e s t - e n e r g y  wave-

f u n c t i o n s  f o r  a  p a r t i c l e  i n  a  o n e  d i m e n s i o n a l  b o x ,  normolize  4,  +  2$*  a n d  f i n d

t h e  e x p e c t a t i o n  v a l u e  o f  t h e  e n e r g y .

9h2W2
A n s w e r :  ___

2vGl

10. F o r  t h e  w a v e f u n c t i o n  o f  P r o b l e m  9 ,  f i n d  t h e  expec.tation  v a l u e  o f  t h e  m o m e n t u m

as a funct ion of  t ime.

Answer:

11. Show that  the  funct ion  $ = A s in  (k ,x)  s in  (k,y)  s in  (k,z)  sat i s f ies  the th ree d imen-

s ional  Schrtidinger  equat ion,

I f  t h i s  i s  t h e  w a v e f u n c t i o n  i n  a  b o x  o f  d i m e n s i o n s  a,b,c,  i n  t h e  x,y,z  d i r e c t i o n s ,

f ind  the  poss ib le  va lues  fo r  k , ,  k , ,  k , , and f ind the poss ib le  energ ies  E .

Answer: ,...

12. If the potential energy is V = V0  > 0 for 0 < x < a and V = 0 elsewhere,

f i n d  t h e  t r a n s m i s s i o n  #coefficient  f o r  E  > V,.  S h o w  t h o t  t h i s  a p p r o a c h e s  o n e  f o r

la rge  E .  What  wou ld  th i s  t ransmi s s ion  coef f ic ien t  be  fo r  Newton ian  mechan ics?
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14.

15.

16.

17.

Proble nl!i 211

Answer:
8(ru/k)2

----__
k= ‘”

1/
and  (? = \/l!!T  - “0)

ii
For par t ic le s i n s i d e  CI spher ica l conta iner of radius r,  V = 0 for

r z x2  +  y2  +  .z2 <  R. t h e  w a v e  f u n c t i o n  i s  z e r o  a t  r =  R .  F o r  a  p a r t i c l e  ‘of

mass  m,  show that  the re  o re  so lu t ions  o f  the  th ree  d imens iona l  wave equat ion  o f

t h e  f o r m :  $ =  o s i n  (kr)/kr  6 ‘E”k.  What  a re  the  pos s ib le  va lues  o f  k and E?

A n s w e r :  k  =  y,E  =  $:fs,n  =  1,2,3,.
R

For  the  par t ic le  in  the  spheric’ol  box  o f  P rob lem 13 ,  show that  the re  a re  so lu t ions  o f

the form:

w h e r e  I r  i s  the  ang le  re la t i ve  to  the  z a x i s ,  c o s  0 = z/r.  Wr i te  the  t ranscendenta l

equat ion ,  the  so lu t ions  o f  wh ich  wou ld  g ive  the  pos s ib le  va lues  o f  k .  H o w  o r e  k  a n d  E

re la ted?  What  i s  the  p robab i l i t y  o f  f i nd ing  the  par t ic le  a t  z = O?

Answer: tan(kR)  =  kR;  E =  h”k2/2m;  z e r o .

I n  t h r e e  d i m e n s i o n s , t h e  p o t e n t i a l  e n e r g y  ct  p a r t i c l e  s e e s is V = 0 for

r = 4x’ +  y2  +  z2 < R and V = V,  > 0 for r > R. The solution $ =

o s i n  (kr)/kr  e  -IE”IS  g i v e n  f o r  r <: R .  F o r  r L R  a n d  E  <: 0 ,  s h o w  t h a t  t l s o l u t i o n  i s

q = bge-.“‘, w h e r e  @  =  1/“2m(vov~E)/h. T h i s  $ s a t i s f i e s  t h e  boundcn-y

c o n d i t i o n ,  # + 0  ~1s  r * z.  F r o m  t h e  b o u n d a r y  c o n d i t i o n s  a t  r =  R ,  f i n d  a

re la t ionsh ip  between  p and k .  Th i s  leads  to  the poss ib le  va lues  o f  E.

Answer: tan(kR)  = -k/6.

‘Two  p a r t i c l e s  o f  m a s s e s  ml a n d  m2, c o n s t r a i n e d  t o  m o v e  o n  t h e  x a x i s ,  a r e  con-

nected  by  o sp r ing ,  so  that  V  =  % k( x2 - x1  )2. T h u s ,  t h e  Schrodinger  e q u a t i o n  be

comes :

+  ;k(x2  - x,)%  =  E+

N o w  l e t  x =  x2  --.  x1,  t h e  r e l a t i v e  ‘ c o o r d i n a t e ,  a n d  X  = (mtx,  +  m2x2)/(m,  +  m2),

the  center  o f  mctss coo rd inate .  U se  tJ/dx,  = ?Ix/Jxt(djdx)  +  ?iX/rYx,(~/~X)  a n d  a

s im i la r  exp res s ion  fo r  a/a x2  t o  o b t a i n  CI  d i f f e r e n t i a l  e q u a t i o n  i n  t e r m s  o f  x a n d  X .

S h o w  t h a t  t h e r e  i s  a  s o l u t i o n  o f  t h e  f o r m  @ =  @,,(x)em’kX  w i t h  CD,, t h e  o n e

d i m e n s i o n a l  h a r m o n i c  o s c i l l a t o r  solutions.Verifythat  E  =  E, +  k2ii2/2(m,  +  m2)

w i t h  t h e  r e d u c e d  m o s s ,  g i v e n  b y  H = mlm2/(ml  +  m;,),  a n d  w i t h  E,,  the harmonic

o s c i l l a t o r  e n e r g y ,  g i v e n  b y  E, =  (n  +  %)h  a What  i s  t h e  p h y s i c a l  significanc:e

o f  t h e  t w o  p a r t s  o f  @ and E?

Assume that  the genera l  so lut ion of  the one-d imens ional  harmonic osc i l la tor  equatilsn

i s  o f  t h e  f o r m  G =  f(x)e-“2  ax2, w i t h  a  =  mu/ii.  S h o w  t h a t  (ii2/‘2rn)  d2f/dX2  - -

ACM  df/dx  +  (E - t i t i w )  f  =  0 .  A s s u m e  t h a t  f  =  ,&Coa~x2’,  S u b s t i t u t e  i n t o

the d i f ferent ia l  equat ion and find o re la t ionsh ip  between  at and a&+,  b y  s e t t i n g

t h e  c o e f f i c i e n t  o f  e a c h  p o w e r  o f  x t o  z e r o .  S h o w  t h a t  04  =  0  f o r  4  >  n / 2  i f
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18.

19.

20.

2 1 .

2:2.

E  ~~ % h o  =  n h w  w i t h  n  a n  e v e n  i n t e g e r .  T h u s ,  f  is,  a  p o l y n o m i a l  w i t h  a  f i n i t e

n u m b e r  o f  t e r m s .Similar  r e s u l t s  o c c u r  f o r :
- -  I

f = .L&O U&X “+’ Then n is

an odd integer .

B y  c o m p a r i s o n  w i t h  t h e  o n e  d i m e n s i o n a l  s i m p l e  h a r m o n i c  o s c i l l a t o r  S c h r b d i n g e r

e q u a t i o n ,  s h o w  t h a t :

B y  o p e r a t i n g  o n  E q u a t i o n  ( 1 )  o n  b o t h  s i d e s  w i t h  8dld.x  - mu/f x a n d  c o m p a r i n g

t h e  r e s u l t  w i t h  Equation  !2),  s h o w  t h a t  (d/dx - mw/h  x)  a,,  =  a”+,  w h e r e  a,+,

i s  a n  e i g e n f u n c t i o n  w i t h  E  =  E,,,,  =

t h e r e  a r e  e n e r g i e s  I!,

E,  +  h w .  ‘ T h i s  s h o w s  t h a t  i f  $,,  .=  % t iw ,

==  (n  +  % )fiio.  S t a r t i n g  w i t h  @”  =  aem”’  ‘IX w i t h  CY  =

mti>/h,  f ind @, and @,  by  th i s  method.

V e r i f y  t h a t  t h e  expectation  va lues  fo r  the  energy  and i t s  uncer ta in ty  AE  g iven  in

Equat ions  (7 .109)  and (7 .1  10) are  cor rect  fo r  the harmonic  oscillator  wave  p a c k e t ,

Equat ion  (7 .107) .

Show that  the  expectat ion  va lue  o f  the  momentum i s  the  same ~1s  t h e  N e w t o n i a n

m o m e n t u m ,  p =  mV  = -mmxO  s i n  wt  f o r  t h e  ,simple  h a r m o n i c  o s c i l l a t o r  wave

packet ,  Equat ion  (7 .107)

F i n d  t h e  p o t e n t i a l  e n e r g y  i n  t h e  o n e  d i m e n s i o n a l  Schrodinger  e q u a t i o n  t h a t  i s

s a t i s f i e d  b y  t h e  w a v e  f u n c t i o n :I--
1 [x - (pot/m)  - ‘/2  gt’]’

ev
itit/m 2 cr2 + hit/m

+ ;

S h o w  t h a t  t h e  p r o b a b i l i t y  d e n s i t y  i s :

0
Ic*+ = -yE------ ew

_02(x  - Fb0tlm  ~s9t2j2 ~___

v-TV  ~7’ + A2t2/m2 (m”  + h2f2/m2) 1
What  i s  the  mean ing  o f  th i s  dens i t y?

Answer: v  =  -mgx.

S h o w  t h a t  f o r  t h e  wovefunction  o f  P r o b l e m  2 1 ,  ttie  e x p e c t a t i o n  v a l u e  o f  t h e

momentum i s  the  Newton ian value

V  =  -mgx.

,  (pX) =  p0  + m g t ,  f o r  t h e  p o t e n t i a l  e n e r g y



hydrogen atom and
angular momentum

We have seen how electrons can behave l ike wave!; when travel ing from one
point to another, such as when they pass through crystals and are diffracted just
l ike x rays.  In this  chapter i t  wi l l  be shown how the wavel ike character of elc:mc-
trons,. as described by the Schrodinger  equation, can be used to explain many of
the observed propert ies of hydrogen atoms. A hydrogen atom at rest is  to be
pictured as consisting of a negatively charged electron and a much more massi\/le,
posit ively charged proton. The attractive Coulomb force between the oppositoly
charged part icles keeps the electroll bound to the heavy proton,  which remains
nearly at rest whi le the electron probabi l i ty waves may osci l late in many differ-
ent ways in the nearby neighborhooo of the proton. The states of oscillaticln,

having a definite energy-or definite frequency--are quite stable and are
cal led stat ionary sfotes. Transit ions between these stat ionary states give r ise IO
the emiss ion or absorption of photons of discrete frequencies, and hence to a

discrete spectrum.
The positions of the stationary state energy levels were first calculated by Bohr

using some very s imple postulates, a number of years before the Schrtidinger
wave equation was discovered. Although Bohr’s theory was not ent i rely correct,
when the wave equat ion was solved for  the hydrogen atom the energy levels
were found to lie at exactly the positions calculated by Bohr. The problem of the
hydrogen atom, because i t  involves only two part icles,  i s  one of the very few
problems for which the SchrGdinger  equation is exactly soluble in terms of simple

functions. The solut ion of this  problem and its  agreement with observation has
been one of the most spectacular successes of quantum theory.

We shall  f i rst briefly discuss the I3ohr  theory of hydrogen. We shal l  then see
how the wave equat ion leads to quant izat ion of  energies and wi l l  d iscover,  as
wel l ,  that the wave equat ion impl ies  that the atorn’s  angular momentum is
quantized.

1 PARTICLE IN A BOX

Before discussing the theory of hydrogen in detail, it will be useful to recapitulaie
some of the ideas used in Chapter 7 in the quantum mechanical description of a

213
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part icle in a one dimensional box. There it  was seen ,that  a discrete set of sta-
tionary state energy levels arose due to the confinement of the particle within the
box of f inite s ize. The smaller the box, the more widely spaced were the energy
levels.

The energy levels of the part icle in the one dimensional box may be repre-
sented in the energy level diagram in Figure 8.1, where energy is plotted up-

ll

t

" := 2

I n:=l

I
Figure 8.1. Energy level diagram for the particle in ‘0 one dimensional box

wards,  with the hor izontal  l ines representing the al lowed values of the ellergy.

These are the stationary states of the system, and if  the system is perturbed
slilghtly, it may make transitions between states and conserve energy by emitting
or absorbing a photon. I f ,  for example, the transit ion goes from an upper state
of energy E, to a lower state E,, the frequency of the emitted photon wi l l  be
given by:

hu = E, - E, = “^’ 63.1)

Since the energies are discrete, the possible frequencies u are discrete, and the

spectrum will also be discrete.

Atoms are systems in which electrons are confined to a small  volume, known
to be ot dimensions on the order of a few angstroms. In this case, the potential
energy is negative, and is due to the attractive Coulomb force between electrons

alnd  nucleus. Although the particle in a box has zero potential energy, and moves
in one dimension rather than in three as do the electrons in atoms, we should
be able to get a rough idea of the energy level spacing in atoms, ar is ing from
confinement of the electrons, by comparing the lower energy level spacings of a
particle  in a box whose size is roughly that of an atom.

For example, let us ccllculate  the wavelength of light given off in the transition
from the state with n = 2 to that for n = 1 for a length L of the box equal to

three Angstroms. The energies for the particle in the box are given by:

(8.2)

Then for the 2 + 1 trarlsition,
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Therefore, using form the mass of the electron, 9.1 1 :<  10m3’  kg,

x =  8mL’c 8(9.11 x  10-3’)(3  x  1C-‘“)2(3  x  10’)__-
3h 3(6.63  x lCl-“)

? 10-‘m =  1 0 0 0  A n g s t r o m s . p.4)

This i s  comparable to the wavelengths emitted by atoms for t ransit ions between
the lower states, which strongly sulggests  that the wavelike character of the elec-
trons in the atom is responsible for the observed discrete spectra.

It should be noted that the reciprocal of the wavellength  of the emitted light is
given by a s imple formula, involving a difference between the energies of t,wo

stat ionary states:

1-=
x

$ (E” - 4 )

8.2 BALMER’S EXPERIMENTAL FORMULA FOR THE
HYDROGEN SPECTRUM

We shal l  now consider in detai l  the l ightest and s implest element, hydrogen. The
spectrum of hydrogen contains rnelny  discrete l ines. By f i tt ing the experimental
data, Balmer showed in 1885 that the values of the Iwavelengths  in this spectlurn

can be expressed by the following formula:

n,  = 1,2,3,.  . .; fl* = n,  -- 1, n,  + 2,. .

The Rydberg constant RH  has been rneasured with great accuracy by spectro-
scopists. It has the value:

R, = 10,967,758.1  IT-' (8.7)

The fact that,  as in the case of the part icle in a box, l/X is  proport ional to ‘o
difference of terms suggests that the hydrogen atom has stationary states of
definite energies,  and that transit ions between thl2se  states give r ise to the

discrete spectral lines. For a transition from some energy level E, down to a lower
level 4, the values of l/X would be given by Equation (8.5) above. In the case

of hydrogen, when the electron and proton are separated on inf inite distance,
the potential energy is defined tcl  be zero. The potential  energy in the oc~uctl
atom must therefore be negative. The magnitude of the potential energy must be
larger than the kinetic energy in order for the system to remain confined ill la
bound state, Then the nonrelotivistlc energy levels should be negative. Upon corn-
parison  of Equation (8.5) with the experimental result  in Equation (8.6),  we see
that apart  f rom an addit ive constlsnt,  the values of the hydrogen atom energy

levels must be given by:
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8.3 SPECTRAL SERIES FOR HYDROGEN

The energies E, = -R,hc/n’  can be represented by the energy level diagram in
Figure 8.2. The lowest- lying level is  labeled  n = 1. As n takes on larger and

FiglJre  8.2. Energy level ~diagram  for the electron in atomic hydrogen. The zero of

energy is at the top of the di~~gram.

larger integral values, the energies E, approach zero. In electron volts:

--(  1 . 0 9 7  x  1  07)(6.63  x  1W3-‘)(3  >:  10’)
E, = -R,hc := -

1 . 6  x  lo-“’  i/eV

=  - 1 3 . 6  eV (8.9)

The value of  E2  is  one-fourth of this or -3.4 eV.  A transit ion from the n =  2 to
the n = 1 state would then correspond to a photon of (energy --3.4-(  - 13.6) eV
or 10.2 eV,  with a wavelength of 1216 angstroms in tile ult raviolet.  T rans i t ions
down to a g iven s tate fr,Dm  all  higher states give r ise to series of spectral l ines

which have been given the names of the scientists who first observed them er.peri-
mental ly.  Thus, for example, the var ious transit ions n := 2 + r)  = 1, n =: 3 +

n := 1,  etc.,  down to the lowest (ground) state, corlrespond  to a series of ultra-
violet lines known as the l-yman  series. The 1216 angstrom line calculated above
is the l ine having the longest wavelength in this  ser ies.  The transit ions leading to
the Lyman series are depicted schematical ly in the energy level diagram, Fig-

ure 8.3. The names of the various series of l ines are given in Table 8.1.  Within

O-

:3

-2

~

Lyman

s e r i e s

-1

Figure 8.3. Energy level diagram showing the series of transitions down to the ground

level which give rise to the Lyman series of spectral lines.

easch  series, the lines are labeled  CC,  8,  y,  6,. . . in orcler of decreasing wavelength
(increasing energy). The TV,  p,  y,  6 lines of the Balmer series lie in the visible.
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T A B L E  8 . 1 Names of the Series of
Spectral lines observed in Hydrogen.

n =  2,3,. .  -~+ n =  1  Lyman ser ies

n = 3,4,. . + n =  2  Ba lmer  ser ies

n = 4, 5,. . -~+ n = 3 Paschen  s e r i e s

n = 5, 6,. . -+ n = 4 Brackett  s e r i e s

n = 6,7,. . * n = 5 Pfund series

Etc. u n n a m e d

mpIe What is the energy in eV of a photon in the fi line of the Lyman series?

ution  The /I l ine of the Lyman series corresponds to a transit ion from the n = 3 state to

then = 1 state. The energy is :

( 1 . 0 9 7  x  10’)(6.63  x  loo-:I-‘)(3  x  10R)(%)  =  ,2,,,=\,

1 . 6  x  lo-l9  i/G

8 . 4  B O H R  M O D E L  F O R  HYDROGEIN

We have inferred from the experimental data that there exists a ser ies of energy
levels in hydrogen. This is  a complact way of descr ibing the experimental dmata,
and is certainly consistent with the previous discussion of de Broglie waves. Lei IJS

now approach the bound electron-proton system frown  the point of view of theory,
and see i f  we can predict or explain mathematical ly why the energy levels,  in
hydrogen have the values they do have. We will fir’si discuss the theory of Bohr,
in which the electron is  pictured CIS  moving in an orbit  descr ibed by Newtonian
mechanics,  but with an addit ional condit ion on the orbit  ci rcumference due to
the wave properties of the electron. This theory is not correct. However, because
it agreed with experimental energies so well ,  i t  did cause people to think more
about the wave properties of particles and eventually to find the correct theory.
Also, i t  gives an intuit ive, although incorrect, feel ing for the quantization of the

orbits.
We f i rst consider those aspects of the Bohr model of hydrogen which can be

treated using Newtonian mechanics. In Bohr’s model,  an electron orbits around
a proton under the action of electrostatic forces. We will initially assume that the
proton mass is so large that the proton can be treated as being at rest. Also we
shal l  assume the electron moves in a circular orbit of radius r. The Newtonialn
force equation F = ma, means that the electron mass t imes the centr ipetal
acceleration in the circular orbit is equal to the electrostatic force of attraction.
Thus, if the electron’s speed is v,

(8. IO)

where e is the electronic charge and Z is  the number of protons in the nucleu!j.
(For hydrogen, Z = 1. However ,  w i th  Z  =  2,3,.  .  .  ,  one would have the Bohr
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model for s ingly ionized hel ium, doubly ionized l i thium, etc.) The energy we
desire to f ind is, accordirlg  to Newtonian mechanics, the kinetic energy plus the
electrostatic potential energy:

Ze2
E  = i my’ - __

4*tor

(8.1 1)

The speed may be el iminated between Equations (8.10) and (8.11) to f ind that

the total energy is:

E= -1x
2 47rtor

(8.12)

which is one-half the potential energy.

8.5 QllANTlZATlON  IN THE BOHR MODEL

Next we may use the wave nature of the electron to obtain quantization condi-
tions on the orbits of the electron which will lead to a discrete set of energy levels.

The de Broglie wavelength is Planck’s constant divided by the momentum, or:

x=h (13.13)
mv

Imagine the electron de Brogl ie wave propagating around in the circular orbit .
In order for i t  not to interfere destructively with itself  after many revolut ions, the
wave amplitude must fit continuously onto itself after each revolution. This would

mean that the circumference of the orbit is an integral number of wavelengths, so
than  as the electron goes around the orbit ,  the wave is  per iodical ly repeated.
This condit ion is

m,X  =  27rf;  m, =  1,2,3,... (8.14)

This equation may be rewritten from the express ion for the de Brogl ie wave-
length as:

m v r  =  (k).F)= $ = ,n,-fi (13.15)

Since mvr is  the angular momentum, Equation (8.15) states Bohr’s or iginal rule
for the postulated quantizat ion of angular momentum. This  quantizat ion rule

was general ized by Bohr and Sommerfeld to apply to el l ipt ical orbits ,  but we
shal l  discuss only the circular case. The speed may be el iminated between the

quant izat ion condit ion,  Equat ion (8.15),  and the Newtonian force equation,
Equation (8.10).  The resuilt,  after solving for r, is:

r =
47rt0m~ti2

Ze’m
(19.16)
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Final ly,  this  radius may be subst i tuted into the energy equation, Equation (8.6).
This gives the Bohr formula for the energy levels:

E =  -1 Z’e’m  1~-n
2 (47rQ)’  mZ,

(8.1:7)

This result says that the energy levels of the electron in hydrogen are negatiive,
corresponding to a bound state, and are inversely proport ional to the square of
an integer. Thus the energy level diagram wil l  look just l ike that of Figure 8.2

from experiment.
The quantizat ion ar ises in Bohr’s theory from a condit ion, Equation (8.15),.  o’n

the al lowed values of orbital  angular momentum. Physical ly,  this  can ar ise frown
a boundary condit ion which, stated mathematical ly,  takes the form of a perllod-
icity  condit ion. For a part icle moving in a circular orbit,  the part icle’s posit ion is

descr ibed by an angle cp.  This is  quite different frorn the case of a part icle in a
box, because the circle is endless. The wave, rather t/Ian bouncing back from .the
ends, just  keeps on going. I f  the wavefunction at the angle p has  the va lue
$((F),  then as p increases, #(cp)  will change in some fashion; if cp  increases by ;!a:,

so that the wave has come around to the same physical point, the wavefunction
is +(cp + 27r),  and this  should be the same as #((F)  itself .  Otherwise, the wave-
function would not have a unique ‘value at a given pllysical  point. Hence, instea’d

of a boundary condition, we have a periodicity condition:

(8.I  8)

This  equation is  the mathematiccll  analogue of the requirement that the cir-
cumference of the orbit must contain an integral number of wavelengths.

We can now see i f  the energies obtained in Equation (8.17) have the correect
magnitude. In analogy with Equat ion (8.8),  the en’ergy  der ived from the Bohr

theory may be written as:

-R,hcEC-----
2

m,

where, s ince Z = 1 for hydrogen,

(8.19)

(8.20)

The subscr ipt x on R, denotes that we treated the proton as a particle of infinitle

mass, since we assumed it was at rest. This constant R _ has been written in terlms
of two basic physical constants; the Compton wavelength,  A, =  h/me,  which

was discussed in connection with Compton scatter ing of photons by electrons;
and the physical ly dimensionless f ine structure constant cy s e2/47rcOlic.  The
fine structure constant is an extremely important fundamental constant in physics

and occurs in many places, such as in small  corrections to atomic energy IeAs
due to relat iv ist ic and intr ins ic angular momentum effects.  The Compton wave-

length is A, = 2.4263 x lo-‘*  m; the f ine structure constant has the value a =:
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l/l 37.036. Therefore, RI  can be evaluated, and is found to have the value:

R, = 1 . 0 9 7 3 8  x  lO’m-’ (13.21)

8.6 REDUCED MASS

The value of  R, differs from the experimental value of R, of Equation (8.7)

start ing in the fourth signif icant f igure. The readelr  might wel l  think that this
agreement is close enough. However, it can be made even closer. The fractional
error in the theoretical Rydberg constant R, is:

R, -RH 6 . 0  x  lo3 1_---  = ~ ---.
RH 1 . 0 9 6 8  x  lo7 1 r330

(8.22)

We may also observe that  the mass of the proton is just 1836 t imes the muss of
the electron, which suggests that we may be able to arrive at even closer agree-

ment if we take into account the motion of the proton.
In a two-part icle system, one part icle does not mo’ve  around the other,  but

both move around the common center of mass. The position of the center of mass

is given by:
(reme  + r,m,)

rc = -

(me  + m,)
(8.23)

where the subscripts e and p refer to electron and proton, respectively. Alsc,  the
position of the electron relative to the proton is:

r, = re  - rp (i3.24)

The force between electron and proton depends only on the relat ive displace-
ment r , .  I f  Equations (8.23) and (8.24) a r e  s o l v e d  f o r  r,  a n d  rp i n  t e r m s  o f
rc land  r ,  and subst i tuted into the Newtonian force equations F = ma for the
two part icles,  then two equations result ,  one for rc alone and one for r ,  alone.

The equation for rc s imply states that the center of mass of the system is not
accelerated. The equation  for rr gives a radial equation similar to Equation (8.10)
b u t  w i t h  r r e p l a c e d  b y  t h e  r e l a t i v e  d i s t a n c e  r ,  alld m  r e p l a c e d  b y  p =
m,m,/(m,  + m,). The quunt i ty  p is cal led the reduced moss. L ikewise, the
total orbital angular momentum of the atom, including a small  contr ibution from
motion of the nucleus, deperlds  only on p and r,. It is brvr,,  where v is the speed
of the electron relative tc’ the proton. If the total angular momentum is set Iequal

to m,fi in analogy with Equat ion (8.15),  al l  the theory is  as before but with /.r

replacing m in the energy. Thus the energy levels are

E,  = -AL-1

2 (47rt,h)’  m2,

Thus, when the s l ight motion of the proton is taker-  into account,  the preclicted
value of the Rydberg corlstant  for hydrogen is

(8.26)
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TABLE 6.2 Experimental Values of the Rydberg
Constant for Some Multiply-lonized  Atoms

Atom Rydberg Constant
m 1

IH’ 10,967,758.1
1H2 10,970,741.9
1H3 10,971,734.8
2He3 10,971,734.4
?He4 10,972,226.4
3Li6 10,972,729.5
3Li7 10,972,872.3
4Beq 10,973,062.3
5B

11 10,973,183.5

6C 12 10,973,228.6
7N

14 10,973,300.4
80 16 10,973,353.9

This agrees with experiment to seven s ignif icant f igures. The Rydberg constants
for other s imilar systems such as s ingly ionized helium, doubly ionized l ithium,
etc.,  which also have hydrogen-l ike spectra, may be found by putt ing in the

reduced mass for the nucleus-electron system and by mult iplying by the sql.lare
of the nuclear charge number Z2,  gas  in Equation (8.17). These agree equally well
with experiment. A l ist  of some observed Rydberg constants for mult iply ionized
atoms i s  given in Table 8.2. The Bohr model thus {gives a s imple and compact
explanation of an enormous amount of experimental data.

The characterist ic s ize or “radius” of the hydrogen, atom for the ground state

may be found from Equation (8.16) Iusing m,  = 1 and Z = 1. In terms of thle
fine structure constant and the Cctmpton  wavelength, this is (neglecting reduced
mass corrections),

A<r
’ ==:  2wa

=  0 . 5 2 9  x  lo-“m =  0 . 5 2 9  A n g s t r o m s (8 :2i7)

The speed of the electron in i ts  orbit  may be found by subst itut ing the radius r
of Equation (8.9) into Equation (8.8). ‘The result is

” N

C m,

(8.28)

Then, for the ground state of the hydrogen atom, v/c is  about ‘/,,,, much less
than unity. This justifies the nonrelativistic treatment in the theory.

SCHRtiDlNGER  EQUATION FOR HYDROGEN

We have discussed a simple picture of the hydrogen (atom  which agrees well with
experiment as far as the energy levels are concerned. However, this model carlnot

be used in finding the probability of a transition from one state to another with

emission or absorption of a photon. It also cannot be applied successfully to more
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complicated atoms such IUS  a neutral  hel ium atom witlh  two electrons. Further-
more, although with the Bohr theory the quantum number in the energy expres-
s ion is proport ional to the orbital angular momentum, the correct theory to be
discussed next shows that the energy is  actual ly not dependent on this  angular
momentum.

The correct way to approach these problems is  b,y  means of the three dimen-

sional Schrtidinger  equat ion.  I f  for  the hydrogen atom the two-part ic le wave
equation is  used, i t  may Ibe  separated into a part descr ibing the center of Imass
motion and another part  descr ibing relat ive motion. The part  giv ing the relat ive
motion is found to be silnilar  to the SchrGdinger  equat ion obtained wherl  the
mass of the proton is asslJmed  to be inf inite. The only difference is that in place

of the electron mass m, tile reduced mass p appears. Let us then, for s implicity,
temporari ly assume the proton is inf initely massive and is placed at the or igin.

After deriving the energy levels, v/e  can then introduce the small corrections due
to Inotion  of the nucleus about the center of mass by making the replacelment
m  - -  k.

T h e  e l e c t r o n  i s  a t  p o s i t i o n  (x,y,z)  a  d i s t a n c e  r =  ( x ’  +  yz  +  z’)‘/’  f r o m

the proton. In three dimensions, the kinetic energy operator is:

2EL!!  = _-32 y ‘2 2

2 m (“+$+$
2 m  C?X’ Y 1

The potential energy for the hydrogen atom, where Z = 1, is:

“=-eZ
4ircOr

(8.29)

(8.30)

For a wave function of the form $ =  #(r)e-lElfi, a <stationary  state, the Schr6d-
inger equation in three dimensions is then:

(8.31)

Because r is  a moderately complicated function of x,  y,  and z,  whereas the
potential  energy depends only on r ,  i t  i s  more convenient to work with spherical
polar coordinates r ,  0 and q.  These coordinates are defined as fol lows: r  i s  the
distance from the origin to the electron as seen in FiglJre 8.4; p is an angle in the
xy Plane,  measured from the positive x axis to the projection of the vector r onto

the xy plane;  0 i s  the angle between r  and the z axis .  Thus the coordinate
tralisformations  are:

r  =  VFTjT x =: r,sinflcoscp

0 = tan-’ (2”‘: “)  a n d  y  =: r:sinOsincp (8.32)

z =-  r ~cos  19
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Figure 8.4. Spherical polar coordinates.

The kinetic energy operator expressed in spherical polar coordinates is derived

in  Appendix  1 .  The resul t  o f  making the  t ransformat ions to  spher ica l  polar

coordinates is:

2
POP

1 a 1 a2~ -. +

rz t a n  19  afI r2  sin’  0 ap*
(8.33)

With this operator, the Schrijdinger  equation becomes:

(8.3,4)

; PHYSICAL INTERPRETATION OF DERIVATIVES WITH
RESPECT TO r

The terms in Equation (8.34) involving only derivatives with respect to r have a

very simple physical interpretation. Suppose we have a steady source of particles

at the origin, which emits particles of definite energy that travel radially outward

symmetrically in all directions. This corresponds to cl  stationary spherically rNym-

metric de Broglie wave propagatllng  radially outwards, which will be described

by some wavefunct ion  $(r,  t) =  @ (r)emiE”. It is not difficult to guess what the

form of  the  spat ia l  par t  o f  the  wavefunct ion must  be .  In  order  to  have an out -

going spher ica l  wave,  +(r)  must  involve  an exponent ia l  factor  of  the  form

exp(ip,r),  where p, is the radial component of momentum of the particles. This

is  analogous to  a  factor  of  the  form exp(ip,x)  ,for  a  beam of  part ic le: ,  of

momentum pX  propagating in the x direction.

In addition, if the system is to remain stationary so that particles do not pile

up at any one radius, the number of particles to be found inside a spherical shell

centered  at the origin of radius r, area 4rr2 and thickness dr, must be the same
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f o r  a l l  r .  T h u s ,  ) ll/(r)  ) ‘a4 7rr2dr = constant,  independ’ent  of r .  The probabil i ty

density ( $(r) ( 2 must be inversely proport ional to the square of the radius. This is
the quantum analogue of the wel l -known inverse square law for the intensity of
outgoing spherical waves, found in class ical physics.  S ince / g(r)  / 2 is propor-
t ional to l/r', the ampl i tude #(r) i tself  must be inversely proport ional to the

radius itself, so we would expect the wavefunction to be given by:

o r

‘P,‘F

a(r)  = *e
r

#(r,t)  = Ae

i(,,,,-Et),7

r

(13.35)

(13.36)

We may now use th is  radial  wavefunct ion a(r)  to derive the form of the
operator corresponding .io p, , the radial component of momentum. Since E is

d e f i n i t e l y  k n o w n ,  a n d  E =  p;/2m,  t h e  r a d i a l  momentum  m u s t  b e  d e f i n i t e l y
known, and so a(r)  must in fact be an eigenfunction of prop  with eigenvalues p,.

We might expect, by analogy with one dimens ional  wave mot ion,  that p,

would involve a term of the form h/i(a/cYr). Howe‘ver,  i f  we differentiate ipc)

using  this operator, we find that

(13.37)

because of the appearance of the factor r in the denominator of a(r).  Thus @  is
not an eigenfunction of h,/i(cY/ar).  However, the above equation can be rewritten

as:

-ti a
( 1
--
i ar

+1 cp=p,@
r

Therefore, @ is an eigenfunction of --ih(a/(‘Ir  + 1 /r),  with e igenvalue p, .  We
can therefore identify the operator on the left of the above equation as:

?=I  a
Pr,,  = ‘T

( 1
-+1

r dr r

From this, the kinetic Ienergy  operator corresponding to radial motion can

be obtained as:
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These are precisely the terms involv ing der ivat ives with respect to r  in ECIIJCI-
tion (8.34),  and thus may be interpreted as the contributions to kinetic energy clue

to radial motion.
The remaining terms,  involv ing der ivat ives with respect to H  and p,  wi l l  be

shown later to have a s imi lar interpretat ion in termls  of contr ibutions to kirletllc
energy due to rotational motion.

SOLUTIONS OF THE SCHRijDlNGER  EQUATION

I t  has been found that there exist  energy eigenfunc:tion  solut ions. of Equation
(8.34) which may be written in the formlof a  produc:t  of functions, each folctor
in the product being a function of only one of the independent var iables r ,  0

and CF.  The solutions can be written as follows:

where R,t  (r) is a function only of r ;  otma(fI)  is a function only of H;  and ‘P,, F
is a function only of cp.  The energy levels depend on II, a positive integer, but not
o n  C  o r  m ; tis  an integer associated with the total angular momentum t,uch
that  0  5 t <  n ;  and m,  i s  a posit ive or hegative integer, or zero, associctted

with the z component of angular momentum such that 1 m,  1 <  .t

The simplest of these solutions, corresponding to the ground state, is on’s in
which the wavefunct ion depends only on r  and not on 0 or CF.  In th is  chase,
the SchrGdinger  equation, Equation (8.34),  reduces to:

(E3.42)

and the simplest solution is:

#loo = -\/T/Ka3  em”” (8.43)

where the constant a is  the Bohr radius,  equal to 0.5~29  angstroms for hydroI;gen,
and given by:

47rtJ12
(, = -~

me2
(l3.44)

The labels  on the wavefunct ion $Io0  mean n =  1, ! = 0, m,  = 0, as wi l l  be

seen. The function is  normalized so that the integral of the probabil i ty derlsity
#*#  o v e r  a l l  s p a c e  ( 0  5 r  <  5, 0 5 H  5 ir, 0 5 p < 2~) is unity. We c:an

show that this  i s  a  solut ion by direct subst i tut ion into Equation l(8.34)  or (8.4.2).
Differentiation with respect to r gives us:

d(e-““)  1 -+--.  = --e
dr a

(8.45)

s o  t h a t  t h e  s e c o n d  t e r m  i n  E q u a t i o n  (8.42),  -(h2/2m)(2/r)d~,,,/dr,  canc:els

the potential energy term, -(e2/4ator)#loo.  T w o  d e r i v a t i v e s  o f  #l00 are
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equivalent to multiplying by a factor of l/a’,  so the energy must be:

-me’E, =  -;.;  = - -
2(4moh)*

This is identical to the ground state energy given by the Bohr theory.
In fact, solut ions to tllis three dimensional equatio’n,  Equat ion (8.42),  exist

which sat is fy the boundary condit ions,  provided the energies have only the
values given by the Bohr theory formula:

(8.47)

However,  the integer n,  which is  cal led the pr incipal quantum number,  has
nothing to do with angular momentum. For a given -value  of the integer, there are

n2  solut ions which differ in their  dependence on the angular var iables 0 and cp.
Al l  these solutions have the same energy E,; they are said to be degenerate. I n
Table 8.3 are given all the wave functions for n = 1, 2 and 3.

T A B L E  8 . 3 Nornralized  Wavefunctions for Low--Lying States of Hydrogen.

“’  = 1 *
1

100 =
i-Te

-r/c,

ua

ll,  = 2 * 2oo =  &(I - -  f $exp  (-i  b):

+
1 If

210 = .-rexp  - - -  cosfl

41hG3” i 1
2 a

*21,  +, =  $6 e x p  - i 5 s i n  Be”’

*a ( )

n = 3















Figure 8.9. Squares of hydrogen wavefunctions for 3d states with m = 0, =I= 1, &2.





Figure 8.10. Squares of hydrogen wavefunctions for 4d states with m = 0, &l,  +2.
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Figure 8.12. Square of 6f (m = 0) hydrogen wavefunction.
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Figures 8.5 through 8.12 are probabil i ty density pictures of the squares of
some of these wavefunctions. These pictures have been drawn in such a way that,
if one were to make a few thousand measurements of posit ion of the electron in

the given state,  and theri  plot al l  those posit ions as dots on polar graph paper
with r  versus 0, the density of dots would appear as in the pictures.  The density
of dots is  thus proport ional to the probabil i ty of f inding the electron at the
plotted r and 8.

The reader may ver i fy that the wavefunct ions given in Table 8.3 sat is fy
Equation (8.34) with the proper energies,  by direct subst i tut ion into the equa-
t ion. In general,  the functions, R,t,  are of the form of an exponential e”“‘,
times a polynomial in r;  the functions, OtmP  are of the form (sin 0) Im*l times

a polynomial in cos 0, and ame(cp)  is  proport ional to elmp’.  These wavefunct ions

satisfy the general orthogonality propert ies discussed in Appendix 2:

JdV#,$l,F  ic/.,t,,,,,  = 0 unless n = n’, !. = t’,  m, = rni 118.48)

8.10 BINDING ENERGY AND IONIZATION  ENERGY

We will frequently be interested in systems in which the constituent particles have

negative energies due tea the attract ive forces which bind them together.  Such
particles might be electrons in atoms, protons in a nucleus, or water molecules in
a drop of water. To remove any one of the particles from the system requires the
addition of a positive amount of energy, which is called binding energy. In other
words, the term, bindinsg  energy, refers to the posit ive amount of energy which
must be added to a system of part icles bound together by attractive forces, in
order to separate the system into its constituent particles and place them at rest
an inf inite distance away from each other. Sometimes, the term is used fsor the

amount of energy required to remove just one of several bound part icles of a
system out of the range of the attractive forces; then the specif ic part icle to
which the term refers should be made clear from the context. For examplle,  the

binding energy of the hydrogen atom in the ground state is 13.6 eV, since this is
the energy which would have to be added to the atom in order to separate the
electron from the nucleus. The binding energy of an electron in an excited state of
hydrogen is less than this, since less additional energy is required to separate the

electron from the nucleus. Thus, the binding energy depends on the specific state
which the system is in imtially.

The ionization energ;,  of an electron in an atom is the energy required to re-

move that electron, wtlen  in its ground state, from the atom. The iomzation
energy is thus the same as the binding energy when the electron is in its ground
state.

8.11 ANGULAR MOMENTUM IN QUANTUM MECHANICS

In Newtonian mechanics, a radial force, such as the Coulomb force, exerts no

torques about the or igin, and thus angular momentum is conserved. By investi-
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gating the meaning of angular momentum in quantum mechanics,  we wi l l  be
able to see the quantum analogue of the conservation of angular momentum. We
wi l l  f ind that the angular part  of  the wavefunct ion,  which is  et,,, P (Q@,,,J(p),

corresponds to an eigenfunction of the total orbital angular momentum oper-
ator, and that (a,*(p)  is an eigen,function  of the operator corresponding to the z

component of the angular momentum. Thus, the total angular momentum and the

z component of the angular momentum of the atorn  are definite numbers inde-
pendent of time.

Just as momentum itself  is  represented by a differential operator in quantum
mechanics, so is angular momentum. In Newtonian mechanics, in terms of r and

the momentum p, the vector angular momentum of CI  particle is given by:

L=rxp

The same definit ion is  used in quantum mechanics,  but with the momentum
operator inserted for p. Thus, for example, the z component of the angular

momentum operator is:

L = xpy - ypx  =  4~ $ - -  y LL) (8.49)

.12 ANGULAR MOMENTUM COMPONENTS IN SPHERICAL
COORDINATES

I t  i s  desirable to express this operator in terms of spherical polar coordinates.
This could be done by straightforward coordinate transformations; however, i t
i s  easier to note that s ince only f i rst  der ivatives occur in Equation (8.49),  in
spherical coordinates I ,  must be some l inear combination of the der ivat ives with

respect to r,  0  and cp:

(8.50)

where A, B and C can be functions of the coordinates. The coefficients A, 6 and C
can easi ly be determined by comparing the effect of the two expressions for L,
when differentiating some simple functions. I f  the latter operator acts on the
f u n c t i o n ,  r =  V!K’  +  yz  +  z2, It gives A. But the form, Equation (8.49),  op-
erating on r gives:

-ih(x-$  - y-f--r  = jli(y  - -  7) = 0 (8.5 1)

T h e r e f o r e ,  A  =  0. L i k e w i s e ,  L, o p e r a t i n g  o n  c o s  Ij =  z / r  g i v e s  -6 s i n  6’ =
-8(x2  +  y2)“2/r.  T h e  f o r m ,  E q u a t i o n  (8.49),  o p e r a t i n g  o n  z / r  g i v e s  z e r o

since, as we have seen, it gives zero whemperating  on a function of r and there
is  no der ivat ive with respect to z  appeqring  in Equation (8.49). Therefore, 6 = 0.

When L, operates on tan cp  = y/x,  i t  g ives C se?  ~0 =  C(x2  + y2)/x2.  The form,
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Equation (8.49),  then gives

(8.52)

Therefore, C is -$I,  and the operator for the z component of angular momentum
is:

1, =  -;b  r;-; (8.53)

In a similar way, we could show that

1, = it,  sin cp  $ +
i

c o s  cp  a
__-
tan 0 dip )

I , = ;it
(

a sincp  d
-cos cp  - -t  - -

a s tan f98(p )

When any of these angular momentum operators act on a fwnction  of r only, the
result  i s  zero, s ince there is  no der ivat ive with respect to r  involved. Thus,  the

ground state wavefunct ion and, in general ,  wavefunct ions for  which & =  0  and
which depend only on r ,  not on ti or cp,  correspond to states of zero angular
momentum. This is in contlpast to the Bohr model, where the ground state had an
angular momentum of ti.

8.13 EIGENFUNCTIONS  OF L, AND AZIMUTHAL QUANTUM NUMBER

Using the L, operator of Equation (8.53), we may give a r igorous interpretation

to the number m,. In  the wavefunct ion $.e,,,,, the (o dependence is contained

in the factor

Gm,(p)  = eim@

Therefore, this is an eigenfunction of the 1, operator, because

(8.55)

1, e'"'*  * a
= -j&--e hp.C

= m,he
imp

ap
(8.56)

Hence, such a state can be said-to possess a definite value for the z component of
angular momentum.

These values must be quant ized. S ince the probabi l i ty densi ty 1 # / ’ must  be
single-valued in space, a reasonable condit ion on @m  is  that i t  has the same

va lue  at  cp  =  0 as at  cp  =  2a.  This  means that e
,m,(ZZ,

= 1, or that m, is an

integer, which could be posit ive or negative,,  or zero. This argument is  real ly the
same as that used in disciJssing  the Bohr model, in which it was necessary that the

wave amplitude f i t  onto itself  after one revolut ion in order that the de Brogl ie
wave not interfere destruct ively with i tsel f .  Mathematical ly,  this  i s  expressed by
the periodicity condit ion am,(~)  =  @~~,(cp  + 27r),  which can be sat isf ied only

if mp  is an integer. mp is called the azimuthal quantum number.
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Thus, the z component of angular momentum has the poss ible values km,,
w h e r e  m, i s  a posit ive or negative integer, or zero. The functions given in
Table 8.3 have z components of angular momentulm,  varying from -(n - 1)h
to +(n - 1)h for a given n. These are zero for n =: 1;  zero and iti for n =: 2;
and zero, &Ii  and 126  for n = 3. No solutions exist for values of m, outs ide

the range ) m, / 5 (n - 1)ti.
I t  i s  also possible to f ind sums of the wavefunctions #“em,  such that L, or L,

yield an integer times h. For instance, the reader may verify, using Table 8.3 and

Equation (8.54),  that:

and

(8.57)

are eigenfunctions of L, .  However ,  except when X = 0, for any single wave-

function Ic/,t,P, the x and y components do not have such def in i te quanti.zed

values.

.14 SQUARE OF THE TOTAL ANGULAR MOMENTIJM

Another operator exists which do’es  yield a def in i te quant ized value; th is  i s  the
square of the angular momentum, L2 = Lz + L: + Lz.  The meaning of the
square of L, is,  for instance, just the differential operator L,,  appl ied twice:

Lz$  = L,(L,#),  and L2 is  the sum Iof  three such terms. In Appendix 1 i t  i s  shown
that:

L’l+c  = --is2
(

1 a-$ + --
tan 0 a0

+-J-2$,
sin’  B f3(p2 )

(858)

I t  is  interest ing to note that this same combination of operators occurs in the
kinetic energy operator in Equation (8.34). Thus, the kinetic energy operator c:an
be written in terms of I2 as follows:

2 L2
&+-

2mr’

The contribution to kinetic energy aris ing from the L2  term makes sense; in
classical mechanics, an object of moment of inert ia I and angular  momentum L
has a kinetic energy L2/2/,  due to rotation. In this case, the moment of inert ia

of the electron is mr2, and the ta’tal  k inetic energy can thus be written as the
sum of a contr ibution due to radial  motion and a contr ibut ion due to rotat ional
motion. S ince the only angular dependence in the Schrb;dinger  equat ion,  Equa-
t ion (8.34),  is in the L2  term, and the wavefunct ion is  the product of a p’ort

depending only on r  and a pari depending only on the angles, the energy
eigenfunctions, iCnp,*, must also be eigenfunctions of L2.
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8.15 LEGENDRE POLYNOMIALS

W e  n e x t  c o n s i d e r  t h e  e i g e n f u n c t i o n s  o f  t h e  s q u a r e  o f  t h e  t o t a l  a n g u l a r
momentum, L 2,  in the special  case in which the z component is zero, or m, = 0.

Then there is no dependence on ~0 and the operator effectively depends only on
8:

(8 .59)

Let us look for wavefunctions P& (cos H), finite at 19  = 0 and H  = x,  such that

L2Pt  =  ( c o n s t a n t )  x  P& (8 .60)

The function PC  here is the same as 04,(B)  in the hydrogen my = 0 fCficti,ons,
#“to.  The constant on the r ight of this equation result ing from the action of L2

is the eigenvalue, or a poss ible value of the square of the total  angular

momentum. One solution is P,(cos  8) = 1, a constant.  This  corresponds to a state
of total angular momentum zero, as was the case for the & = 0 states of the
hydrogen atom in which the wavefunctions did not depend on 0 or p.  A second

solution is P,(cos 19)  = cos 8. The eigenvalue for his function is  found by lett ing
L2 act on it:

__-  = -sin  8; !.%(COSB)  =  -COS  fj
d(cos 8)

d8 d8’

Then, f rom Equation (8.59),

L2cos,Y  = h2(cos8  +$j= 2h2cos0

(8.61)

(88.62)

In general,  the functions Pc(cos  19)  are polynomials in cos 19,  cal led Legelldre

polynomials,  in which only even or only odd powers of cos B appear for a

given 4.  The highest power of cos 0 in the 4th polynomial is (cos 0)x.  The
Legendre polynomials are given in Table 8.4 for 4 = 0, 1,2,3,4,  along with
the corresponding eigenvalues. The general equation for the eigenvalues is
J(&-  + l)ti2;  J-=  0, 1,2,  . . . .

T A B L E  8.4 Some Eigenfunctions of L’for m, = 0.

Functioh Eigenvalue of  1’

& = 0: P, = 1 0 = li20(0 + 1 )

A/= 1 :  P ,  =coss 2V =  Vl(1 +  1 )

& = 2: P, = 3 - =2 cc2  8 - 12 6h2 A22(2 + 1)

R, = 3: P, = 5 -2 co53  8 - 3 cos 02 12h2 = h23(3 + I )

&=4: p =3s4 cos4 89 - co2F 0 + 9 2oIi2 = +8 8 ti24(4 1)
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Note that the total angular momentum squared is  nlot the square of an integer
times ?i2.

The above states al l  correspond to mp = 0. For states in which m,, i s  not
zero, it can be shown that L2 has thle  same eigenvalues &($ + l)h2.

Since the square of the z component of a vector can never be greater than
the square of the vector,  (hm+J2  5 h’x(&  + 1).  Hence, the maximum value
of the magnitude of m,  must  be m,l  =/e.If’t I  were assumed that the maxi-
mum value of / mp / were ,c + 1, instead of 4,  then 1: would be

raJ/ + 1) + 4 + llh2, which is  greater than d(  4 + 1)A’.  This is not possible.
Thus,  actual ly the square of the z component, Li, can never be as great as L2.
The remaining contr ibutions to L2 (arise  from x and y components squared; the
individual values of I,  and L, remain unknown.

There are then 2 4 + 1 possibll: values for the z component of the angular
momentum for a given orbital anglJlar  momentum qulantum  number &:

m,A =  0 ,  fh,  *2h,.  .  ., *&ii

By lett ing L2 and L, act on the var ious functions in Table 8.3,  the reader may

verify the properties discussed for these functions.

16 SUMMARY OF QUANTUM NUiMBERS  FOR HYDROGEN ATOM

Detailed analysis of the complete wavefunctions,

(8.63)

shows that the total energy depends only on the principal quantum number n:

%  me4
E” =  =---.  n  =  1,2,3,...

(47rtJin)2  ’
(8.64)

The energy does not depend on & or m,, as it  does ( incorrectly) in the Bohr

model.  In order to sat isfy the condit ion that the wavefunction goes to zero as,  r
goes to infinity, it can be shown to Ibe  necessary that & be less than n. Thus,

de=  0,1,2  ,...,  n  - 1 (8.65)

The three quantum numbers:

n  .- pr incipal  quantum number; n =  1 ,  2 ,  3,...
4 .-  orbital  angular momentum quantum number; 4 = 0,1,2,.  . . ,n - 1

mp - - az imuthal  quantum number; m4 =  -&,-AL +  l,... 0  ,...,  +&

give a complete descript ion of the possible states of a point elec:tron  moving in

the Coulomb field of a massive nucleus, neglecting the intr insic angular mo-
mentum of the electron. For a given n or given energy, there are n2  dist inct
angular momentum states, so we say the energies are n2-fold degenerate. When
relativistic effects and the spin or intrinsic angular momentum of the electron are

taken into account, the energies are changed slightly and the degeneracy is less.
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A l s o ,  a s  m e n t i o n e d  a t  the s t a r t  o f  t h e  d i s c u s s i o n ,  t h e  r e d u c e d  m a s s ,  p =

m,m,/(m,  + m,),  should be used in the var ious equations rather than the
electron mass, to incorporate the effect of motion of the nucleus.

8.17 ZEEMAN EFFECT

The angular momentum (quantum numbers c:an be made observable in one way
by placing the atom in a magnetic f ield. A charged part icle which has some
angular momentum also has a magnetic dipole moment. This magnetic moment
interacts with the f ield and causes a s l ight spl i tt ing of the energy levels into
addit ional levels.  To see how this  comes about, consider a class ical negatively
charged electron, going around in a circle of radius r with speed v, as depicted
in Figure 8.13. The angular momentum is L =  mvr.  I f  the electron carr ies the

1

1

-e

(II>

Figure 8.13. A classical point charge moving in a circular orbit with angular momentum
1 has an orbital magnetic moment which is proportional to 1.

charge --e, then the current, or charge per second, passing a given point is  the
charge times the number of times per second the charge goes around. The num-

ber of revolutions per second is v/2rr, so the current is -ev/2rr.  I t  i s  known

that a plane current I enclosing area A has a magnetic moment /A. Therefore,
in this case, the magnetic moment /.L,  is:

ev 2 1
pm  = - -7rr := - -  eyr

2*r 2

This can be expressed in terms of angular momentum I = mvr. In this case,

This equation holds as a vector equation in quantum mechanics:

&l = - e 1--
2 m

(8.68)

where -e and m  are the charge and mass of the electron, and 1 i s  the angular
momentum operator.

Now when a magneiic  field B i s  present, there is an energy of interaction
between the field and the dipole:

E mog =  -pm.B  =  -B(/.L~),



8.78 Splitting of Levels 2 3 7

i f  the z axis is  chosen in the direction of the f ield. 13ut  (p,,,),  i s  re lated to the z

component of angular momentum: hence, in terms of 1, =  -iha/ap,

I-
ef?

-mag  = -
2rnLz

( 8 . 7 0 )

Further, in the hydrogen atom, I,  i s  quant ized and has only the values fim,.

Therefore, the energy due to the magnetic f ield interacting with the magnetic
moment can take on only the values:

E
eh

= -ma*
2m Bm,

The constant e%/2m  is cal led the Bohr magnefon,  and is  denoted by p;  p =

0 . 9 2 7  x  1  O-23  joule/weber/m2.
Now let us return to the SchGdinger  equation, ,to see what happens to the

energy levels. The total energy of the electron wil l  be comprised of kinetic

energy, plus potential energy due to Coulomb interaction, plus potential energy
due to magnetic interaction with the appl ied f ield. Hence, the SchrGdinger
equation would be:

E# = [ 1it + V(r) ti + Enlog  1F/
Us ing a wavefunct ion #nxmP, which gives the ordinary energy levels E,  of
hydrogen, it is seen that the net energy will just be:

E  = E,  + Emog ( 8 . 7 3 )

So the magnetic energy is an adolitive contribution, provided that the magnetic
field is not so large that the wavefunctions are changed appreciably by the field.

Actually, a large magnetic field can itself cause radical changes in the orbital
motion of the electron, so these considerations hoI’d  only if 6 is small enough

t h a t  Emag  -GC E , . Let us est imate the magnitude in electron volts of E,,s f o r  a
typical f ield of 8 ==  1 .O weber/m’  and m,  = 1. This wi l l  be:

E
(0.927 x  1  O-‘3)(  1  .O)

ma9 1 . 6  x  lo-“’  i/eV

=  5 . 8  x  10m3  eV ( 8 . 7 4 )

So this  contr ibut ion is  very smal l  compared to the atomic level spacings, which
are on the order of several electron volts.

.18 SPLITTING OF LEVELS IN A MAGNETIC FIELD

Let us consider what happens to an atomic energy level when the atom is plac:ed
in a magnetic f ield. For example, consider an n = 5, 4 = 2 level ,  as shown on

the left in Figure 8.14. In the absen,ce of a magnetic f ield, there are 2 4 +  1  =  5
degenerate states,,  descr ibed by ma = 0, &l, &2. which al l  l ie together and
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e m =2
‘9

m =l
‘P

n=5 mvp=O

mp=-I

L--- mp=  - 2

Figure 8.14. Spli t t ing of o 5d  level into 21 t  1 = 5 components in on externally
applied magnetic field.

appear as a single level,  as shown. But  when B is dif ferent from zero, this level

wil l  be replaced by a nlJmber  of levels of energies, E,  + Emog.  S ince E.,,,g i s

proportional to m,, the number of these levels will  be equal to the number of

values of m, for a given $, 2 4 + 1. In this example with & = 2, the f ive levels

are shown at the r ight of Figure 8.14. In a similor way, on & = 1 level  would

be spli t  into three levels. So i f  we had an energy level diagram looking likf:  the

left side of Figure 8.15, at zero field, it would look like the right side of the figure

P=l

it=0

P=2

--/n=5---

/

/
Transition for a single
line I”  the spectrum.

/

/

m‘P
-1

“=A  -.---.------  “=:A  - 0

- 1

Figure 8.15. Energy Ieve’  diagram showing the splittings of 4p  and 5d levels in an

applied magnetic field.

when the f ield is  turned on. Thus,  in place of o transit ion yielding a photon with

a single trequency,  a number of different transitions are possible.

8.19 SELECTION RULES

I t  appears at f i rst  that in Figure 8.15 there are 5 x 3 or 15 possible transit ions.

However, not al l  transit ions have the same probabil i ty. From the theory of

transit ion probabil i t ies,  which wil l  not be discussed in this book, i t  is  found that
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only transit ions for which the chclnge  A& in J’, is +l, and the changes Amp =

11,O i n  m, have suff icient ly high probabi l i ty to be readi ly observed. This  i s
related to the fact that the solut ions of Maxwell’s class ical electromagnetic
equations for spherical l ight waves are eigenfunctions of the operator L2 wi th

p o s s i b l e  q u a n t u m  n u m b e r s  j, =  1,2,3,.  .  .  ,  b u t  a  s o l u t i o n  f o r  4 =  0  i s  i m -
possible. This means that the photon itself  has a minimum angular momentum
corresponding to the quantum nulnber  & = 1.  Only the 4 = 1 case occurs with
appreciable probability for most ,iransitions. Since the photon carries off one unit
of angular momentum, the angular momentum of tlhe atom must change by one
unit, in order for angular momentum to be conserved. Therefore, A 8 = +l;
a n d  A m ,  = + 1,O  for the atom. We shal l  not prove these rules here, but only
state the so-called

Selection rules: A& = ztl

Am, = &l or 0 (8.75)

T h u s ,  a  t r a n s i t i o n  f r o m  m, =  2  t o  m, = 1 is  probable, but a transit ion from

5 = 2tom, = 0, - 1 has negl igible probabil i ty.

;.20 NORMAL ZEEMAN SPLITTING

The selection rules are satisf ied for the change in j, in Figure 8.15, 4 =  2 to
& = 1.  Table 8.5 shows the values of m,  for the var ious lower states with 4 ==  1
for the al lowed transit ions corresponding to the various possible values of rn<,  in
the upper state with & = 2. Altogether, there olre nine al lowed transit ions.

Furthermore, these nine transit ions give r ise to osnly three rather than nine

TABLE 8.5 Allowed Transitions for o 5d + 4p Transition.

Upper state &=  2,

i-  -

lower state 4 = 1 values of
value of mp mp for ollowed  transitions

1

Jr0
1,0,-l
‘O,-  1

- 1

spectral lines, because the spacings between the splittings are equal. The transi-

t ions are indicated in Figure 8.16. I f  AEo is the energy difference between the
levels before the field is turned on, then for the Am, = 0 transition, the energy

difference after the field is turned on is still:

AE = AE, (8.76)

For the Am = ~‘1 transitions, the energy difference with the field on is:

AE+ AE,,  ~$9 (8.77)
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(Ai),
I
i -

-iequal

FT- ----I spacings

- : I
-i

h-- cr’
A m , =  - 1 A mp=o amp=+1

F i g u r e  8 . 1 6 . Al lowed transit ions for 5d - 4 p lines which ore split into components
by o magnetic field.

Thus a l ine wi l l  be spl it  into three l ines; the magnitude of the spl itt ing is propor-
tional to the magnetic fielcl.  This phenomenon is observed in some lines of calcium
and mercury,  and is  cal led the normal Zeeman effect.  Usual ly,  however,  var ious
elements show spl itt ings with different magnitudes, and also with more or fewer
than the three l ines predic:ted  here. This is  cal led the anomalous Zeeman eflecf,
and is due to electron spin.

8 . 2 1  E L E C T R O N  S P I N

In explaining the anomalous Zeeman effect and other effects to be discussed
later,  i t  i s  necessary to consider the poss ibi l i ty that the electron can have an
internal property. The electron is  charged, and if  i t  has internal angular momen-
tum or intr insic spin, i t  may  also have an intr ins ic magnetic dipole moment. This
dipole moment could then interact with magnetic fields which are present, either
external ly appl ied f ields Ior  atomic f ields, and contr ibute to the energy of the
system. The observation of such energies would give evidence of the existencse  of
internal angular momentum.

Let us call this intrinsic angular momentum spin, and denote the corresponding
operator by 5. The eigenvolues of S2 s h o u l d  b e  h’s(s  +  l),  j u s t  a s  f o r  t h e

orbital angular momentum, where s is a spin quantum number. We would expect,
then, that the magnetic moment would be proport ional to S,  and that i f  th is
magnetic moment is placed in a magnetic field, it can contribute to the energy.

If  s, is the z component of the spin, then the number of different values elf s,
should be 2s + 1. This implies that there would also be 2s + 1 magnetic energy
terms, or that a level woul~d  split into 2s + 1 levels in a magnetic field.

8 . 2 2  S P I N - O R B I T  I N T E R A C T I O N

Now so far as the electron in an atom is concerned, i t  is  always in a type of

internal magnetic f ield which leads to o spl itt ing of energy levels, cal led f ine
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structure spl itt ing. To understanld  this, consider the Bohr model of the atom,

where the electron moves in an orbit  through the electr ic f ield produced by the
nucleus.  I f  the electron has velocity v smal l  compared to c, and moves in an

electric field E, we know from electr icity theory that in the instantaneous rest
frame of the electron there is a magnetic f ield of B = -v  x  E/c’.  Then tllere
is an interaction energy betweeln the electron’s magnetic moment p,,,  and th is
magnetic f ield given by -p,,,  *B.  I f  E i s  point ing radial ly outward, as is  approxi-
mately the case in atoms, it is of the form E = rf (r),. and therefore,

B zz [r x (,,@ = !‘cd
mc2 nn2

(8.78)

Since p,,,  is  proport ional to the spin S, the energy is proport ional to Sal;  this is
cal led spin-orbit  interaction. In place of one level,  there wi l l  then ordinar i ly be
2s + 1 levels due to this spl i tt ing. In the J, = 0 states there is no such spl itt ing.

This is  because with no orbital angular momentum there is no component of
velocity perpendicular to E in the Bohr picture. Thus there would be no B in the
electron’s rest f rame with which to interact. So i f  the upper level is  spl i t  into
2s + 1 levels and there are transtions  to a lower Se  = 0 level  which is  not spl i t ,
one would expect to see 2s + 1 spectral lines due to the splitting.

In hydrogen, there is  such a spl i tt ing; the magnitude of the spl i tt ing can be
calculated theoret ical ly and has been observed with special  instruments. The
spl itt ings are much too small  to be observed with a s imple diffraction grating or

prism spectrometer.
In the alkal i  metals which consist of an electron orbit ing a core of other

electrons bound t ightly to the nuc:leus,  the spl itt ings are much larger. The obser-

vat ions show that the l ines consist  of very closely spaced pairs of l ines. For ex-
ample, in sodium vapor the brighi  yel low color  comes from a pair of yellow l ines
at 5895.92 Angstroms and 5889.95 Angstroms. The fact that there is  a pair  of

l ines or a doublet shows that 2s + 1 should be equal to 2, and therefore the
spin quantum number is

1
ST-

2
(8.79)

.23  H A L F - I N T E G R A L  S P I N S

I f  the spin quantum number is  s  == % , then the magnitude of the square of the

angular momentum of the electron should be s(s +- 1)/t’  =  VI h’.  In discuss ing
orbital  angular momentum, we found that the z component of angular momen-

tum, was always integral.  This  resulted from the condit ion that the wavefunc-
t ion be s ingle-valued, so that i t  i s  the same for cp  =: 0  and cp  ==  2x .  I f  we hlad
said that the function becomes its  negative when y’  changes by 27r,  the prob-
ability density, which depends on the square of the wavefunction, would still be

s ingle valued. This  would have led to half- integral  quantum numbers.  Whi le this

is  not the case for orbital wavefunctions, half- integral spins do occur for intr ins ic
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angular momenta of certalln  particles, and the spin wavefunctions do change Iinto
their negatives upon rotation by 27r.

For a half- integral spin, the maximum magnitude of s, is  st i l l  the total angular

momentum quantum number, s.  Also, neighboring spin states are separated in
the z component of angular momentum by 15.  Thus, for a spin 3/.A  system, the
possible values of s, are --3/h,  - ‘/2 ti, %li,  yz/2ti.  For the electron, with s =  ‘/2,
the possible values of s, are - ‘/2 t, (spin down) and Mii  (spin up). Particles have
been observed with var ious integral  and half- integral  spins.  The more funda-
mental part icles such as electrons, protons, neutrons and muons,  have intr ins ic
angular momenta corresponding to % ti.  Other fundamental  part ic les such as
photons and some mesons have angular momenta corresponding to 0 or ti.

8.24 STERN-GERLACH EXPEE!IMENT

An experiment was performed by 0. Stern and W. Gerlach in 1921, which

demonstrated directly that  s =  %  for the electron. They passed a beam of s i lver
atoms through a strong inhomogeneous magnetic f ield. Such a f ield exerts a
force on a magnetic dipole which depends on the orientation of the dipole rela-
tive to the field. Silver contains 47 electrons, an odd number. Inside the atom the
electrons tend to pair off :#o  that their magnetic moments cancel in pairs, except
for one left-over electron, with s =  % and a magnetic moment, p,,,.  I f  the
direction of the f ield B is ?aken to define the z axis,  the potential  energy of the
electron in the magnetic field is:

E mw =  p,,,.B =  --p,,,;B, (8.80)

The magnetic f ield is constructed so that B, var ies as a funct ion of z ;  thus the
potential energy varies with z, and there will be a z component of force:

- dE,,,F=-=
aZ

t- pm,  2. (8.81)

on the electron and hence on the atom. Because the magnetic moment is propor-
t ional to 5, it  can take on only 2s + 1 orientations, giving 2s + 1 possible dis-
t inct forces on the part icles in the beam. This would spl i t  the beam into 2s +  1
beams. When the experiment was performed, the experimenters found the beam

to be spl i t  into two. Hence again, 2s + 1 = 2, so that s =  % .

8.25 SUMS OF ANGULAR MOMENTA

In general, when treating (angular momenta in quantum mechanics, there are the
two types, integral and half- integral.  I f  a system consists of parts which hiave
var ious angular momenta, such as several part icles each of which has intr ins ic
and orbital  angular momenta, the vector sum of the var ious angular momenta

gives the total angular momentum. This total is ordinarily denoted by J. Thus,
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f o r  CI  s i n g l e  p a r t i c l e  w i t h  s p i n  o p e r a t o r  S  a n d  o r b i t a l  a n g u l a r  m o m e n t u m

operator, 1,

J=L+S (8.8’2)

Combinat ions of spin and orbital  wavefunct ions may be found that y ield eigen-
functions of the total angular momentum operator squared, J2,  and of the z
component of the total angular momentum, J,. Thus,,  acting on these functions
the operators yieldss:

5’ - j(;  + l)hZ (8.83)

JZ - m,h (8.84)

Here j i s  the total  angular momentum quantum number and m,  i s  the z corn-
ponent quantum number.  There are 2; + 1 possible values of m,:

m, = -j, --;  + 1,...,+1 (8.85)

The j and m, may either be integral or half-integral, dlepending on the individual
angular momenta which combine to give the total.

26 ANOMALOUS ZEEMAN EFFECT

Let us now return to the discussion of the anomalou!j  Zeeman effect, where an
atomic electron in an external magrletic  f ield shows splitt ings different from those

based on orbital angular momentum alone. This anomalous effect arises pri-
mari ly because the relationship between spin and magnetic moment is  different
from that for orbital angular momentum. In the orbital case [Equation (8.68)],

(8.8t5)

However, for the electron spin, it has been found that:

e sp,  z - - (8.87)
m

These equations differ by a factor of two. This factolr  of  two i s  predicted by a
relativistic wave equation which was discovered by Dilrac  in 1933.

When treating the spl itt ing of spectral l ines in a magnetic field,we must con-

sider the total angular momentum of an electron J ==  1 + S.Then  the states of
the electron are described by quantum numbers j and m,. If the relation between
magnetic moment and angular momentum were the same for the spin and orbitlol
parts,  the spl i tt ings would be given in terms of m , ,  just as in the normal Zeeman
case they are given in terms of m,. One would then always see the normal case.
However, because of the difference in the magnetic rnoment relations, the mag-
netic moments of the result ing states of definite j and m, are somewhat compli-
cated. This gives r ise to various kinds of spl i tt ing of the spectral llines  in a mag-

netic f ield. By carrying out the analysis in detai l  using these ideas, one may

explain the anomalous Zeeman effect completely.
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The idea of angular momentum is important in quantum mechanics for the
same reason it was important in Newtonian mechanics; it is conserved relative to

a point i f  the potential  energy does not lead to a torque about that point .  The
conservation of angular momentum has been observed in an enormous number

of different experiments.

8.27 RIGID DIATOMIC  ROTATOR

In classical mechanics a r igid symmetric top rotating freely about an axis of
symmetry through the center of mass has the kinetic energy L2/2/,  where I  i s  the

moment of inertia abou? the rotat ion axis ,  and L2  i s  the square of the angular
momentum vector.  Certain quantum systems hove o kinetic energy operator of
the same form, where L” is  the angular momentum operator given in Equation
(8.58). An example of such a system is a linear diatomic molecule such as ti12,  N,
or HCt,  in which the atoms themselves are treated as point masses, separated

by a fixed distance. If we imagine a coordinate system placed at the molecule’s
center of mass, then the position of the line of centers connecting the two atoms
may be completely specified by the angles 8 and p defining the direction of the
l ine of centers.  Equation (8.58) then gives the operator corresponding to the
square of the total angular momentum. The moment of inert ia is I =  pr2, where
p is the reduced mass of the molecule and r the fixed atomic separation distance.
If there were a third particle in the molecule not on the line of centers, an addi-
tional angle would be needed to specify completely the orientation of the mole-
cule, and there would be additional contributions to the angular momentum and
to the energy.

If we consider only linear diatomic molecules, the SchrGdinger  equation for the
stationary states will take the form:

Hence, eigenstates of L2 ore also energy eigenstates. We have already seen that
the possible eigenvalues of L2 are of the form A2$(& + 1); in the case of the
rigid rotor it  is customary to introduce the symbol J for the quantum number

instead of 4. Thus,

L2$(0,q7)  =  h21(J  +  l)\L(O,cp) (8.89)

where J is  a nonnegative integer. The energies due to rotation of the diatomic

molecule are then:

E J = h2J(J  + 1)
2 1

(8.90)

An energy level diagram for these rotational energy levels is given in Figure 8.17.

Transit ions between these rotational states are governed by the selection rule
AJ = 41,  analogous to the selection rule on t for atomic transit ions. Thus, in a
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Figure 8.17. Energy level  diagram for  the  r ig id  rotator ,  El = t:J(J  + 1)/2/. The

allowed transitions are governed by the selection rule LLJ = +l.

transit ion from a rotational state characterized  by the quantum number J + 1,
down to the next lower level J,  i f  the atomic electrons do not also change their
state, a photon of trequency  u will Ibe  emitted, with:

liu = E,+, - E,

= ;[(J  +- l)(J  + 2) - J(J + l)]

=  y(J +  1 ) (8.91)

The result ing rotational spectrum wil l  therefore consist of l ines equally spacesd,
separated in f requency by Au = Ii/27rl. Measurements on these spectra th!Js
yield information on the moment of inertia and hence on the interatomic spacing.

To est imate the frequency region in which these l ines wi l l  be seen, consider a
nitrogen molecule N, with reduced moss 7 atomic mass units,  and interatomic

spacing E 2 Angstroms. The wavelengths will be comiparable  to

2x1 27rcpr’- - = -
1 h

(8.92)

or a few centimeters, in the microwave region. The energy for J = 0 is E =

Fi’//  ‘2 2  x  10m4 eV, or about 10e4  t imes smaller than typical atomic electron

energies.
Actually, diatomic molecules are not rigidly bound .together  at a fixed separa-

t ion distance, but can vibrate s l ight ly back and forth along their  l ine of centers.
This  v ibrat ion is  a quantum mechanical s imple harmonic osci l lat ion, and the
vibrat ional energies are quantized as wel l . In Chapter 7 i t  was seen that the
e n e r g i e s  a r e  E, =  tiw(n + 1/2), where n  i s  a posit ive integer and w is propor-
t ional to the square root of the effective spr ing constant. In most diatomic

molecules, the interatomic spacings stay quite close to their equil ibr ium or aver-
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age values, which means the spring constant is rather large; usually, the spaIcings
between vibrational levels are roughly 100 times the rotational level spacings, or

around 0.01 eV; hence the molecular vibrat ional spectra l ie in the far infrared.
These vibrat ional and rotat ional energy levels  give r i se to band spectra, con-
sisting of lines spaced so closely together that the spectrum appears to be prac-
tical ly continuous. These bands result from the molecules’ changing from one
vibrat ional state to another,  whi le at the same t ime mony dif ferent rotat ional
transit ions occur. Thus, near one vibrational l ine could be grouped many l ines
corresponding to many possible different init ial  and f inal rotational levels,  ,which
are relatively close togetlier in frequency.

SPECTRUM OF HYDROGEN

The wavelengths of the clbserved  lines in the spectrum of hydrogen are given by
the Balmer formula:

n, =  1,2,3,.  .  .

n2 = n, + l,n,  + 2,..

where the Rydberg constant RH  has the experimental value:

R,,  = 10,967,758.1  m--l

The spectrum of the hydrogen atom can be interpreted in terms of an energy
level diagram where the discrete energies are:

-R,hc
E, = I) n = 1,2,3,...

rl‘

BOHR THEORY OF THE HYDROGEN ATOM

Bohr postulated that thfe  stat ionary states within the hydrogen atom could be
characterized  by  a  quaritized  va lue  m,h of the orbital angular momentum. This
can also be understood qual i tat ively by assuming that an integral  number of
wavelengths of the de Brogl ie electron waves must f i t  into a circular orbit .  Thus,
the tangential component of momentum is given by:

m v r  =  m,h m, =  1,2,3,...

where r is the radius of the orbit and v is the speed. In addition, the centripetal

force necessary to bind the electron in the circular orbit is  that due to the
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Coulomb attraction between electron and nucleus, or:

171Y2 e2

r 4xtOr2

For hydrogen, the total kinetic plus potential energy of the electron is then:

where

-R,hc
E=7

rnv

=  1.0973’8 X  107m-’

While this formula agrees well  with the observed levels,  i t  is  conceptually in-

correct, because the exact theory shows that the energy depends on the radial

quantum number, n, and not at all  on m,.

When the motion of the nucleus of mass M is taken into account as well ,  the

energy levels are given by:

-R,hc
E=T

mP
where

and where

m

1 +  m / M

is called the reduced mass.

SCHRijDlNGER  EQUATION FOR HYDROGEN ATOM

In terms of momentum operators, t h e  Schrgdinger e q u a t i o n  f o r  t h e  hydrocgen

atom of an infinite-mass nucleus is:

This was obtained by calculating la2  in spherical polar coordinates in Appendix 1.

The solution to the SchrGdinger  equation for the ground state is:

-me2
1c/  =  const  x  e x p  -. r( )47rt,A1
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In general, the solutions are of the form:

Ic n&my = Jwmzm,.wmJP)

where R,&(r) is a function only of r, @tmm (19) isa function only of 0, and am,(p)

is, a function only of cp.  The energies depend only on the pr incipal quantum
number n and are g iven by E, =  -R  p he/n’.

ANGULAR MOMENTUM

The orbital angular momentum operator 1 =  r  x  p can be calculated in terms
of spherical polar coordincltes  when the momentum operator is known in terms of
those coordinates. The z component of orbital angular momentum is:

ond the wavefunctions,

w i t h  m, =  -4 ,... 0  ,... 4 - I,$, are eigenfunctions of L, with eigenvalues

m,iS.  The total angular momentum operator is given by:

A2 a a$L2# = ---- sine--
( 1

h2 a'+- --_~
sin 0 f30 a0 sin’  B d(p2

and the wavefunctions @tm,(0)@,,,,  (CP) are eigenfunctions of L2 with the possible

eigenvalues Fr2&(&  + l), w h e r e  4 =  0 ,  1 ,  2 , .  .  . n  - 1 .  T h u s  t h e  s t a t i o n a r y

states of the hydrogen atom, corresponding to the wovefunctions #.t,,, J r ,  8 ,  p),

are descr ibed by three quantum numbers.  The pr incipal quantum number n de-
termines the energy. The orbital angular momenturn number 4 i s  a  pos i t ive
i n t e g e r  In - 1, and the azimuthal quantum number m,  is an integer such that:

-&Im,i+t

NORMAL ZEEMAN EFFEiCT

An electron of orbital angular momentum 1 has a magnetic dipole moment:

and interacts with an external  magnetic field B along the z axis with the energies:

where the Bohr magneton  p is

p := 2 =  0 . 9 2 7  x  1O-23 i/w/m2
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This addit ional energy causes a Isplitting  of a level corresponding to some vsalue
of 4 into 2 4 + 1 levels ,  and trlsnsitions  between levels occur restr icted by the
selection rules A 4 =  il, Am, = &l,O.  In the normal Zeeman effect, only

orbital angular rnomentum is important, and spectral l ines are spl i t  into three

components.

E L E C T R O N  S P I N

Electrons possess internal angular momentum, or spin, S, choracterized by a
quantum numbers = %  such that:

s’lc/  =  FA(s +  l)$  = ih2jl

The intrinsic magnetic moment of the electron is given by:

The total angular momentum of an electron is then J = 1 + 5, and the electron
states are descr ibed by quantum numbers j and m,,  where i i s  half  an odd
integer. The eigenvalues of total angular momentun-  are:

J2$  =  A2j(; +  l)$

The z component of total angular momentum has the eigenvalues:

☺,# = hm,$. m, = *i, l zt ,...  *j

R I G I D  R O T A T O R

A diatomic  molecule has rotationcll  energy levels giveen  by:

ExQ+l),  J=Ol2.--

:!I
s I, ..

where I is the moment of inertia of the molecule about the center  of mass.

1. Estimate the ratio of the gravitational attraction at a given distance between the
electron and proton in hydrogen, to the Coulomb attraction.

Answer : 4n-t,GmM/e2  E 4  x  1Oe4’.

2. The energy of the electron in the hydrogen atom is pZ/2m  - e2/4*t0r.  As-
sume this is a one dimensional problem with ApAr  I> A, and find the radius r rcor-

responding to the minimum possible energy, by talking  p2 - (,.lp)2  - (ft/Lr)2,
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3.

4 .

5.

6.

7.

8.

9 .

10.

11.

12.

13.

r - rlr, and minimizincl  the resulting expression for energy. Compare with the first
Bohr radius.
A n s w e r :  4ncoli2/me2 =  5 . 2 8  x  lo-”  m e t e r s .
Show that the wavefunction $ so0 of Table 8.2 is a solution of the SchrGdinger
equation for the hydrogen atom, and find the corresponding energy.
A n s w e r :  E,

Calculate the shortest and longest possible wovelengths of lines in the Balmer series
of hydrogen.
Answer: 3647 Angstroms, 6563 Angstroms.
Doubly ianized lithium has three protons in its nucleus an’d  a spectrum very similar
to that of hydrogen. Calculate the energy of the lowest state in eV, and the wave-
length of the spectral line arising from an n = 2 to n = 1 transition in this ion.
Answer : E = - 122.7 eV;  X = 135 Angstroms.
Calculate the reduced mass of five times ionized carbon,: the mass of the neutral
carbon atom is 12.000 amu = 19.929 x 10--27kg.  CalcLllate the effective Rydberg
constant for this system. ‘The experimentally observed value  is 10,973,228.6  rn~‘.
Verify the correctness of ,*he  expression for the x component of the angular momentum
operator in Equation (8.22).
Verify that the functions in Equation (8.23) are eigenfunctions of L, with the indicated
eigenvalues.
Find the wavelength of a photon emitted when the ‘electron in a hydrogen atom
makes a transition from then = 3 state to the n = 1 state.
Answer : 1026 Angstroms.
A photon is given off by hydrogen in the trahsition n ==  3 to n = 1. The work func-
tion for silver is 4.73 eV.  What is the maximum kinetic energy an electron can have
if knocked out of silver b,/  this photon?
Answer: 7.36 eV.
For two particles of mosses m and M and positions r2 and r,, the SchrGdinger
equation is:

Let r = r2 - rl and r< = (mr2  + Mr,  )/(M + m), the center  of mass posit ion
vector. If k is a constant vector and V depends only an tlhe relative vector r, show

that a solution for 1c/  is oi the form $J  = f (r)e
ik .rc

, whence  f(r) satisfies the equation:

2 ,2+ a + d
ay2 az2

E - h2k2  f
2(M  + m ) 1

with the reduced mass, u = mM/(M  + m). What is the physical interpretation of
this form?
The positron is a particle identical in mass, m, to the electron with charge equal and
opposite to that of an e#ectron.  The electron and posiiron  can form a hydrogen-like
combination called positronium. Using the result in the previous problem, find an
expression for the energy levels of positronium.
Answer: E  =  -Pi me4/(4at,,)2h2n2

The electric field an electron in a hydrogen atom sees is er/4xtor3.  Using B =

-V x E/c2  and the fact that the magnetic moment of an electron is p,  = -e/m  S,
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show that the spin-orbit coupling energy is (e2/47rtomZc2)S~L/r3.  (Actually, this is
a factor of 2 too large, due to relativistic effects as’rociated  with the rotating rfest
frame of the electron). Using the orders of magnitulde: S  - 6, 1 - i i, r - Bohr
radius, show that the spin-orbit splitting is comparable to the hydrogen atom
energy times a’, where (Y =  e2/4ac,hc  Z l/137  is the fine structure constant.
Since the hydrogen atom energy is on the order of -- 10 eV,  what is the order of
magnitude of the spin-orbit or fine!-structure  splitting?
Answer: 1 Om3  eV.

-E-  Tr14. The relativist ic kinetic energy is ‘r =  d/p  c +  mOc  - mcc’. Far pc << mc2  this
is T E (Yz  p2/m)(l  - ‘/4  p2/m2c2).  The first term is of the order of the hydrogen
atom energy when it is used for the kinetic energy part of the hydrogen atom
SchrGdinger  equation. Use this ta show that the next term is of order 01~  times the
hydrogen atom energy, where N = e2/47rt0)lc  z ‘/,:$,  is the fine structure constant.
From the results in the previous problem, thiris also ihe order of magnitude of the
spin-orbit coupling energy.

15. Write the SchrGdinger  equation for a free particle in spherical coordinates. Show
that two solutions are:

a n d

+. = !sin  WI
k r

where k is a constant. What is the <energy  in terms of k?
16. For a particle in a spherical box of radius rO,  what are the conditions on the k’s in

Go  and $,  of the previous problem? Which of the two solutions could give the wave-
function for a hemispherical box?

Answer: sin (kr,)  = 0 or k = F for $.
r0

tan (kr,)  = kr, for 4,;  #, .

17. The operator, L”,I S given in Equation (8.24). Assume that there exist eigenfunctions

of the form $ =: c a, COS”  8.  Substitute into the eqLlation L2$ = h$.  By using the
”

condition that the coefficient of a given power of cos 0 on the left s,ide  of this equo-
tion must equal that on the right, find a relationship between o,+~ and a,, Determine
the values of X such that the series is actually a polynomial, i.e. that a, = 0 for
some n. Assume that a0  = 1 and a,  = 0, or a0  = 0 and o, = 1.
Answer: X=X2&(  &+ 1 )  w i t h  t= 1,2,3  ,....

18. Verify that the following are eigenfunctions of the operator, 12:

$0 = 1; $,  = cosH;  +C2 = ; cos2 0 - ;; 5$b3  = j cos3 8 - ; cos 8

The volume element in spherical coordinates is: r’dr  sin 0 dtId@.  Find what constant
each wavefunction $J~  must be multiplied by to make:

2x

I s

*

dq7 $isinBd8  =  1
0
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19.

20.

21.

22.

23.

24.

25.

26.

27.

28

Verify that the angular. functions in 4 s,, , $s:,,  , $sz2  of Table 8.2 are eigenfunctions
of L2.
An angular momentum eigenfunction for the rigiol  rotator is  given by s in 0 x
(5 cos’  8 - 1)e”.  What are the eignvolues of L2 and L,?

A n s w e r :  12ti2,fi.
The three 4 = 0 waveiunctions for the hydrogen atom in Table 8.2 are:

G ,oo  = const. x e r/o ; $200  ==  const. x e

2

+ 3oo  = const. x e-r’3a 1
2r i’

- - - + -l  L-
3a 27 a2

The volume element in spherical coordinates is r2dr sin 8 dfl dp. Find by what
constant each wavefunction must be multiplied so that:

s
c..4n I$,  1 2r2dr  = 1o

Find the expectation value of r for the ground state, rr/,,c  = const. x e-?’  with
2

y =  me2/47rtOh  , of the hydrogen atom. Compare with the Bohr radius, a =
0.53 X lo-”  meters.

Answer:

Find the expectation value of the potential energy, -e2/(4Ttor),  ond the kinetic
energy,

I?  a2

-4

2 a 2 1 a2-,.  ;-&+ la+ 1cos!A+  - -
2m dr2 r2 a@ r2 sin 0 i)B r2 sin2 0 ap2 1

for the state, $too = :const)e-” with y = me2/4xtoii2. Compare the two results.
Answer: ( V )  =  -t!(J)  =  -27.2eV.
Calculate the frequency shifts in set-’ for a line exhibiting the normal Zeemon effect
when the applied magnetic field is 1.72 w/m2.
Answer: 2 . 4  x  10’2/sec.
Calculate the maximum component of the spin magnetic moment of the electron
along the direction of an applied magnetic field.
Answer: 0 . 9 2 7  x  ‘lO-23  joule/(weber/m’).
Show that for wavefunctions that are eigenfunctions of J’,  L2,  S2,  and J, where
J=L+S,

(1-J)  = i [j(j  + 1) + t ( , t + 1) - s(s  + l)]ii2

Suppose two particles of orbital ongular momentum quantum numbers 4 , = 2 and
4 2 = 3 combine to form a single system. Then the toial  angular  momentum quantum
number can hove the ,vaIues  j = 5, 4, 3, 2, or 1 with a maximum and a minimum
value,  just as if we added two vectors vectorially of lengths 2 and 3. Show that the
total number of possible states when the particles are specified by the combination
of Cm,, and h,m,, is the same as when specified by i and m,.

The experimentally observed frequency spacing between two successive rotational
lines observed in the spectrum of the HCI molecule is 61.3502 x 10”  see-‘.  Using
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this information, calculate the distance between the hydrogen atom and the chlorine

atom which make up the diatomic  molecule.

Answer: 1.803 Angstroms.



9 Pauli  exclusion
principle and the
periodic table

We have seen how the hydrogen atom, and hydrogen-l ike atoms, may be pic-
tured as very small, positively charged nuclei surrounded by “clouds” of negative
electr icity due to the elesztron.  In fact, a s imilar picture is val id for more compli-
cated atoms containing many electrons. In the hydrogen atom the charge cloud
is around an Angstrom in diameter and the energy differences involved when
the electron changes its state are a few electron volts. Similarly, in many-electron
atoms, from experimental studies of spectra, chemical reactions, formation of
crystals, etc., it can be cc’ncluded that the charge clouds are of the order of a few
Angstroms in s ize, and that energy changes are also of the order of a few elec-
tron volts.  For example, when a sodium atom and a chlor ine atom combine to
form NaCI,  the total energy given up per molecule formed is 4.24 eV and the
NaCl  distance is 2.36 Angstroms.

When two atoms are lbrought  close together, the electronic charge clouds will
begin to over lap, and i i  i s  to be expected that the features of the interaction
between atoms will be largely determined by the structure of the electronic cloud,
or in other words, by the states of the electrons in the atoms. Some atoms tend to
give up an electron and form posit ive ions, such as the alkal i  metals sodium,
potassium, rubidium, ceGum. Some atoms tend to attract an extra electron and
form negative ions, such as the halogens, f luorine and iodine. Others are chem-
ical ly nearly inert,  such as hel ium and neon. Because of the great variety of
chemical behavior we would not expect the electronic states of all atoms to be
similar, but important diiTerences  must exist among them.

In studying the mathematical solut ion of the hydrogen atom problem by
means of SchrGdinger’s  equation, it has been seen how the various states of the
electron can be labeled  by a set of quantum numbers. The spectrum of l ight
emitted by hydrogen can then be understood by saying that the electron makes
a transit ion from one state to another,  emitt ing a photon in order to conserve
energy. Although in more complicated atoms the elnergy  levels  do not  have the
same numerical values ias  in hydrogen, st i l l  the state’s may be labeled  by the

same set, or a very s imi lar set, of quantum numbers as are used for hydrogen.

2 5 4



In addition I O the fact that other nuclei have larger charges than does the proton
in hydrogen, the complications due to electron-eleectron  interactions shift the

energy levels around somewhat.
From a study of the spectrum of an atom, it is possible to determine the various

energy levels  and their  quantum rumbers.  I t  i s  observed exper imental ly that in
the spectra of atoms having two or more electrons, certain l ines are missing. For
example, in l i thium there are no tiransitions from n = 2 states to n = 1 states.
In explaining these and related phenomena, Pauli  proposed the exclusion prin’ci-

p/e.  Loosely stated, this principle says that no two electrons in an atom can exist
in the same quantum state. This remarkably simple principle can also be used to
explain the !structure  of the periodic table of the elements and the chemical be-
havior of the atoms of each elemerlt.  Let us begin by reviewing the nomenclature
used in describing atomic energy levels.

I.1  D E S I G N A T I O N  O F  A T O M I C  S T A T E S

In solving the SchrGdinger  equation for the isolated hydrogen atom, it was found
that the wavefunct ions were labeled  by the quantum numbers:  n, 4, and mm,
and spin quantum numbers.  The energies were degenerate and depended only
on the principal quantum number, n. While in the previous chapter mg with sub-
script was us,ed  to avoid confusion with the symbol m for mass, no such confusion
should occur in this chapter. Therefore, we wil l  f rom here on use m for the azi-
muthal quantum number, as is usual in physics. The second quantum number ?,  is
called the orbital angular momentum quantum number. It can have the possible
va lues  4 = 0, 1, 2,.  .  .  .  (n .- 1).  Thus for a given value of n,  there are n valLles
of 4.  I f  a state i s  descr ibed by a value 4 for the orbital angular momentum
quantum number,  then the square o f  t h e  o r b i t a l  a n g u l a r  m o m e n t u m  i s  1’ =

+=I2 4(-t  +  1 ) .
The var ious 8 states are also denoted by letters .  ljtates f o r  w h i c h  4 =  0  o r e

also referred1 to as s states; 4 = ‘ I  are p states. In var ious appl icat ions,  these
letters may be either capital or small. The designation is given in Table 9.1.

T A B L E  9 . 1 Alphabetic designations of states for different
orbital angular momentum quantum numbers 4.

4 value alphabetical clesignation

0 9

1 P
2 d
3 f
4 g

The rest in alahabetical  order.

An .$ = 5 state would be an h state. Al l  s  states have zero orbital  angular
momentum, and the wavefunct ions depend only on r .  So the probabi l i ty den-
sity / #noo  / 2 has spherical symmetry. I f  n = 3,  the states s, p, d are possible
corresponding to the & values ,  0, 1, 2. States are sornetimes designated by writ-
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ing an integer and then a letter:  3p,  Is, 2p,  etc. The integer refers to the value
of n and the letter refers to the value of 4. Thus a .4p state has n = 4,  4 = 1.
I f  n = 5, the possible states are 5s, 5p,  5d,  5f, 59.  In the hydrogen atom, al l
these n = 5 states are approximately degenerate and have the same energy.

9.2 NUMBER OF STATES IN AN n SHELL

The azimuthal quantum number m can have positive or negative integral values

or zero. Since mR is the L component of orbital angular momentum, the maximum
magnitude of m is equal to 4.  Thus, m can vary in integral steps from a minimum
value of  - 4 to a maximum value of 4. This  gives 21:  + 1 values of  m for  a

given 4. Thus, for example, for a 5p state there are three possible m values, and
for a 3d state there are five. If there are 2&  -t  1 values of m for a given 4, and
n values of  4 ( 4 = 0, 1,.  .  .  n - 1) for  a given n,  then for  a given n the total
number N,  of states of the electron in a hydrogen atom is equal to:

n-l

The arithmetic series formula gives us:

(9.1)

(9.2)

s o  t h e  n u m b e r  N,  i n  t e r m s  o f  n  i s  N,  =  2[n(n  - 1)/2]  +  n  =  n’.  T h i s  m e a n s
that in hydrogen the energy degeneracy is n2.  Ther,e  n2  states are different be-
cause the dependence of #.  e,,, on (r, 0, a)  changes as 4 and m  change, i .e.  as
the angular momentum changes.

The specif ication of electronic states in terms of n, 4.  and m is not quite com-
plete, because in addit ion to these quantum numbers the electron has internal
quantum numbers,  i .e.  spin angular momentum numbers,  with values s =  %
a n d  m, = &1/2.  The number s i s  the total  spin angular momentum quantum
number; and the z component of spin angular momentum has eigenvalues of
m,h.  Thus, including the effect of spin, to completely specify the state of an elec-
tron we need five quantum numbers, n, 4, m, s, m,. However, for an electron, s
i s  always equal to % So i f  we keep this fact in mind, we only need to use the
four quantum numbers n, 4, m and m,.  S ince for a given n, 4 and m, there are
two possible values of mr, the degeneracy of the electron in the hydrogen atom
is actual ly not n’,  but  2n2.  Also, in addit ion to the spatial coordinate r describ-
ing posit ion of an electron, there is another coordinate describing spin, so in
general an electronic wavefunction wi l l  be a function of the form $,d,,,,(r,  5)
where S is a spin coordinate.

9.3 INDISTINGUISHABIUT’I  OF PARTICLES

The above cons iderat ions are val id when we have one electron in a state in a
hydrogen-like atom. If we have a many-electron atom, then the energy levels will
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in general be shifted, so that they may depend on 4 as well as n. This is because
the outer electron wavefunctions penetrate the cloud of inner electrons to differ-
ent extents depending on 4, leading to different ‘average potential energies.

Also, s ince total angular momentum (1 + S) is  quantized, i t  may be more useful
in some cases to label states by total angular momentum quantum numbers j, m,,
rather than 4 and m. We shall not need to do this here, however.

Consider man atom, such as helium, which has two electrons. The wavefunction
$ will then depend on two sets of variables: rl, S1  for one electron and r2,  S2 for
the other.  So the wavefunct ion could be wr i t ten #(r, , S1  ; r2,  S,),  where the
labels before the semicolon refer IO the values of the coordinates of electron 1
and the labels after the semicolon refer to values of tile coordinates of electron 2.
Suppose the coordinates of the electrons are interchanged; that is, the electron 2
is given coordinates II, S1,  and electron 1 is given coordinates r2,  SZ.  The resLllt-
ing wavefunction will be rC/(r,,  S2;  rl, S,).  It is of importance to consider this hy-
pothetical “exchange” of electrons, because it has been found that electrons are
indist inguishable from each other. In class ical mechanics i t  was assumed that al l
part icles-even identical part icles--could be given labels to dist inguish one from
another. In quantum mechanical systems of identical iparticles,  this is not possible.
I f

dp,2  = 1 $(rl,  SI;  r2,S2)  / ‘d’VldV2 (9.3)

is the probabil i ty of f inding electron 1 in dV, =  dxldyldzl  and electron 2 in
dVz  =  dxzdy2dz2,  t h e n  s i n c e  t h e  p a r t i c l e s  a r e  i n d i s t i n g u i s h a b l e ,  t h i s  m u s t
be the same as the probability of finding electron 2 in dV1 and electron 1 in dV2;
which electron we call 1 and which we call 2 should make no difference. But the
probability of finding electron El  in dV1 and electron 1 in dVZ  is:

dml = / $(r2,  SZ;  rl, 51) 1 2dVdVl. (9.4)

lndistinguish’ability of part icles requires that the two probabi l i t ies in Equa-
t i o n s  (9.3)and  ( 9 . 4 )  b e  e q u a l .  T h u s ,  / il/(rl,  S1;  r2,  52) 1 ‘dV1dVZ =  / $(r2,  S2;
rl,S1)(  2dVzdVl,or:

/~(~I,SI;~~,S:~)/~  = /rl/(r2,S2;r1~S1)1~ (95)

When the magnitudes of two numbers are equal,  tlhe  numbers themselves must
be equal,  except poss ibly for a phase factor,  e”,  since 1 e” 1 = 1.  Thus,  the
most general1 conclusion which can be drawn from equation (9.5) lis that:

#(r2,S2irlrS1)  = e’“$(r1,  SI  ; r2,  S2) (9.6)

where e t* .
I S some unknown phase factor.

The phase factor @ is actually a constant, independent of coordinates. While a
completely r igorous demonstration of this fact is rather diff icult, the constancy of
+ can be seen to be quite reasonable, by considering1 the expectation value of a
quantity such as the x component of momentum; this involves an integral of the
form:

$(r,,  S,;  r2,  Sz)dV,dV, (9.7)
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which must remain unchanged if the particles ore interchanged:

(Px)  =  J~*(r2,S2:r1,S1)e-‘*
(
f/ & + ! -$

1

e’“#(r2, S;!; rl,  51 )dVdV, (9.8)

Hence the operator e -‘* ( plXop  + PQe+‘* must be equivalent to the operator

P1
IOP

+pz  .
xoP

More general ly, for any differential operator O,,  representing a

physical quantity,

e -‘“O,,e’”  = O,,

which can be true for oil differential operators only if @  is a constant.

(9.9)

After exchanging two particles, the new wavefunction is equal to the old, mul-
t ipl ied by e”. If we carry out a second exchange of the same two particles, the
some thing will happen, :,o  in addition to Equation (9.6),  we hove:

+(r1,51;r2,52)  = e”$(r2,52;r1,S1) (9.10)

Subst i tut ing Equation (9.10) into Equation (9.6),  we conclude that $(r2, S2;

rl,  S,)  = ezi’$(r2,  S 2; r,,  5,  ), and therefore e”*  ==  1. I f  ezi* = 1, then there
are two possibi l i t ies for the phase factor e”. They are e” = +l or -1.  Thus
we have two possibilities upon exchanging identical particles:

$(r2, S2;rl,S1)  = (+l)#(r1,S1;r;N,S2) (9.11)

Exchanging two part icle!;  has the effect of either leoving the wavefunction un-
changed or changing it into its negative. Wavefunctions which hove the property

#(r2,  SZ; rl,  SI) = +#(rl,  SI; r2, S,)  ore said to be symmetric under particle
exchange. When rC/(rz,  Sp;  rI,  S,)  =  -#(r,,  S1;  r2, S?)  so that the minus s ign
appl ies,  the wovefunctions ore said to be antisymmetric  under exchange. Both
of these possibi l i t ies ore found in nature. Experimental ly,  the +l arises when
dealing with identical part icles of integral spin, cal led bosons.  The minus sign
arises when exchanging part icles of half- integral spin, cal led fermions. S ince an
electron has spin % and i t  i s  a fermion, upon interchanging two electrons the
wovefunction will be mul.iplied by - 1.

9.4 PAUL1  EXCLUSION PRINCIPLE

Suppose we ask whether two electrons con hove equal r and S, that is, con we
have r,, 51 =  r2,  SZ = r ,  S? Since the wovefunctions describing electrons ore
antisymmetric, we start with a wavefunction #(r, S; r, S), then after exchanging
two electrons, we find $(r, 5; r, S) = -#(r, 5; r, 5).  It tallows  that the probabil-
ity of finding two electrons at the same place with the same spin must be zero.

Suppose we assumed that  two electrons con each be descr ibed by quantum
numbers ntmm,,  with nl 4 lrnlm,l  for electron 1 and rt282rn2rnr2  for electron 2;

and suppose we tr ied to wr i te an overal l  wavefunct ion as a product of  single-
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particle hydrogen-like wavefunctions:

+(rl,S,;r2,S2)  = ~,,~,m,m,,(r1rS~)1C/“2~2m2m,2(r2rS2) (9.12)

We would fin,d that this s imple product function is  no,t  antisymmetr ic, and hence
does not satis,fy the condit ion of indist inguishabi l i ty of part icles, Equation (9.5).
We can, however, construct a wavefunction describing a state of the same energy
by taking a linear combination:

$f(rlS);  11252) = L [tin,~,,m,m,, (r1,  SI )#n2t2m2ms2(r2r SZ)

VT

Upon intercholnge  of the coordinater8  r,, S,  and r2,  S2,  the above funct ion i s
easily seen to be antisymmetric.

So a linear combination of single-particle product wavefunctions with oppositce
signs for the two terms gives us a correctly “antisymmetrized” overal l  wavefunc-
t ion. The factor l/2/‘?  is for correct normalization. The first term could be inter-
preted by saying that electron 1 is  in state nl $,m ,m,, and electron 2 is in
state n2  x2mzms2,  whi le the seconcl  term could be interpreted by saying that
electron 2 is in state n,  4 1 m,  rn,, ancl e l e c t r o n  1  i s  i n  s t a t e  n2  x2m2m,2.  T h u s ,
because of the indistinguishability of electrons and the related fact that the wave-
function must be antisymmetric, the two electrons are lboth  partially in the states

nl tlmlm,,  and n2  &mc,2. Suppose that both states were identical, however:
n, =  n2,  4, =  42,  ml =  mz  a n d  m,,  =  rns2.  T h e n ,  f r o m  a n  i n s p e c t i o n  o f  t h e
ant isymmetr ic wavefunct ion in Equation (9.13),  i t  is  immediately seen that $ =  0
-an impossibi l i ty.

Although we have been discuss ing the s i tuat ion for electrons in an atom, a
simi lar s i tuation holds no matter what system is being considered. Thus, for two
electrons in a one dimensional box, the indiv idual s ingle-part ic le wavefunctions
are descr ibed by values of k, =  nr/L, and apart f rom spin the wavefunction,s
a r e  *“(x)  =  VC&/T sin (nr/L)x.  With spin,  the wavefunct ions would be denotecl
by tin,,,,  (x,  S) .  Then, i f  two noninteracting part icles were in the box with wave,.
functions !bnlrn,, and iC/,2m,2, one c:ould wr i te the ant isymmetr ic wavefunction as:

ti(x,S,; ;<2S2) = 5 [!&,  (.x1 I s, M”2m,2(X2’ !i2)

- +nlm,l (X2, S2:M”2m$2(X1 I Sl  )I (9.14)

Then in this  ca’se  also, i f  the two states are the same: 111  =  “2,  m,,  =  rn,>,  we

f ind:

$(xl,s’l;x2,s2) = 0 (9.15)

Thus, it is impossible for the two electrons to be in the same single-particle state.
This leads to the statement of the Pauli  exclusion principle for states in which the

electron wave function is  approximately an antisymmetr ic l inear combination of



2 6 0 Pouli  exc/us;on  principle

products of single-particle wavefunctions. No two electrons in an atom can exist
in the same quantum state. In other words,  i f  the wavefunct ion is  to be non-
vanishing, the two electrons must be in different quant’um states. This means that
in an atom at least one of the quantum numbers n, 4,  m, m, for the two electrons
must be different.

9.5 EXCLUSION PRINCIPLE AND ATOMIC ELECTRON STATES

The above discussion of the exclusion principle applies to any two electrons in a
system no matter how many there are, except that wheln there are more than two
electrons, the overal l  wpavefunction depends on more var iables.  In an atom,
where the four quantum numbers,  n,  4,  m, m, are used to describe the electron
states,  then every s ingle-part ic le wave funct ion wi l l  have a set ntmm,  which is
different f rom that of every other s ingle-part icle wave function. S ince there is  a
tendency for isolated systems in nature to seek the lowest possible energy state,
we would expect that thss electrons in an atom woulld  arrange themselves so that
the overal l  atomic energy wi l l  be a minimum. Thus, in a hydrogen atom, for
example, the s ingle eleciron  would ordinar i ly be found in a state of n = 1.  This
is  the case unless the atom is put in contact with matter,  such as in a gas dis-
charge, where the electron can be excited to higher states. We shall discuss here
only atoms as normally found in nature-in their ground state, or state of lowest
energy.

For hydrogen, s ince the ground state (also cal led normal  state) is  a state of
n = 1,  the orbital  angular momentum quantum rnumber  4 and the magnetic
quantum number m must both equal zero. However, to a very good approxima-
tion, the energy does not depend on the spin, which means that the energy does
not depend on the quantum number m,. The quantum number m, has the possible
va lues  &% ; so in hydrogen there are actuully  two’  possible states of lowest en-

ergy, labeled  by n = 1, 4 = 0, m = 0, m, = + ‘/2  and n = 1, 4 = 0, m = 0,

m,  = - % . We shal l  represent states of m,  = + $4 by an arrow point ing up: f ,

and m, =  - %  by an orrow point ing down: 1 .  The ground state of hydrogen
could be represented in an energy level diagram, Figure 9.1, in two ways corre-

P=O 9=1 Y=O P=l

m = - 1  0  +1 m=-I  0 +I
“=2-P  --_ “=2------

n=l

t-

,,=I- -

t

Figure 9.1. Diagram inclicating the lower levels of the electron in CI  hydrogen atom.
Presence of on orrow  up cmr  an arrow down, represents on electron occupying that state
wi th  m, =  +% or m, =  -%  ,  respectively.

sponding to the two spin or ientations. In these diagrams, the presence of the

arrow indicates which level the electron occupies.

NOW consider helium, which has two electrons. If we assume that the hydrogen
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quantum numbers can be used approximately, the state of lowest energy would
be that state for which both electrons had n = 1. Thlen 8 = 0, ,m  = 0;  and to
satisfy the exclusion principle, i f  one electron has m,  := +-l/z (spin up), the other
electron must have m, =  - % (spin’ down). This  state is  i l lustrated in the energly
level diagram of F igure 9.2.  Having two electrons in the n = 1 state, with spin

!7=0

“Z2  --

n=, -++

Figure 9.2. Illustration at helium ground state.

up and spin down, completely exhausts al l  the possibi l i t ies for different sets af
quantum numlbers  with n = 1.  We then say that thme  n = 1 shell is f i l led, or
closed.

In l i thium, which has three electrons, the lowest energy state is  one in which
the n = 1 shel l  is  f i l led and the third electron goes into a state of next lowest

energy, which is an n = 2 state. Since helium has two electrons in a closed n = 1

shell, and lithium has one more electron outside a closed shell, we would expect
the chemical properties of l i thium io be quite different from those of helium.
Because the n = 2 electron is less t ightly bound than n = 1 electrons, i t  takes
less energy to remove the n  = 2 electron than the n = 1 electron. So it  should
be relatively easy to add enough energy to the Li atom to remove the electron in
the n = 2 state.  The remaining atom would then be an ion with a net pos i t ive
charge. In chemistry, it is known that Li forms positive ions and tends to give up
one electron in chemical reactions; it has a valence of + 1. After one electron is
removed from Li,  the ground state of the remaining ion has two electrons in the
n = 1 state. This is  s imi lar to hel ium. Since the n = 1 electrons are very t ightly

bound, it should be much more dific:ult to remove an electron in He, and in fact
hel ium is one of the gases which are known as inert glases.  Likewise, it is difficult
to remove another electron from the Li  ion. The possible energy level diagrams
for l i thium, which has three electrons, are shown in Figure 9.3, with the third

P=O

n=2 -+

n=, -++ ++.-

Figure 9.3. Lithium ground state.
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electron in a 2s state. It (does  not matter whether the third electron is drawn 7 or
1 since here we are neglecting magnetic interactions. In such an approximation,
2s states with spin up or spin down are degenerate.

In the next most complicated atom, beryl l ium, there are four electrons. The
2p  levels lie slightly above the 2s levels, so the ground state has two electrons in
1s states,  two in 2s states,  and none in 2p  states. The energy level diagram for
beryllium in the ground state is shown in Figure 9.4.

‘t I --

*=2-r-t--
I/

n=l-

r+

Figure  9 .4 . Beryllium ground state.

9.6 ELECTRON CONFIGUIRATIONS

The electronic configuration of atoms in their ground state is sometimes indicated
symbolically as fol lows: hydrogen: 1s; h e l i u m :  1s’;  l i t h i u m :  1~~2s;  b e r y l l i u m :
1~~2s’.  Thus a sequence of symbols of the form ntN  is written, where the f i rst
symbol n is  an integer clenoting  the value of the pr incipal  quantum number,  the
second symbol 4 is CI  letter representing the value of orbital  angular momentum
quantum number 4,  ard the third symbol is  a superscr ipt equal to the number
of electrons in the nt  state. Thus, in beryl l ium, 1.5’  means that in the 1s state
there are two electrons. The symbol 2s’  means that there are two electrons in the
n = 2, {= 0 state.

The next element is boron, with five electrons. In the ground state of this atom,
there will be two electrons in the 1s states, two in the 2s states, and one left over
which has to go into the next higher energy state, which is a 2p  state. Thus, the
ground state of the enti re atom would be represented by ls22s22p’.  The state
2p  is a state of orbital clngular  momentum quantum number 4 = 1, so the mag-

net ic quantum number m can have the three values 311  or 0. For each of these
values of  m, there are two different possible m, values.  So the total  number of
different 2p  states is six. An atom in which the 2p  state is completely filled would
be represented by the symbols: ls22s22p6.  This woluld  be an atom having a total
of ten electrons. For an atom with 10 electrons, the n = 2 shel l  is  completely
closed, and closed shells tend to be exceptionally stable configurations in nature.
Just as the atom with n = 1 shell closed (helium) is an inert gas, so the atom with
the n = 2 shell closed (neon) is chemically inert.

The atom with nine electrons, f lourine, has the configuration ls22s22p5,  wi th

only f ive electrons in the 2p subshel l .  I f  one electron were added to a f lour ine
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atom, the result would be an ion with a negative charge,  and the extra electron
could go intlo the 2p  state to form a closed shell. So flourine in chemical reactions
should accept one electron and have u valence of - :I.

The atom with 11 electrons, sodium, is  chemical ly very s imi lar to l i thium; it  has
a valence of  +l and g ives  up onIs electron in chemical reactions. According to
the exclusion principle, the first 10 of these 11 electrons go into the lowest energy
states with two in the Is, two in the 2s and six in the 2p  level. The eleventh elfec-
tron goes into the 3s level; so the electronic configuration of sodium could be

writ ten as ls22s22p63s’.  In the energy level diagram of Figure 9.5 the sodium

s 4

n=l ---I-+
--

Figure 9.5. Sodium atom in its lowest state.

atom in i ts  lowest state is  represented. Sodium has one extra electron outs ide a
closed n = 3 shel l .  S ince closed shel ls tend to form exceptionally stable comn-
figurations, one would expect sodium to form positive ions.

‘.7  INERT  GASES

The next level after the 3s level which fills up with electrons as we go higher in the

periodic table is  the 3p  level.  I t  takes s ix electrons to f i l l  the 3p  level by i tself ,
and two electrons to f i l l  the 3s level.  So for an atom with the configuration
ls22s22p63s23p6,  there are eighteen electrons. The element argon has 18 elec-

trons, and is  an inert gas. So in tfiis case, an inert gas is  formed when the 3p
subshell  is filled, before any of the ten 3d states is filled. It is found experimentally
that every tirne a p level is completely filled up, an inert gas is formed. The reason

this occurs is  that the nd levels l ie so much higher in energy in many-electron
atoms. In general, because of the (complicated electron-electron repulsive forces,
the positions of the energy levels are very difficult to calculate, but their sequence
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can be determined from experiment. Using the fact that higher closed p levels
give rise to inert gases, and the experimental fact that the general order in which
the electron subshells are filled up is given in Table ‘9.2, we can predict the num-
bers of electrons in the inert gases:

Helium

Neon

Argon

Krypton

Xenon

Radon

2 electrons (ls2)

10 electrons ( ls22s22p6)

18 electrons ( ls22s22p63s23p6)

36 electrons ( ls22s22p63s23p64s23d’04p6)

54 electrons ( ls22s22p’3s23p64s23d’04p65s24d’05p6)

86 electrons ( ls22s22p63s23p64s23d”4p65s24d”5p6

6s24f’45d’06p6)

In a closed 1s shell, there are two electrons whose spins point in opposite direc-
t ions. The total angular momentum (1 + S) of th is closed shell  is equal to zero.

Also, the contr ibution to the total magnetic moment of the electrons in a closed
1s shel l  wi l l  be zero. Silrlilarly,  in any closed subshell  of  the type we have been

considering, the total nLlmber  of electrons is  even and there are just as many
electrons with spin up as with spin down; so the contr ibut ion to total  intr ins ic
magnetic moment from electrons in any closed subshell should be zero. Also,
since all positive and negative m states are filled for eac:h  4 occurring, the orbital
magnetic moments cancel. So the electronic magnetic moments of al l  the intert
gases should be zero.

T A B L E  9 . 2

1s

\
L

2A  2 p  i,

This diagram provides an easy way of remembering the
order in which the levels fill. The resulting order is:

Is,  2s,  2p, 3s, 3p,  4s, 3d, 4p, 5s,  4d, 5p, 6s.  4f,  5d, 6p, 7s, 6d
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P.8  HALOGENS

Let us next consider the group of elements which need one more electron in otder
to fill up a p subshell; these have one fewer electron than the inert gases. Since
the inert gases have 10, 18, 36, 54 and 86 electrons, the elements with one fewer
electron are those with 9, 17, 35, 53 and 85 electrons. These elements are called
halogens. They are f luorine, chlor ine, bromine, iodine and astatine. Hydrogen,
which has one less electron than helium, is also sometimes classed as a halogen.
Since the halogens, in order to complete their subshel ls,  need one electron, they
tend to form ions of negative charge and have a valence of - 1 in chemical

reactions.

‘.9  ALKALI METALS

Consider those elements which have one extra electron, outs ide a  closed p sub-
shell. These elements are called alkali  metals. Hydrogen, which just has one elec-
tron, is also usually classed OS  on ~alkuli.  Apart f rom hydrogen, the alkal is  have
the fol lowing numbers of electrons: 3, 11, 19, 37, 55, 87. The corresponding
names of the alkal i  metals are: l i thium, sodium, potassium, rubidium, cesium
and francium. These elements tend to have valence -t  1 since the extra electron
outs ide the c:losed subshell  has a re lat ively low biniding  energy and is easi#ly
removed. Also, the electrons in lo,wer  subshells tencl to screen out the nuclear
charge, so that the spectra of the alkali metals are very similar to that of hydro-
gen. Figures 9.6 and 9.7 are the energy level diagrams for outermost electrons
of lithium and sodium, which illustrate their similarity ,to that of hydrogen.

p - - D -

Figure 9.6. Energy levels of lithium
-.

Figure 9.7. Energy levels of sodium.
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9.10 PERIODIC TABLE OF EILEMENTS

In Table 9.3 the periodic table of the elements is shown,. with elements of similar
chemical properties arranged in columns. The alkal i  metals are put in the f i rst
column, the inert gases irl the last column; number of electrons (atomic number)
increases to the right. In the second column are the mietals  beryllium, magnesium,
calcium, stront ium, barium and radium. These elements have two electrons out-
side a closed p subshell. They should usually have a valence of +2.  The elements
oxygen and sulphur OCCUI  in the third column from the r ight and need two elec-
trons to form a closed shell, leading to a valance of --2.  It is seen from Table 9.3
that,  start ing with scandium, which has an atomic number Z = 21,  the ten 3d

states are beginning to fill up, after the 4s states. The corresponding ten elements
are cal led transit ion elerrlents; their chemical properties are largely determined
by their two outer 4s electrons, but the inner incomplete 3d  subshell  gives r ise
to some nonzero  magnetic moments of the atoms. Thus, many of the transit ion
elements have interest ing magnetic propert ies. I ron, one of the most magnetiza-
ble of al l  substances, l ies near the middle of the transit ion group at Z = 26. In
this group, elements 24 (Cr) and 29 (Cu) have only olne  4s electron.

In the heavier atoms, part icular ly in the rare earth group Z = 57 to Z = 70,
the order in which electrons go into the various states is  somewhat i r regular. The
actual order in which the states are filled up is given in detail in Table 9.4; num-
bers starred there are not known precisely. In these elements the outermost elec-
trons are 6s electrons. The chemical behavior of these elements is largely deter-
mined by the outermost electrons, and so all these elements are chemically very
similar.

S ince it  is  total angular momentum rather than orbital or spin angular mo-
mentum which is conserved in atomic systems, the energy states of the electrons
should, str ict ly speaking, be labeled  by values of the total  angular momentum
quantum number j. Since the spin S can be either parallel to 1 or antiparallel to
1,  for a single electron, either j = 4 + % or j = 4 - % when ,8  is greater
than zero. For alkal i  metals in the ground state where 4 = 0,  the total  angular
m o m e n t u m  q u a n t u m  n u m b e r  i s  j =  4 +  % =  %  . Four  the f i rst excited state of

sodium which is  a 3P state, there are two possibi l i t ies: j =  “/,  or j =  % . These
states are usual ly denoted by subscr ipts:  3f:,,2 and 3P1,2.  These two states are
separated slightly in energy due to the spin-orbit interaction which was discussed
in the previous chapter. When the spin and orbital angular momenta are parallel
as in the 3f3,2 state, the spin-orbit  interaction is  posit ive. In the other case, i t  i s
negat ive;  hence the 3fX,2  state l ies s l ight ly above the 3P1,2  state in energy. The
3fsj2  -+  3.s1,2 a n d  3fI12 + 3SI12  transit ions thus give r ise to two closely spaced
yellow l ines.

When more than two electrons are present, the rules for adding angular
momenta become quite complicated. The poss ible values of the total angular
momentum quantum number may be obtained by consider ing al l  the poss ible
ways in which spin % and orbital  angular momentum 4 can be added or  sub-
tracted from each other to give integral or odd half- integral j. For example, if
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K Ca
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Element

.~
1 . H
2. H e
.-__

3. Li
4. B e
5. B
6. C
7. N
a. 0
9. F

10. N e
.-__
11. N a
12. M g
13. A l
14. S i
15. P
16. S
17. C l
18. A r

19. K
20. Ca
21. S C
22. Ti
23. V
24. C r
25. M n
26. Fe
27. C o
28. N i
29. C u
30. Z n
31. G a
32. G e
33. A s
34. S e
35. B r
36. K r
-~-
37. R b
38. Sr
39. Y
40. Zr
41. N b
42. M O
43. Tc
44. R u
45. R h
46. Pd
.~

T
T A B L E  9 . 4 Electron Configurations oi the Elements

- -

Subshell
-

I S

1
2

2
2
2
2
2
2
2
2

2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p  5d  5f

1
2
2 1
2 2
2 3
2 4
2 5
2 6

rleon  config-

rration- 10
electrons

1
2
2 1
2 2
2 3
2 4
2 5
2 6

4rgon  Config-
rration- 18
electrons

0 1
0 2
1 2
2 2
3 2
5 1
5 2
6 2
7 2
8 2

10 1
10 2
10 2 1
10 2 2
10 2 3
10 2 4
10 2 5
10 2 6

(rypton Configuration-
16  electrons

0 0 1
0 0 2
1 0 2
2 0 2
4 0 1
5 0 1
5 0 2
7 0 1
8 0 1

10 0 0
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TABLE 9.4 (Continued)

Element

.-
4s 4p 4d 4f

.- -___

0
Palladium con- 0
figuration- 0
~46  electrons 0

0
0
0
0
0
0
0
1*
2”
3*
4*
6
7
7
a *
9*

10*
11*
13
14

.__

47. A g
48. C d
49. I n
50. S n
51. S b
52. T e
53. I
54. X e
55. cs
56. B a
57. L a
58. Ce
59. Pr
60. Nd
61. P m
62. S m
63. Eu
64. G d
65. Tb
66. D y
67. H o
68. Er
69. T m
70. Yb

71. Lu
72. Hf
73. Ta
74. w
75. R e
76. OS
77. Ir
78. Pt
79. A u
80. H g
a l .  TI
82. P b
83. Bi
84. P O

85. At
86. E m

87. F r
88. R a
89. AC

90. Th
91. P a
92. U

*(Numbers starred cxre  uncertain.)

Shells 1 S to 5P
filled--68  electrons

5s 5p 5d 6s 6p

1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

1
2
3
4
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
-

0

0

1
1’
1:
1;
1 ’
0
0
1
1;
1 ’
1 ’
1 ’
0
0

1
2
3
4
5
6
7
9

10
10
10
10
10
10
10
10

-__
10
10
10
10
10
10

1
2
2
2*
2*
2*
2*
2
2
2
2*
2*
2*
2*
2
2
-

2
2
2
2
2
2
2
1
1
2
2
2
2
2
2
2

2
2
2
2
2
2
-

-
6d

1

1
2
2*
2*
2*
2
- -
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for two n = 1 electrons, 4, = 42  = 0, the total spin S = 5,  + 52 can be
added to give two poss ible values;  these are $7 =  I(% + % )fi =  h and jh =
(% - % )h = 0. However, because of the exclusion pr inciple, only one of these
values will occur. It is j = 13.  Thus, the ground state of the helium atom should be

a j = 0 state.

9 . 1 1  X  R A Y S

When we studied the quantum nature of light in Chapter 5, the continuous x-ray
spectrum was discussed. This spectrum is produced by the deceleration of high
energy electrons. The frequency distr ibution depends on the probabil i ty distr i -
bution of electron decelerations and on the probability distribution of frequencies
for a given charged part icle decelerat ion. The maximum x-ray frequency ob-
tained is given by the Duane-Hunt law: u,,,  = E/h, where E is the electron kinetic
energy. In addit ion to this  continuous spectrum, there are often sharp peaks at
certain energies. In this section we will discuss the discrete part of the spectrum.

Discreteness of photon energies ordinari ly means that a particle makes a
transition from one discrete energy level to another, giving off a photon.

The obvious levels to consider here are the lower levels of the bound electrons
in the atoms. These are shown in the energy level diagram of Figure 9.8. The

Figure 9.8.
,shells.

1 1 I
l,,

l-l

--‘d

h- --KU K,j
Series of x-ray lines result from transitions to unoccupied states in the inner

upper levels do not differ by enough energy to give the ‘observed x-ray energies.
Ordinari ly, photons corresponding to electrons going from one electron shell  to
another are not observed in many-electron atoms because the lower shel ls  are
already f i l led; and because of the exclusion principle, other electrons cannot go
into them. However,  i f  hiclh-energy  electrons are shot into a metal, such transi-
tions do occur because the electrons knock other elec:trons  out of the inner shells
so that outer shel l  electrons can make transit ions to the unoccupied holes. The
innermost shel l  with n = 1 is  cal led the K  shel l ;  the next with n = 2 is  cal led the
L shel l ;  then the M, N, 0,.  .  .  shel ls fol low. There are two electrons in a closed K
:shell corresponding to n := 1, $= 0, and eight in a closed 1 shel l  with n = 2,
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4 = 0, or 1. I f  a K electron is knocked out by the electron beam, electrons
i n  s h e l l s  L, ,M,  N , .  c o n  m a k e  t r a n s i t i o n s  t o  t h e  h o l e  l e f t  b e h i n d .  l i k e w i s e ,
M, N, 0, .  shel l s  have electrons which could make trans i t ions downward to a
hole in the 1. shell.  Thus, a series of xray  l ines is  observed when a K electron is
knocked out. These are called K,, I$,  K, . . . , corresponding to transit ions from
the I ,  M,  N,  shel ls  down to the K shel l .  S imilar ly, an L electron knocked out
gives I , ,  Lg, .  .  .  l ines, etc. The energies of the x rays can be estimated  by (as-
suming that the electrons in the various shells have energies given by an equation
simi lar to that for hydrogen, Equation (8.47). However, i f  Ze is  the charge of the
nucleus, the effective nuclear charge acting on on electron is less than Ze because
of screening due to the presence of negative charge in the same and inner shells.
The precise amount of screening is diffcult  to estimatle;  practically all of the elec-
trons in shel ls ins ide a given shel l  are effective in screening out a port ion of the

nuclear charge. Also, some portion of the electrons in a given shell are effective in
screening out the nuclear charge for other electrons in the same shell. The follow-
ing simple model works well for the calculation of K, ser ies wavelengths: For an
L electron with one electron knocked out of the K shell, the remaining
the K shell ‘screens out one of the protons. Hence, an est imate of
would be:

EL = 67 - 112me4/21
(4?rcO-i5)z

x-
2=

The energy, after falling to the K shell, is very roughly:

E = (jr - l12me4/2
K

1

(4xt,h)=  x 12

electron in
its energy

(9.16)

(9.17)

These estimates of inner shell  electl,on  energies are fsairly good for large Z, b’e-
cause the nuclear potential is largle compared to that of electrons in the inner
shells. The energy of the K, x-ray line is then approximately:

( Z  - l)=me”/2  ‘1
E = El - EK  = - 1- -  _ -

(47WJtr)= ( )l2 2=
(9.18)

The Lyman alpha l ine in the hyclrogen  spectrum,<which  arises from a similar
t rans i t ion,  has a wavelength of X, = 1216 angstroms. The wavelength of the
K,  line in terms of i! and X, should then be:

AK,,  = L!..c-
(Z - 1)2

(9.19)

For example, for Molybdenum, 2: = 42. The K, wavelength of  Molybdenum
should then be approximately 0.7;!  angstroms. The observed wavelength is  0.71
angstroms.

In 1913 Moseley was the f i rst  to recognize  f rom exper imental  data that x- ray
l ines depended on Z in a s imple fashion. H e  founld  t h a t  t h e  e x p r e s s i o n  X =
X,/(Z  - y)‘!  agreed with exper iment very wel l ,  where h,,  and ‘y are constants
depending on what l ine is  observed. This  i s  cal led Moseley’s  law. Moseley found

exper imental ly that Xc  = 1276 anegstroms,  and y = 1.13 for K,  l ines.
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It  is found experimentally that the K, l ine actual ly consists of two closely

spaced l ines rather than one, due to energy spl i t t ing in the I shel l .  There are

several causes of energy spl i t t ing in the I shell .  One is due to the fact that the

S electrons in the L shell  have larger wave functions near the nucleus, as com-

pared to the wave function for the P electrons. Thus, due to Coulomb forces, the

S electrons wil l  be more ,+ightly bound. This  gives an energy spl i t t ing between S

and P subshel ls .  Also,  the s ix P electrons in the L sl-lell  are spl i t  into two levels.

This is  due to relat ivist ic aeffects  and spin-orbit  spl i t t ing. The spin can be up or

d o w n ,  g i v i n g  i =  ‘/2 a n d  j =  “/2  s t a t e s  w i t h  d i f f e r e n t  e n e r g i e s  d u e  t o  t h e s e

effects. Only two closely spaced l ines are seen rather than three, because the

select ion rule A& = &l prevents transit ions from the S states in the I shel l  to

the K shell, which has only S states.

The three L shell levels #can  be seen in experiments when x rays are absorbed in

materials. A continuous K-ray spectrum, when absorbed, has sudden jumps in

absorption at frequencies where the energy is just sufficient  to knock an electron

Energy in MeV

Figure 9.9. Mass absorption coefficient for lead showing K, L and M absorption edges.

in a particular shell state, out of the atom. Three such absorption edges are seen

for the I shel l .  One woL#ld  be seen for the K shel l  and f ive for the M shel l .  This

behavior is seen in Figur:  9.9 in lead.
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.12 ORTHO- AND PARAHYDROGEN

The nuclei  of hydrogen are protons which, l ike electrons, also are found to have
spin % , and are indist inguishable part icles.  Hence, when a hydrogen molecule
is formed, we have the intrinsic spin angular momentum of the nuclei, which must
be added to the angular  momentea  of the rest of the system to give the totol I f
we assume the two electrons go into their  ground state in the molecule, with
opposite spin and zero orbital angular momentum, then the total angular mo-
mentum of the molecule is due to the protons. Consider the angular momenta of
the nuclear spins by themselves. The total angular momentum j” of the two IIU-

clear spins can be either j” = % + Vz = 1 or j,, ==  % - ‘95  = 0. The j” = 1
case occurs i f  the spins are paral lel ,  and i. = 0 occurs if  the spins are anti-

parallel. Ifir,  = 1, the nuclear magnetic quantum nulnber  m,” can have the three
values  & 1,O.  There is only one j0 = 0 state. The total number of different spin
states is four. Ordinari ly, the hydrogen molecule is formed in a chemical reactlon
in which nuclear spins do not play any significant role. Hence, these four states all
occur with equal probabi l i ty.  Then the states in = 1 should occur three t imes as
often as the in = 0 states in nature The in = 1 state is cal led orthohydrogen, and
the j” = 0 state is  cal led parahydrogen. I t  i s  found that orthohydrogen is three
times as plenti ful  in nature as parahydrogen, as predicted. In the case of the
in = 1 states,  the spins are paral le l ,  and the spin part of the wavefunction is
symmetric under proton exchange. Thus the space part of the wavefunction must

be antisymmletric.  L ikewise for parahydrogen, the spin is  antisymmetric and the
space part symmetric. This leads to the fact that the rotational quantum numbers,

due to end-over-end tumbl ing of the molecule, must be even for parahydrogen
and odd for orthohydrogen. Because of the different possible rotational states,
quite differelnt  specif ic heats are observed at low ternperature for the two kinds
of hydrogen molecule. Since the I owest orbital  angular momentum quantum
number for Iorthohydrogen  is 1, while it is 0 for polrahydrogen,,  parahydrogen
has a lower ipossible  kinetic energy of rotation, and thus a lower energy ground
state. When hydrogen molecules clre formed on a plat inum catalyst  at very low

temperature!s,  they form at the lowest energy, and almost pure parahydrogen
results.

EXCHANGE OF IDENTICAL PARTICLES

When two identical particles are exchanged, no measurement can tell the differ-
ence. Thus, the magnitude of the wavefunction must be unchanged and the ware-
function can at most be mult ipl ied by a phase factor,  e’*.  Another exchange of
the same two partmlcles  returns to the original state, so e2’* = 1 or e” = :t 1.
F o r  e”@ = - 1,  we say that the wlavefunction  is antisymmetr ic under exchange
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of two part icles; experimental ly, this is  found to be true for half- integral spin
particles, fermions. For integral spin particles, bosons,  the wave function is  sym-
metr ic under exchange with e’*  = + 1.

PAW EXCLUSION PRIINCIPLE

I f  the Schrodinger  equaiion  is satisf ied by a prodlJct  of s ingle-particle wave-
funct ions,  an ant isymmetr ic wavefunction under exchange can be generated by
start ing with such a product.  I f  part icles are exchanged in this  product wave-
function two at a t ime, and the function is  mult ipl ied by minus one at each ex-
change, eventual ly  al l  po,;sible  permutations of partilcles  among the single parti-
cle products are obtainecl  with a + or - sign in front of the function. The anti-
symmetric function is the sum of these. This sum is zero if any two of the single
part icle functions are the same. This results in the Pauli  exclusion principle: No
two identical fermions can exist in the same single-particle state.

ATOMIC ELECTRON CONFIGURATIONS

The hydrogen quantum riumbers n,  4, m and m, can approximately be used to

describe electronic states in atoms. In the absence of magnetic fields, these states
are closely degenerate in m and m,. For a given &, there are 24  + 1 values of

m, and m,  has two poss ible values.  There are n values of  8 for a given n. This
leads to 2nZ  states for a given n. The electronic energies for atoms other than
hydrogen depend appreciably on n and 4 . Thus energy shel ls are specif ied by
“XN, where N gives the number of electrons in a shel l .  By the Pauli  exclusion
principle, the maximum number of electrons in a shel l  is  equal to the number of
states in the shell. The electrons go to the lowest energy configuration, so that in
the ground state, the lower energy inner shel ls become f i l led, general ly leaving
only the last few electrons in unfi l led shel ls.  When the rnumber  of electrons com-
pletely f i l ls  the P states in the lowest energy shel ls, .  an inert gas results. These
gases are very inactive chemical ly.  I f  there are one or two electrons outs ide a
closed shell, such as in sodium or calcium, these electrons are easily lost, and the
atom has a valence of 1 lor 2. If a shell is filled except for 1 or 2 electrons, such
as in f luor ine or oxygen, the atom acquires these electrons readi ly and has a
valence of - 1 or -2.

X RAYS

In addit ion to the continuous spectrum of x rays due to accelerated electrons,
there are ordinari ly sharp x-ray l ines. Such a l ine results when an electron is
knocked out of a low-lyitlg shel l  in the atom and another electron fal ls  into the
result ing empty state, err itt ing a photon in the process. The inner shel ls are de-
noted by K, I, M, . , corresponding to n = 1, ;!, 3, .  .  .  .  X-ray spectra are

labeled  by the shel l  into which the electron fal ls .  The x-ray energy may be esti-
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mated by using the fact that the stlell energies are approximately hydrogen-like:

E” =  _  1 (Z - p)‘me4
2 (47rtJi)‘n’

with Z the number of proton in th 8:  nucleus and p the total number of electrons
in shel ls of smaller n. Differences in these energies give approximately the ob-
served x-ray energies.

ORTHO- AND PARAHYDROGEN

An example where the exclusion principle affects a m,olecule  occurs in the hydro-
gen molecule H2, where the two protons are fermions. I f  the spins are paral lel ,
s =  1  and III,  = --  1,  0,  + 1 with the spin function symmetr ic, and thus the rest
of the wave funct ion is  ant i symmet r ic ,  under  exchange. For s = 0, m, = 0, a17d
the opposite symmetries hold. Because rotational states have definite symmetries,
this l’eads  to different possible rotational states for the two kincls  of hydrogen,
and thus to different energies and specific heats.

1. Suppose that three noninteracting identical electrons of spin % and mass m were

s l id ing OII  a  c i rcu la r  w i re  o f  rad ius  o.  W h a t  i s  t h e  l o w e s t  p o s s i b l e  (energy  cons i s tent

w i t h  t h e  Pauli exc lus ion  pr inc ip le?

A n s w e r :  &,/ma’

2 .  The  par t ic le - in -a l -box  wavefunct ions  fo r  a s ing le  par t ic le  a re :  4.  = 2/vsin  (nrx/L).

If two noninterocting spinless  bosons (integral spin) w’ere  placed in the box, in states
nl a n d  nz,  w h a t  w o u l d  t h e  overclll  s y m m e t r i c  w a v e f u n c t i o n  b e ?  I f  a  t h i r d  partide

were  p laced in  the  b o x  i n  s t a t e  “3,  w h a t  w o u l d  t h e  w o v e f u n c t i o n  b e ?

Answer: ic =;  +p (Xl )$,2(x2) + 1c.1 (X2)Icd(X,  )I;

+ +“I (x3)$.2  (x~).#~~(xI )  +  t h r e e  m o r e  t e r m s ]

3 .  U s i n g  t h e  t w o - p a r t i c l e  w a v e f u n c t i o n  o f  t h e  p r e v i o u s  Iproblem,  s h o w  t h a t  t h e  w a v e -

funct ion (does not  van i sh  i f  the  par t ic le s  a re  in  the  same s ta te ,  so  that  both  par t ic le s

c a n  h a v e  t h e  s a m e  q u a n t u m  n u m b e r s .  I f  nl =  1 ,  n2 =  3 ,  c a l c u l a t e  t h e  expectati(Jn

va lue of  ithe e n e r g y  o f  t h e  s y s t e m .

Answer: E = E, +  E3.
4 .  The  fou r  pos s ib le  combinat ions  o f  sp in  wave funct ions  fo r  two e lect rons  a re :  i 1  12,

-112, T211, 1 ,  I 2,  w h e r e  t h e  orrows  ind icate m, and the subscr ipt  ind icates  the

p a r t i c l e .  S h o w  t h a t  t h e  s y m m e t r i c  (and ont i symmet r ic  funct ions  under  exchange are :
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5 .

6 .

7 .

a.
9 .

10.

11.

12.
13.

14.

15.

16.

W h a t  a r e  t h e  t o t a l  z components  of  angular  momentum for  these symmetr i zed and

ant i symmet r i zed sp in  funct ions?

F o r  t w o  e l e c t r o n s  o r  pwtons,  the square of  the tota l  sp in  angular  momentum i s :  5’ =

(S, + s2y  = s:  + s’, t 25,  .S2, w h e r e  51.  Sz =  .Sl&  t  Sly.&,.  +  S1zS2r.

Now S: 1,  = (‘/?  )(Yz  + l)ii’T  , , S1,  1, = %)I  T 1,  where 1,  is defined in the

p r e v i o u s  p r o b l e m .  L i k e w i s e ,  i t  c a n  b e  s h o w n  t h a t  i t  i s  po’ssible  to  choose  S,,  and S1,

so that S,,  T 1  = % A 1 1,  S,, 1,  = ‘/~tiT,,s,~T,  = ivz$l,,  s,,],  = -i%hT,,

w h e r e  iz  =  -1 .  Similclr  equat ions  ho ld for  52.  S h o w  t h a t  t h e  s y m m e t r i c  s t a t e s  o f  t h e

p r e v i o u s  p r o b l e m  c o r r e s p o n d  t o  s =  1  o r  S2 =  (l)(  I  +  l)h’,  a n d  t h e  ontisymmet-

ric  s ta te  co r re sponds  tcl  s = 0 .  T h i s  f a c t  was  u s e d  i n  di,scussing  o r t h o -  a n d  para-

hydrogen.

Imag ine  two  e lect rons  a t tached to  the  ends  o f  a r ig id  rod,  the  sys tem hav ing a  mo-

ment  of  iner t ia  I about  the  center  o f  mass.  The  k inet ic  energ ies  o f  th i s  sy s tem CIS  i t

sp ins  end-over -end are tizJ  ( J  + 1)/21, where J  i s  the rotat iona l  angu lar  momentum

quantum number, Spwial  e x c h a n g e  o f  t h e  t w o  e l e c t r o n s  i s  e q u i v a l e n t  t o  i n v e r s i o n  o f

the  sy s tem th rough  the  cente r  o f  mos s .  U s ing  the  fact  that  the  spat ia l  wavefunct ions

1,5,  are changed by D facto r  ( -  1 ) ’  upon inver s ion ,  show that  i f  the  sp in s  a re  para l le l

J  must  be odd.

Us ing  the  e lect ron ic  configuration  of aluminum (Z = 13),  h o w  w o u l d  y o u  e x p l a i n  t h e

format ion of  the a luminum ox ide molecule,  A/203?

Discuss why the valence of carbon can be either +4  or  - 4.

Suppose  the  e lect ron  were  sp in le s s .  What  wou ld  the  g round s ta te  conf igu rat ion  o f

“carbon”  be?  What  wou ld  the  C spect rum be l i ke?  Why?

Answer: lS*,  hydrogen- l i ke .

I f  a  s e r i e s  o f  s p e c t r a l  ILnes  c o r r e s p o n d s  t o  a  s e t  o f  a l l o w e d  t r a n s i t i o n s  w i t h  t h e  s a m e

f i n a l  s t a t e ,  b u t  w i t h  i n i t i a l  s t a t e s  a l l  o f  t h e  s o m e  4 and d i f fe r ing n ,  wh ich spect ra l

se r ie s  o f  the  L i  and  Na spect ra  have  the  same sho r t -wave length  se r ie s  l im i t?

I f  b y  s o m e  p r o c e s s ,  one 1s  e lect ron  i s  knocked out  o f  the  sod ium atom,  d i scuss ,  us ing

the  Pauli exc lu s ion  p r inc ip le ,  the  va r ious  t rans i t ions  wh ich  cou ld  occur  a f te rwards .

Show that  the tota l  angu lar  momentum of  CI  c losed p subshell  i s  z e r o .

A  cer ta in  atom of  va lence +3  in  the  g round s tate  has  i t s  oute r  e lect ron  in  the  4p

s ta te .  Name the  e lement .

Answer:  G a l l i u m .

Wr i te  down the quantum numbers  fo r  each ot  the  th ree  oute rmos t  e lect rons  o f  alumi-

n u m  i n  i t s  g r o u n d  s t a t e ,  w h i c h  i s  a  s t a t e  o f  s =* % ( Z  =  1 3 )  W h a t  q u a n t u m  n u m b e r s

n,t and m, w o u l d  y o u  e x p e c t  f o r  t h e  l o w e s t - l y i n g  e x c i t e d - s t a t e  o f  a l u m i n u m ,  n e g l e c t -

ing magnet ic  in te ract ions?

Answer: (1) n = 3, 4 = 0, m, = t-% ;

(2) n = 3, 8 = 0, m, = --Yz ;

(3) n = 3, X4 = 1, m, = :F-‘/2.

Excited state, n = 4, 4 = 0, j = %

What  shou ld  be the chemica l  p roper t ies  and va lences  of  the t ransuran ic  e lements ,

z  =  9 1  to102?

When D hel ium atom s s ing ly  ion i zed and an e lect ron i s  subsequent ly  captured,  i t

may  have e i the r  the  same  or  oppos i te  sp in  ~1s  the  e lect ron  that  s tayed on  the  atom.

There i s  o s l ight l y  d i f fe rent  e lect ron-e lect ron  in te ract ion  fo r  the  e lect rons ,  depend ing

on whether  the i r  sp ins  a re  para l le l  o r  ant ipara l le l .  Th ia  i s  because of  the d i f fe rent

s y m m e t r i e s  o f  t h e  spctial  pa r t s  o f  the  wavefunct ions  re su l t i ng  f rom the  exc lu s ion

pr inc ip le .  As suming that  when the  captu red e lect ron  goes  f rom one s tate  ta  another
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there is negligible probability thctt its spin flips, whoIt  differences in the spectra of
helium atoms with different captured electron spins would you expect?

17. Write the electronic configuration for rubidium (Z = 37) in terms of an energy level
diagram with arrows.

18. Carbon has six electrons. Show that the electronic configuration of its ground state is
ls22s22p2.

19. What are the possible total angular momentum quantum numbers i of the 3p states
of sodium?
Answer: $,fi.

2 0 . From the result of Problem 18, show that the possible values of the total spin s of the
ground state of carbon are 0, 1 and the possible values of total orbital quantum
number 8 are 2, 1, 0. Thus, show that if the exclusion principle is ignored tar these
angular momenta, the total angular momentum quantum number j can be given the
value 3 in one way, 2 in three ways, 1 in four ways, and 0 in two ways.

21. For two electrons, the s = 1 states are symmetric under particle exchange, and the
s = 0 state is antisymmetric. Also, if they are both in p  states, the 4 = 2, 0 stotes
are symmetric and the 4 = 1 states are antisymmetric. Use these facts to show that
some of the ways of getting j’s for carbon in the previous problem are not possible
because of the exclusion principle. In particular, show that the only possible states
ore s = 1; 4 = 1, j = 0, 1, 2 (or  s = 0; 4 = 2, 0; j = 2, 0. The actual ground
s t a t e o f c a r b o n i s s  =  1 ,  $=  1,; =  0 .

22. In nitrogen, with three outer electrons in p states, it is found experimentally that the
ground state corresponds to a total spin quantum number of s = 3/~,  and total
angular momentum quantum number of j = “/,.  With three p  electrons, the to.taI
angular momentum quantum number could be 4 = 3, 2, 1 or 0. Show, using the
exclusion principle, that 4 = 0 is the only possibility here. (Saying that j - s = 0
is not sufficient.)

23.  If iC~,m.m, (i) represents the single-particle function for the i t h particle with 4 = 1,
m  =  - l , O o r  1,and  m, = +l/2  , multiply three such functions together to form 12”
approximate solution of the Schrijdinger  equation for the three outer electrons of
nitrogen in the previous problem. Add and subtract similar functions with i’s inter-
changed to form the antisymmetrk  function.

Answer: $[$ 1.1,1/2(~)ic1,0.1/2  (2) 1cl.~1,1/2 (3)

-~~~~~1/2~~~~1~~~1/2~‘~~~1~~1~1/2~3)~,.~,,,2~~~~,,~,~~~:~(1)

+ three other terms].
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24.

2 5 .

2 6 .

2 7 .

2 8 .

2 9 .

3 0 .

31.

3 2 .

33.

F rom the resu l t s  o f  P rob lems 4,5  and 6 ,  show that  the  energy  d i f fe rence between the

l o w e s t  t w o  r o t a t i o n a l  s t a t e s  o f  p a r a h y d r o g e n  i s  “/s  the  eplergy  d i f f e r e n c e  f o r  t h e  t w o

l o w e s t  r o t a t i o n a l  states,  o f  o r thohydrogen.  Wh ich  has  the  g reates t  spec i f ic  heat  a t  low

temperatu res?

From the in format ion g iven in  P roblems 6  and 24 and in  th i s  chapter ,  what  i s  the

f ract ion  o f  parahydrogen at  equ i l ib r ium when the  temperatu re  i s  ve ry  low,  and when

i t  i s  v e r y  h i g h ?

A n s w e r :  1 ,  ‘/4

S h o w  t h a t  t h e  w a v e l e n g t h  o f  t h e  K,  l ine front  CI  heavy  e lement  o f  a tomic  number  Z

i s  a p p r o x i m a t e l y  1 . 2 2 0  X 10-‘/Z’  m e t e r s .

F ind the energy in  eV  of  o Kg x - ray  photon  g iven  o f f  by  a  lead atom.

A n s w e r : 79,600 eV.

Show that  the f ract iona l  change in  mass  o f  an atom emi t t ing o K,  l i ne  i s  approx i -

m a t e l y  1 . 0 9  x lo-‘Z’/A,  w h e r e  A  i s  t h e  a t o m i c w e i g h t .  E v a l u a t e  t h i s  f o r  i r o n

and uranium.

Find the minimum enertgy  o f  e lect rons  in  a  beam h i t t ing  tungs ten  to  g ive  (a)  the  K,j

l i ne ;  (b)  the 1,  l ine .

Answer : 7 2 , 5 0 0  eV;  1 8 , 1 0 0  eV.

How many c lose ly  spaced l ines  shou ld  be observed in  the  Kp x - ray  emi s s ion  l i ne?

A n s w e r :  2 .
E s t i m a t e  t h e  w a v e l e n g t h  o f  t h e  Ko x - r a y  l i n e  f o r  M o l y b d e n u m  w i t h  Z  = 42.  The ob-

se rved va lue  i s  0 .63  angs t roms .

Answer : 0 . 6 1  Angstt,oms.

A n  x - r o y  t u b e  w i t h  a  s lver  ta rget  mus t  have  25 .8  x lo3  v o l t s  a p p l i e d  t o  i t  b e f o r e

the  K,  x - r a y  l i n e s  o f  sil>/er  a re  observed.  Ca lcu late  the  approx imate  energy  in  eV  of

the  K abso rp t ion  edge o f  s i l ve r ,  and  exp la in  qua l i ta t i ve l y  why  i t  i s  d i f fe ren t  f rom the

energy of the K,  line as calculated from Moseley’s law.

T h e  b r i g h t  y e l l o w  color  in  sod ium i s  due to  t rans i t ions  o f  ,the oute rmos t  e lect ron  f rom

3P3,2  and 3P1,2  s t a t e s  d o w n  t o  t h e  251,2  s t a t e . There,  l ines  exh ib i t  an anomalous

Z e e m a n  e f f e c t ,  b e c a u s e  t h e  e n e r g y  s p l i t t i n g s  o f  t h e  3P3,2,  3P1,2  a n d  3S1,2  l e v e l s

o re  d i f fe rent  in  CI  magnet ic  f ie ld .  How many  leve l s  does  each o f  the  3P3p,  3P,p  and

3S,,,  l e v e l s  s p l i t  i n  o magnet ic  f ie ld?  Us ing  the  se lect ion  ru le s ,  how many  l i nes  w i l l

be seen in place of the 3P3p  + 3Plp  line? How many  l i nes  w i l l  be  seen  in  p lace

o f  t h e  3P,,2  + 3S1,2?

Answer : 4,2,2,6,4.



0 classical statistical
mechanicls

Many of the physical systems which we study are large enough to contain

enormous numbers of part icles. For example, a container of 22.4 l i ters of helium

at 0°C and at atmospheric pressure is known to contain 6.023 x 10z3  atoms.

This gas, in addit ion to exert ing pressure and storing energy, may also conduct

heat from one point to another, may resist shearing motions (l ike molasses),

may sustain1  sound waves, and in general may exhibit  a variety of interesting

phenomena. Other many-particle systems such as solids, l iquids and plasmas

may show similar effects.

Quite a bit is known about the microscopic properties of atoms in a gas such

as helium. The atomic masses, sizes of atoms, interaction forces and other

properties are known to a reasonable accuracy. The object of statist ical me-

chanics is  to use information about individual part icles in constructing a theory

which explains all  the observed properties of a large system containing a great

number of particles.

Accordinfg  to Newtonian mechanics, to describ’e  the motion of a particle,

one must solve the equation F = ma, where F is the total force on a part icle

due to its interactions with all  other particles. In a system of 1O23  part icles,

there would1  be 1O23  such equations, and the solution of such a system of equa-

tions would be a practical impossibi l i ty.  Furthermore, even i f  the solut ions were

known, they would not be very useful,  s ince the propert ies of a system which

can be observed macroscopically are usually very few in number-say on the

order of 10 or 20. One would then need to know how to reduce the information

contained in these 1O23 solutions to about 20 numbers which could then be

compared with experiment.

Statist ical mechanics supplies the rules for treating many-particle systems in

terms of a very few variables. It (accomplishes this by describing the system not

in terms of definite posit ions and velocit ies of al l  the particles, but in terms of

probabil i t ies. In this chapter we wil l  assume that the particle motions are

governed by Newtonian mechanics. In the fol lowing chapter the effects of quan-

tum mechanics will be discussed.

2 7 9
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10.1 PROBABILITY DISTRIBUTION IN ENERGY FOR SYSTEMS IN
THERMAL EQUILIBRIUh~

One of the most importont parameters used to describe large systems is tempero-

ture. This concept is basecl on the observed existence of states of a system called

thermal equil ibrium states. If two systems at different temperatures are placed in

contact and left alone, they wil l  eventually come into thermal equil ibrium with

each other. Their temperatures wil l  then be equal. Two systems each in thermal

equilibrium with a third system, will be in thermal equilibrium with each other.

The attainment of thermal equilibrium is accomplished by the exchange of heat

energy through the systems contacting walls.  Even after thermal equil ibrium is

established, these systems;, as long as they are in contact, could st i l l  continue

exchanging energy. Then the amount given up by a system is balanced on the

average by an equal amount received. At a particular instant, however, one

system might have more energy than at some other instant. Thus, for a system

in thermal equil ibrium at a definite temperature, the energy does not have a

definite value.

If we place a large number of identical systems all in contact and allow them

to come into thermal equil ibrium with each other (see Figure lO.l),  then these

Figure 10.1. Identical systems in thermal contact.

systems wil l  have various energies which can be described by a probabil i ty

distr ibution or density P(E). I t  is usually assumed that this is the same as the

distr ibution of energies of one particular system if  observed repeatedly at dif-

ferent t imes. Although ths energy is not definite, i t  is possible to f ind a simple

expression for the probclbility P(E) that a particular system wil l  be in o state

of energy E. To f ind the mathematical form of this function P(E), we use the

assumption that the systems are all in thermal equilibrium, at equal temperatures.

Except for their thermal contact with each other, the *systems  are isolated, so they

can not do work on each other, have chemical reactions with each other or

interact in any other way. We will  assume that the total momentum and angular

momentum of each system is zero, and that the volume and number of particles in

each system remain fixed. The only independent macroscopic quantity that can
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be transferred from system to system is heat energy, and hence the energy may
fluctuate in time in a particular system.

Thus we expect the probabi l i ty that a system is  found in a part icular poss ible
state, for a given volume and number of particles, will depend on the energy of

the state of the system and also on the quantity which the systems have in
common, the temperature.

3.2  THE BOLTZMANN DISTRIBUTION

Let us assume that systems 1 and 2 are identical in all respects so we can be sure
that the probabi l i ty functions are identical for the two systems when they halve
the same temperature T.  We then define P(E,)-which  also depends on T-

to be the probabi l i ty that system I i s  in a part icular state with energy El,  and
similarly, P(E,)  is  the probabil i ty of occurrence of a part icular state with energy
Ez in system 2. In terms of these probabil i t ies, we olsk:  What i s  the probabi l i ty

that, at the same t ime system ‘I  is  in a part icular state of energy El, sys tem 2
is in a particular state of energy E 2? The net probabi l i ty must be P(E,)  P(E2),
by Equation (2.1).

Now, i f  we wish, we can think of systems 1 and 2 as a s ingle, combined
system. The probabil i ty that the combined system is in the given state of energy
E’ = E, + Ez  should, by the same reasoning as that used above, be a funct ion
only of the energy E’ and the temperature T.  Thus the probabi l i ty  should be a
f u n c t i o n  o f  t h e  f o r m  P’(E, $-  ET).  ‘ T h e r e f o r e ,  i n  t e r m s  o f  P(,E,)  a n d  P(E,),

for any El  and any EZ,

P’(E,  $-  E,) = P(E,)  P(E2) (10.1)

Here P’ is not necessarily the same function of energy as P, because the combinted
system is  not ident ical  with the indiv idual systems 1 and 2.  What this  equatiton
tel ls  us is  that the function P(E) must be such that the product P(E,)  P(E2)

is a function of El + E2.

Equation (10.1) is sufficient to completely determine the dependence of P and
P’ on the energy var iable E. I t  was obtained by assuming that the occurrence
of the possible states of a system in thermal equi l ibr ium with many other systems
was descr ibed by a probabi l i ty f(E) depending on the energy E and the tem-
perature. The probabi l i ty of f inding the combined system in a part icular state

of energy E,,  + EZ,  with subsystern 1 in i ts  part icular state of energy El, and
subsystem 2 in its particular state of energy E2, must be equal to the product of
the individual probabilities for these states.

The only function which satisf ies an equation of tlhe form of Equation (10.1)
is an exponential:

P ( E )  =: P(0)emBE (10.2)

where P(0) iis the value of  f(E) when E = 0,  and p is  a constant.  One may
verify that PI[E)  = P (0) e -BE is a solution to Equation (10. l),  provided that:

fJ’(E,  + 1F2)  := P(())2e-8(El”E2) (10.3)
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The quantities P(0) and @ are constants independent of E but possibly dependent
on the common temperatclre,  volume and number of particles in the system. Since
nothing has been said up to this point about the mechanics the particles in the
systems satisfy, this result is equally valid for Newtonian ‘and  quantum systems.

I f  we consider an ideal gas in which the indiv idual part ic les do not interact

with each other, but where we allow the particles to interact with the container
walls, then we can consider each particle as a system which is, on the average,
in thermal equi l ibr ium with the wal ls .  The probabi l i ty that a part icle is  in a
part icular state of energy E is  then P(E) = P(O)e-@.  Thus,  the mathematical
form of the energy distr ibution function is  determined. However, we do not yet
know the constants P(0) and p. These wi l l  be found in subsequent sections,
by considering the ideal gas, a system which should already be famil iar to the
reader. In fol lowing sections we shal l  discuss in more detai l  what is  meant by a
“particular state” of a particle, and show how P(E) is used.

10.3 PROOF THAT P(E) IS OF EXPONENTIAL FORM

We shal l  now give a proof that only an exponent ial  funct ion can sat is fy Equa-
t ion (10.1).  This  equation must be val id for al l  values of El  and E2.  In part icular,

if E, =  0  and E2 = E,  we obtain for  any E:

P’(E) = P(E)P(O) (10.4)

S u b s t i t u t i o n  o f  E =  E, +- Ez b a c k  i n t o  E q u a t i o n  ( 1 0 . 4 )  a l l o w s  u s  t o  r e w r i t e
Equation (10.1) entirely in terms of P, by eliminating P’. The result is:

P(E, + E,) P(0) = P(E,)  P(Q. (10.5)

Equation (10.5) i s  val id for any El and E2, and may be used to obtain a dif -
ferential equation for P(E). Put  E, = E and E2  = dE, where dE is infinitesimally
small. Then we get:

P(E +  dE) =  &)  P(E)P(dE)

Subtracting P(E) from both sides of this equation, and dividing by dE, one finds:

P(E + dE) - P(E)

o r

dW) P(E) dP(E = 0)__ = - -
dE P(0) dE

Then, dividing both sides of the equation by P(E), we get:

dP(E)/dE dP(E = O)/dE

P ( E )  - - -p m

(10.7)

(10.8)

(10.9)
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The lefthand  s ide of th is  equation is  evaluated olt  any E,  the r ighthand s ide
is  evaluated for  the value E = 0, and is therefore a constant. Cal l ing the
constant -/3  for convenience, we have:

dP(E)/dE
--=--p

WE:)

where p is  a pos i t ive constant IIndependent  of E.  This equation can be im-
mediately integrated from E = 0 to E to obtain:

I n  f ( E )  - I n  P(O)  =  -BE (10.11)

Here, In P(0)  i s  the constant of integration. Solving for P(E) ,  we f ind:

P ( E )  =  P ( 0 )  e-BE (10.12)

Thus,  the probabi l i ty P(E) i s  an exponential  function of energy. Had we chosen
the opposite sign for the constant 13,  the probability would not be normalizable.

3 . 4  P H A S E  S P A C E

The Boltzmann  factor  eeBE gives the relat ive probabi l i ty of f inding a system,
which is  in thermal equi l ibr ium, in a given state having energy E.  The factor p
depends in some way on the temperature, which we must determine. We are par-
t icular ly interested in applying this result  to a thermlodynamic  system containing
a great many part icles, such as a bott le of gas. The problem is to f ind some

convenient way of specifying the state of such a complicated system.
To illustrate how this may be done, imagine a simple model of a gas in which

the gas part icles are represented by marbles of mass m which can rol l  in a long
groove. The x axis  i s  along the groove and the marbles al l  stay in the groove,
so only the xi  coordinate, and not y; or zi  coordinates, must be given in order
to specify the ith marble’s posit ion. To completely determine the state of one of
the marbles using classical mechanics, one must at the same time give the momen-

tum pi, = mxi  of the marble as wel l  as i ts  posit ion, along the groove. Then, at
the same time, we can represent the state of the marble by plotting (xi,pix)  on a

graph as in Figure 10.2. Of course, as t ime progresses, the point representing
the state of the ith part icle wi l l  move and trace out some trajectory, which may
have sharp k inks and bends in i t  due to col l i s ions,  as in F igure 10.3.  I f  we have
a large number of marbles in the groove, then we call  represent the state of eclch
marble by a different point on the p.  versus x graph, as in Figure 10.4. As t ime
progresses, each point will move in some trajectory om the p, x graph. If we halve
an extremely large number of marbles, then there wi l l  be an extremely dense
cloud of points in p.,x  space, as in Figure 10.5. As, t ime progresses, the cloud
may shift  around, and f luctuate irl density. I f  the p’osition  of each point in the
cloud is known, then, of course, the state of the (entire system of marbles is
known. However,  i f  there are as many as 10z3  part icles in the system, a s  i s
common in thermodynamic systems, then there wi l l  be so many points that for
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Point represmting  state  of
one particle at initial instant

9
I
I
I
I

Figure 10.2. Phase space far a particle
confined to move in the x direction.

.

Figure 10.4. The representative points of
any number of particles car be plotted in
the same phase space.

Figure 10.3. M o t i o n  of the r e p r e s e n t a t i v e

point of one particle in phase space as
time passes.

Figure 10.5. A cloud of representative
points in phase space, for a system con-
sisting of a large number of particles.

many purposes,  only the average density of the cloud would be needed. This
method of representing the state of a system turns out to be very useful,  and
can easi ly be appl ied to a more real ist ic gas of part icles which move not only

in the x, but in the x, y and z dimensions.
Let us consider a container of volume V, holding a gas of N part icles. We

shal l  assume that each part icle has a mass m. In order to completely specify
the state or condit ion of this  gas, one would have to specify the posit ion r  and
momentum p of every pclrticle  at some in i t ia l  instant.  A very convenient way to
represent such information is to introduce a s ix dimensional space cal led phase
space. This s ix dimensional space has three axes representing the spatial coordi-
nates r =  (x,y,z)  of a part icle, and three axes representing the momentum

p =  (pX,  py,pz)  of the part icle. The s ix numbers, (x,  y,  z,pX,py,pz)  are then
the coordinates of a single “point” in phase space, representing the state of one
part icle. Although it  is  diff icult to visual ize a space of s ix dimensions, one may
think of al l  these coordinate axes as being orthogonal (at r ight angles) to each
other. One may then plot the position r’ and momentum p’ of a second particle

on the same coordinate axes, giving a second point in phase space representing
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the coordinates (r ’ ,  p’) of the second part icle, and so on for al l  N part icles.

Then a system of N part icles would correspond to a cloud of N points in s ix

dimensional phase space.

In Figure 10.6 are two of the six axes in phase space. Consider the points of

phase space which represent two particles with positions and momenta, given by:

and

x, = 3, y, = 4, 2, = 2; Pxl = 1, pr.,  = 1, p., = 0;

x2=o,y2=  l,z2= 1 2 ;  pz=o

with lengths in meters, and momenta in kilogram-meters per second. These points

are plotted as an example, in the part of phase spacle shown in Figure 10.6.

y(m)

6

5

4

3 r

@II 1

2

1 t2

vv- p, (Kg-m/s4

Figure 10.6. Exomple of representative points plotted oilong  two axes in phose space.

If a particle moves with constant velocity v, the point in phase space represent-

ing i t  moves in a straight l ine, because r varies l inearly with t ime, while p re-

mains constant. For a part icle moving in a circle in the xy plane with constant

speed, the path of i ts representative point in the x,p.  plane would be ell iptical

in shape.

1.5 PHASE SPACE DISTRIBUTION FUNCTIONS

I f  we plot the N representative points of a macroscopic system of gas particles

in phase space, as is i l lustrated in Figure 10.7, there wil l  be so many of these

points that they wil l  be distr ibuted almost continuously throughout phase spal:e.

Then we can define a continuous distr ibut ion function f  ( r ,  p,  t) equal to the

density of points in phase space. That is,  f  (r ,  p, t) is the number of points per

unit volume of phase space at the position (r, p) = (x, y, z, p.,  pr, pZ) at the time

t. In a three dimensional space (x, y,z), the infinitesimal volume element is

dxdydz. By analogy, in a six dimensional space (x,y,z,pX,pv,pZ)  with orthog-
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Figure 10.7. A macroscopic system of N particles is represented by a cloud of N points

in s ix  dimensional  phase space; the axes are assumed to be mutual ly or thogonal .

onal  Cartesian coordinates, t h e  v o l u m e  e l e m e n t  c a n  b e  a s s u m e d  t o  b e

dxdydzdp,  dp,  dp,
So if the element of volume is dxdydzdp,dp,dp,,  and the density of points in

phase space is f(r, p, t), then the number of points, cfN,  in the volume dxdydz *
dp,dp,dp,  is iust:

dN  = f (r,  p, t) dxdydzdp,dp,dp, (10.13)

Thus, f (r, p, t) is a distribution function in phase space, whose normalization is:

JdN  +[:  dx[:  dolt dzl:  dpxll  41r~~ hf(r,p,tJ  = N

(10.14)

-the total number of part icles.
In wr i t ing such express ions,  we regard the s ix var iables x,  y,  z ,  pX, py,pz

all as independent variables. This is because of the way the states of the particles
are being represented on orthogonal axes in phase space. Although it is true that
if  x were known as a function of t ime, p.  could ble calculated and so would
depend on x, in phase space  the positions and momenta are represented at one
instant. A particle at x at some instant could have any value of p.  at that same

instant ;  both x  and p.  must be given at the same instant in order to specify
the particle’s state.

The integral JdN  has been broken down in Equation (10.14) into a s ix-fold
multiple integral which looks complicated; however, the idea is to integrate over
the var iable dN. In al l  cases which we shal l  consider,,  the mult iple integral is

just a product of s ix s ingle, independent integrals,  which are performed in the
ordinary way.
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The quant i ty l/N f ( r ,  p, t)  could be interpreted as a probabi l i ty distr ibut ion
function, since its normalization would be unity. Thus, for example, the quantity

i f[x = 6 m, y = 0, z = 0, p. = 0, pr  = 2 kg-m/set,

pZ  =  3  kg-m/set, t =  1  set]  dxdydzdp,dp,dp,

is the probability of finding a particle in the element of volume dxdydzdp,dp,dp,
surrounding the point whose x coordinate is 6 m, y coordinate is 0, pr  coordinate
is 2 kg m/set, etc., at the time t = 1 sec.

We shal l  henceforth assume that a knowledge of the continuous distr ibution
function f, or of the probability density f/N, specifies the state of the macroscopic
system.

6 MAXWELL-BOLTZMANN DISTRIBUTION

Imagine the cloud of points in phase space for a system in equi l ibr ium. The
density of the cloud of points should look the same 1 second or 10 seconds
later on, so the density should not be changing s ignif icantly in t ime. Thus, i f
t h e  s y s t e m  i s  i n  e q u i l i b r i u m ,  w e  c o u l d  e x p e c t  f  t o  b e  a  c o n s t a n t  i n  time’.
Mathematically, this could be expres.sed  by:

af

at=
0 (10.15)

We shal l  henceforth consider only the equi l ibr ium situation; then f (r, p, t) does
not depend on t ime, and we can aenote  it more simply by f (r, p).  Thus ,  as  a
whole, the cloud of points in phase space does not move. This  does not mean
that every point in phase space stays f ixed, but only that on the whole,  the
number of points dN  in any given volume element remain the same. For example,
consider some volume element of phase space, denoted by:

d  fl =  dxdydzdp,dp,dp, (10.16)

If some of the particles in dQ have their velocities suddenly changed by collisions
or other effects, so that their representative points go somewhere else in phase
space, then on the average just as many points will come into dQ  from collisions
and other effects in other regions of phase space. We conclude that although
indiv idual  points  may move about,  an equi l ibr ium s i tuat ion is  represented by a

cloud of points in phase space whose density, on the average, remains constant
in time, and that the quantity l/N f (r, p) dxdydzdp,dp,dp,  is the probability of

f inding the point representing a part icle inside the region dQ = dxdydz  *
dpXdp,dp,  in phase space.

In addit ion to r  and p, the funct ion f/N could depend on the temperature.
However, in Equation (10.2) it was seen that the probolbility of finding a particle

in a part icular state of energy E was a function of energy and temperature,

P ( E )  = P(O)e- pE.  H e n c e  f / N  a n d  P ( E ) must be closely related. The quantity
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l/N f  ( r ,  p)dQ  is the probabil i ty of f inding a part icle in a range of states

dQ = dxdydzdp,dp,d/,,.  On the other hand, f(E) is  the probabil i ty of f inding

the particle in one particular state. Therefore, we need to know how many states

there are in the phase space region dQ. There is no way to calculate this

“number of states” using classical mechanics; there iis, however, no reason to

think there are more or fewer states inside a volume dG  centered at (O,O,O,O,O,O)

than for a dQ  centered at any other point;  hence the question is answered by

introducing the fol lowing postulate: The possible states are uniformly distr ibuted

in phase space. Thus, the number of states in the phase space region is taken

to be pdO, where p is8  some constant called the density of states. Then the

number of states in the volume element dQ  is just equal to pdQ, and P(E)pdR

is the probabil i ty of finfding  a part icle in dL?.  This is precisely the same quantity

as l/N fdfl;  so, in term!; of P(E),

i f(r,p) = pP(E) (10.17)

and in terms of p and E,

Maxwell-Boltzmann

constants important
distr ibut ion (10.18)

independent factor

We have thus obtained the general solut ion for the distr ibution function

f (r,  p) at equil ibrium. The combination of factors NP(O)  p is just a normalization

constant which can be determined for any particular physical system. We shall

see how this is done for the ideal gas in Section 10.8. The most important de-

pendence on the energy is in the exponent. This distribution is called the Maxwell-

Boltzmann distribution, and is the basic result of this chapter. In deriving this, we

have made use of the so-called fundamental postulate of stafistical mechanics,

which states that the possible states of a part icle are uniformly distr ibuted in

phase space with a density of states p, which is a constant; this constant cannot

be calculated using Newtonian mechanics, but can be determined using wave

mechanics. (In Chapter 11 this wil l  be shown to be p =: l/h3,  where h i s  Planck’s

constant.)

10.7 EVALUATION OF ,k?

In Equation (10.18),  the constants p and P(O)p  are unknown. To evaluate p we

shall  make use of a result  found in discussions of the kinetic theory of the ideal

gas, namely that if there are no internal energies within the particles of the gas,

the average energy per particle is equal to:

( E )  =  ; kaJ (10.19)
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Here, k, is  Boltzmann’s constant, 1.38 x 10mz3  joules/degree Kelvin,  and T is
the absolute, or Kelvin temperature (centigrade temperature plus 273.2 K).  The
procedure is  s imply to calculate the average value of E,  (E),  us ing the distribtl-
t ion funct ion we have just  der ived in Equat ion (10.18).  Equat ing this  to “/,  k,T,
we will then determine the constant @.

For a distribution function f which depends only on one variable x, we saw in

Chapter 2 that the expectation value of some quantity g (x) is (g) = [gfdx/  jfd.r,
where the integral  goes over the ent i re range of values of the var iable. In our
case, the distribution function depends on r and p, and the integral will go over
the entire range of values of r and p, that is, over the entirety of six dimensional

phase space. For example, we woulid  indicate the integral of f (r, p), which is the
distribution function itself, over all of phase space by:

ffdQ  = JSSSf  (r, PI  dxWzh4+p,

We shal l  only consider cases in which such mult iple integrals break up into
products of s ix or fewer one dimensional integrals.  I t  wi l l  then only be necessary
to find the values of single integrals, and multiply them together to get the result.
To evaluate the expectation value of E, we shall take the case in which the kinetic
energy of one particle is E = % mv2, and there is  no potential  energy. Then,

since p = mv and thus E = %  p’/m, the expectation value of E is:

(6 =
NW) Pm(p212m)  ev (- $ Pp’/m) dxWzdp,dp,dp,-

NW) P -&/8?”  ev (--  ‘I2  Pp’lm)  d=WzdpKdp,dpz

(lOA21)

There is no x, y or z dependence in either numerator or denominator, so if  \I is
the volume of the container, the x-y-z integrals give:

j;TSdxdydz  = v

Substitut ing this result into the expression for (E) in  Equat ion (10.21),  it is easi ly

seen that V cancels out between numerator and1  denominator. Furthermsore,

NP(0) p cancels, since it appears as a factor in both numerator and denominaltor.
This  always happens when expectat ion values of s ingle-part icle propert ies are

being calculated; hence, i f  we are only interested in calculat ing expectation
values, we do not need to know the values of N, P(0) and p.

Thus, after canceling  such common factors, (E) reduces to an express ion in-
volving only integrals over p.,  pY  and pZ:

cEj =  ffi % p2/m  exp (-  % Bp2,1m)  h+,+z___-

flew (- % &‘/ml  ~~w%dpz

(10.22)

Let us f i rst  evaluate the denominator.  To separate this  denominator into .three
single integrals, we note that

exp (-‘t’*)  = exp (d!$!!G)  e x p  (S!!$!) e x p  (*)  (1~0.23)
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Then the use of integral:, given in Table 10.1 leads to the result:

lx= e x p  (zyf) dp,dp,dp,

= 1; .xP(IF)  dp,

. Jy ‘exp  (+q  dp, j-;  er:p (+?qd,,

= [J:  ::‘p (&!!!c)  d” ‘I= [v@?i#i]3

We shall refer to this result several times later.

T A B L E  1 0 . 1  S o m e  D e f i n i t e  I n t e g r a l s

( 1 0 . 2 4 )
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m
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0 2a 0

s

m m
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2a2 J
0 ;

s

m

s 0

m
s --Ox2x e dx 1 6 --.xQ= Xe dx = 3 77
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We next need to evaluate the numerator. The integral we need is:

N u m e r a t o r  =  2/-m  /J[ exp (+) p2 ~p,dp,dp, (10.25)

Again substitute pz = pz  +  p;  + p:  in the two places in this equation.

Numerator =  & /sJ‘ exp  [--~PI:P~  +  p; +  pzi] (10.26)

x (P:  +  P: +  ~:)dp.+y+z

Then we have the sum of three integrals to evaluate, with integrands propor-

tional, respectively, to pt, p: and pz  t imes the exponential.  Since the three

integrals are identical except for labeling of axes, they wil l  be equal. Hence,

taking the integral with integrand proportional to pz as representative, we have:

Numerator,  = -2”,  11 pf exp  (*p:) +,dp,dp, (10.27)
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Upon separation of this threefold integral into the product of three s ingle

integrals, the pv  and p.  integrals are the same as the py  and p. integrals in the
denominator, and may be performed using Table 10.1. The integral then reduces
to:

N u m e r a t o r  =  ?-  !?!?

The remaining integral over p., from Table 10.1, gives a factor % &(2m//Q3”

so the numerator is:

N u m e r a t o r  =  4 (27rm)3’2  pm5” (10.2’3)

Taking the ratio of the results for numerator and denominator obtained in
Equations (10.24) and (10.29),  we find that

i:E)  = ;p (10.30)

For the ideal gas, however,  (E)  i!s g iven by Equation (10.19) as (E) = 3kBT/:2,
and therefore,

P=& (10.3’1)
B

Thus, by calculating the average energy per particle using a Maxwell-Boltzmann
distr ibut ion function, and requir ing the result  to be the same as for an ideal
gas, 6 is determined. This result is important and should be remembered.

.8  EVALUATION OF NP(0)  p

For completeness, we wil l  f ind NP(O)p,  the normal izat ion constant for the ideal

gas system. This constant varies from one system to another, and probably should
not be memorized for any one system. The constant may be found if the number
of part icles N in the volume V is lknown;  that is ,  the integral of fdO  over al l
phase space must equal N. For the Maxwel l -Boltzmann distr ibut ion function,
describing a gas of free particles, the normalization for a system with N particles
in a volume V is:

N = dxdydzdp,dp,dp, (10.341)

Equation (10.24) with @ =  l/ksT leads to:

NP(O)p  = i (2rmk,T))3’2

Therefore, at equil ibr ium for an ideal monatomic gas,

f (r, p) = i (2z-mk,T)-3’2  exp

(10.33:)

(10.34)
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As mentioned previour,ly,  the factor  e -OE  in the dist r ibut ion function is  cal led

the Boltzmann factor. In this factor, p =  l/ksT.  The most important feature of

t h e  f u n c t i o n  f ( r ,  p )  i s  ttat  i t  i s  p r o p o r t i o n a l  t o  &@E. T h e  c o n s t a n t s  NP(O)p

in f ront of the exponenticll  are for purposes of normoliz~otion,  and almost always

cancel out in calculating <expectation values.

Thus,  in Equat ion (10.34),  we have completely determined the distr ibution

function f (r ,  p) for an ideal monatomic gas of part icles in thermal equil ibrium

with the container walls.  Here each part icle is considered to be a system with

e n e r g y  E  =  Yz  p2/m.

10.9 MAXWELL-BOLTZMANlN  DISTRIBUTION INCLUDING
POTENTIAL ENERGY

Now consider a sl ightly more complicated situation, in which there may be some

potential energy presen.t.  Suppose, as in Figure 10.8, that the box containing

the gas consists of two re,gions.  In the lower region, region I, there is no potential

J
Figure 10.8. Particles in CI  container which has two distinct regions of different potential
energy.

energy, but in the upper region, of equal volume, there is o constant potential

energy V0 > 0. There is a tendency for part icles to seek the condit ion of lowest

potential energy, so it  i:,  natural to ask whether all  or most of the particles of

the system are in the portion of the box of zero potential energy. I f  the particles

in the box are in thermal equil ibrium at temperature 7, the value of /3  i s  s t i l l

/3  =  l/kBT.  Since f  ( r ,  p) dxdydzdp,dp,dp,  is the number of part icles in the

volume element dxdydzdp,dp,dp,,  the total number of particles in the volume

element dxdydzdp,dp,dp,  in region I is:

N,  =  SsssJ‘s  NP(0)  p exp (2s) dxdydzdp,dp,dp, (10.35)

where the integrals over x, y and z go only over Iregion  I .  The distr ibution

function in region II  depends on the energy E =  V, .t Yz  p’/m.  Therefore, the
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number of particles in this region is:

NP(0)  p e x p  [-B  (& +  VO)]  Idxdydzdp,dp,dp, (10.36)

where the integrals of dxdydz go only over region II.
The rat io N2/N1  may be easi ly  evaluated, s ince V,,  i s  a constant.  The volumes

are taken to be equal, and the integrals of exp (-  YZ  /3p2/m)  dp,dp,dp,  are the
same for both regions; so these cancel in the ratio N2/N1.  Therefore,

iv2

iu, =
e -0”o (10.37)

Thus, the ratio of the numbers N2/N1 is just the Boltzmann factor, e -S”, , with
the energy difference Vo between the two regions appearing in the exponent.

p/e A t  T =  3 0 0  K  ( w i t h  k, =  1 . 3 8  r:-10-23  joules/K),  i f  V. =  10m6 joule, w h a t
is the ratio of the number of particles in the region of higher potential energy

to the number in the region of lower potential energy?

ion  N2,N,  =  e-O”,  =  e-Vo/kBT  = e-‘o~)/(‘.38x~~~23x300)  = f? -2.4~10’4 31  10-‘“‘4,  an ex-
tremely small number. Hence most of the particles will1  be in the lower potenti’al

energy region. If there are on the order of 10z3 plorticles,  there is negligible
probability that even one of them is in the higher potential energy region.

I n  g e n e r a l ,  i f  @I$  >> 1 ,  o r  Vo > >  k,T,  m o s t  o f  t h e  p a r t i c l e s  w o u l d  b e  i n
the lower part of the box. When keT becomes large enough that k,T and V. are

comparable, there would be enough thermal energy avai lable so that col l i s ions
could knock an appreciable fraction of part icles up into region I I .  This would
occur at a temperature given approximately by:

o r ,  i f  V. =  1  Oe6  j o u l e ,  T =  Vo/k,l’  E 7  x  1016 K .  R o o m  t e m p e r a t u r e ,  abolJt
293 K, corresponds to an energy of ks J  = 4.04 x lo-”  i = 0.0252 eV, or abolJt
‘,/,,  of an electron volt. Energy differences of this order of magnitude occur
in some molecular spectra and other atomic systems.

IO GAS IN A GRAVITATIONAL FlfiLD

Consider next a column of air  at temperature 300 K. This is  nearly an ideal

gas. If the density at sea level is nc,  particles per m3, what would be the density
at height h above sea level? The n(Jmber  of particles in a given volume element

of phase space is proportional to the Boltzmann factor times the volume element
of phase space. I f  we are interested only in number of part icles in a given
volume of ordinary space regardless of momentum, we sum over the momentum
part of phase space. Therefore, we take the ratio of dxdydzJdp,dp,dp,e-5E

for two equal volumes dxdydz, separated by a height h. The potential energy of
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a particle of mass m a’t  height h is mgh, and therefore the ratio of number
of particles in a unit volume at height h, to the number at sea level, is:

n(h) ~4wGvh  exp I-P[(fi  p’/m)  -t m&II-= -~
n (0)

-~ =  e-8mgh  ( 1 0 . 3 8 )

~r+y+,+z  exp [-B(fi  p’/m)l

example  If the mass of CI  molecule of air,  on the average, is m := 5 x 10mz6 kg,  at  what
height does the density of the column reduce to half  i ts  sea level value for
T = 300 K throughout the column?

s&tion  n(h)/n(O)  =  % =  e m’m”h Taking natural logarithms of both s ides and solving.

for h,

,, = ks! In 2 = (1.38  x 10-23)(300)  (o.693)
m,g (5 x lo-z6)(9.8)

= 5.86 x lo3 meters

or 5.86 kilometers.

1 0 . 1 1  D I S C R E T E  E N E R G I E S

In quantum mechanics i t  has been shown that in many cases energies are
quantized; that i s ,  they take on only discrete values, ,  rather than cont inuous

values such as the class ical k inetic energy E =  ‘/:l  mv2 does. There are some
systems whose part icles can, in effect, have only two possible energies; let us
denote these energies by E, a n d  E, w i t h  E,  >  E-.  A n  e x a m p l e  o f  s u c h  a

system is a set of proton spins placed in a magnetic field. The number N, of such
systems in the energy state E, is proport ional to the Boltzmann factor. I f  C is
the normalizotion constant, then:

N, =  Ce-ZE* (10.39)

and the number N-  in the energy state E is:

T h u s ,  N+/N-  =  e-@(Ei-‘.  ).

N_ =  CemBE- (10.40)

If  there are a large number of possible discrete energies E,,  then the distr ibu-
t ion function f (E,) which gives the number of particlles  in that state i s  g iven

by the Boltzmann factor:

f  ( E , )  =  CeeilEt (10.41)

where C is  some proport ional ity constant. The normalizat ion constant C would
be determined by requiring that the system had a (certain given total number of
particles and summing over all states i:

c f(E,) =  Cx,eeUEn  =  N (10.42)
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when N is the total number of part icles. Averages of energy, (E), could be

computed by the formula:

2 DISTRIBUTION OF THE MAGNITUDE OF MOMENTUM

In some applications it  is necessary to know the number F(p)  dp of particles

with momenta of magnitude p in the range dp, regardless of posit ion or of the

direction of momentum. The number of particles with momenta in the range

+,+,+z, regardless of posit ion,.  may be obtained by integrating f (r ,  p) .

dp,dp,dp,  over all  posit ions. We shall  denote by f(p) the result ing momentum

space distribution function:

f (P)  = .m‘dxdydzf  (r,  P) (10.44)

Then, since the volume V = j dxdydz and f (r, p) is independent of r for an ideal

gas, we obtain from Equation (10.3.4):

f ( p )  =  N(27rrr1ksT)-~‘~exp

We may now easily rewrite the distr ibution function in terms of the magnitude

o f  m o m e n t u m ,  p  =  e, because  here the distr ibution function f(p) depends

only on p and not on the direction of p. The distr ibut ion of part icles is  therefore

spherically symmetric in momentum space.

To obtain the number of particles of momenta in the range of magnitudes

dp, we may then consider a thin spherical shell ,  of radius p and hence of area

47rp2,  in momentum space. If the thickness of the shell is dp, then the volume

in momentum space enclosed by the shell is 4Kp2dp.  Alternatively, the volume

of a sphere of radius p is 47rp3/3, and the differential volume contained between

two spheres of radii p and p + dp will be just the differential:

= 47rp2dp

Thus, using this radial coordinate in momentum space, the volume element

becomes:

4w+,+z  - 4v2+ (10.47)

We then want to look for a function F(p) such that F(p)  dp is the total number

of particles with momenta of magnitude p in the range dp. Thus, we would set:

f(p) +x+,+z  -+  f (PI  4v2+  = F(p)  dp (10.48)

This defines a new distr ibution function as a function only of the variable p.

Solving to find F(p) as a function of p, we get:

F ( p )  =  4aN(2rmksT)-3’2p2  e x p
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The most probable value of p is the value for which F(p)  is a maximum. Upon

using the condition dF(p)/dp  = 0 to determine the maximum, we get:

13  = (2p - EC).,,  (-yf)‘)

I.e., the most probable value of p is v’=  = 1.41.4-  Since the speed.-
is v = p/m, the most probable speed is V?k,T/m.

The uveroge  value of  p can be computed us ing F(p) and Table 10.1,  not ing
that -i;l F(p)dp  = N. From this we find the average value is:

( p )  =  i lX pF(p)dp  =  4*(2xmk,TJm”‘2  -cX  p3  e x p  (-$j  d p

zz __  = 1.595 v’i&  J (10.51)

Here the l imits range from 0 to s, since the magnitude of momentum can never

be negative. Comparison of (p) with the most probable value of p is interesting;
th is  i s  a case in which the most probable value and the expectat ion value ore
almost the same but slightly different, both still being positive, On the other harfd,
calculat ion of both the lnost probable value and the expectat ion value of  one
component of momentum such as p., would show that both are zero; th is  wi l l

be discussed below.
Figure 10.9 is a graph of F(p) as a function of p.

Figure 10.9. Distribution function F(p)  for the magnitude of the momentum.

10.13 EXPERIMENTAL VERIFICATION OF THE MAXWELL DISTRIBUTION

Figure 10.10 shows the results of two runs of an experiment by R. C. Mi l ler and
P. Kusch,  performed in 1955 to check the validity of the distribution F(p), derived

in Equation (10.49). In this experiment, either potassium or thallium was obtained
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F igure 10.10. Experimental verifktion  of the Maxwell-Boltzmann distr ibution. The
experimental points were for a gas of hot thallium atoms. ‘The dotted line is the theoretical
result obtained from the Maxwell-Boltzmann distribution, Equation (10.18). Both curves
were multiplied by a factor, so that the maximum is at 20.

in gaseous form by heating the metals to high temperatures in a vacuum oven.

A  v e r y  n a r r o w  s l i t  i n  t h e  o v e n  ,&lowed  a t o m s  t o  e s c a p e  i n t o  a n  evacualed

chamber outside the oven. Presumably, the momenta of the particles in this

beam would have the distr ibution given by F(p). To measure the distr ibution, i t

was necessary to be able to select atoms out of the bleam having speeds within a

very narrow range. To do this,  the experimenters inserted a cyl inder with i ts axis

parallel to the beam, so that the beam hit the cylinder just inside its rim and was

blocked. A straight slot cut in the edge of the cylinder parallel to i ts axis would

then let the beam get through. However, suppose the cylinder were rotating at a

constant angular speed. Then, for an atom of a given speed to get through, ,the

slot should not be straight but hel ical.  For a given angular speed and helical

slct,  only part icles in a narrow range of speed could get through. By cutt ing

such a slot in the cyl inder and rotating the cyl inder at dif ferent angular speeds,

it  was possible to select particles of the desired speed out of the beam. The

experimenters then measured the number of particles per second that wI:re

transmitted through the slot, versu:;  the speed of the particles.

The part icular experimental setup introduced several factors that s l ightly

modified the form of the theoretical distr ibution which was f inally compared with

the experimental results.  I f  f  is  the distr ibution function for velocit ies, then the

number of particles of speed v hitt ing an area oriented normal to the direction

of v, in one second, is vf.  Thus, in this experiment,,  the number of part icles of
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speed v hit t ing the end of the slot nearest the oven, per second, should be

orooortional  to:

( 10.52)

since p = mv. Also, if v0  is the speed that is just right for particles to get through

the slot for a given angular speed of the cylinder, then the probabil i ty that

particles with speeds between v and v + dv wil l  get through wi l l  be of the

form A(v/v,),  where A(~r/vr,)  is a probabil i ty density depending on the slot

w i d t h ,  a n d  i s  s h a r p l y  preaked a b o u t  t h e  v a l u e  v  =  vO.  T h e n  t h e  n u m b e r  o f

particles per second that get through the slot is proportional to:

Since A is very sharply peaked about v = vO,  we can replace v with v0  every-

where in the integrand, except within A. Then, lett ing dv = vod(v/v,,),  we have

an approximate value for the integral:

vi-p ($) 1‘=  A (;) d  (;;) (10.54)

The integral is some constant independent of v,,. The experimenters normalized

both their experimental results and the theoretical curve, so that the maximum

was equal to 20. The theoretical result is then:

Intensity at detector = 36.9 (2)’ exp (2) (10.55)

The maximum occurs at v,,/2  a = 1. In f igure 10.10, the theoretical curve

is indicated by the sol id curve. The experimental results were for thall ium vapor.

Run 99 was at 870 K and run 97 was at 944 K. The measured peak velocity of

the curves agreed with 2 dk,l/ m, within the experimental error of about 1%.

Similar results were obtained with potassium vapor at quite different tempera-

tures. One corn  conclude thot to within the experimental error,  the Maxwell-

Boltzmann distr ibution agrees with experiment.

10.14 DISTRIBUTION OF ON’E COMPONENT OF MOMENTUM

The Maxwell-Boltzmann distr ibution can be expressed in several other useful

ways. For example, let IJS calculate the total number of particles with x com-

ponents of momentum in the range dp,, regardless of their  values of pY  and

p.. This means we must integrate over all  dp, and d,p,.  The required number

of particles is denoted by f (pX)  dp,, and is given by

dpzfh-4  = f(px)+.x (10.56)
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and so

(10.57)

We may separate the integrals irito two single integrals,  which are multiplit?d

together. Performing these integrals over py  and p. using Table 10.1, we get:

f  (p.) = N(2,trmks J)-“’  exp (10.58)

In this  case, because f  (p,) is  an even function of pX.,  the most probable value
of pX  will be zero, as will the expectation value, (pa

If we had performed a s imi lar calculation to o’btoin f  (p,) and f (pZ),  w e

would have found that similarly,

(Px)  = (P”) = (PZ)  = 0 (10.59)

Also, the most probable values oi pr  and pZ  would be zero. Thus, although

(PX)  = (PY)  = (PZ)  = 0, (P)  : > 0 because p is intrinsically positive.

Previously, we noted that when F is a function only of the magnitude of p, it is
useful to use the momentum space volume element in spherical coordinates,
47rp’dp.  l ikewise, because the Boltzmann factor, emE”gT,  depends only on the

energy and temperature, i t  is  often useful to write the differential volume in
momentum space, dp,dpydp,,  in terms of the corresponding infinitesimal energy

change dE. For the free particles we have been discussing,

ET& (10.60)

Since for a free particle E is then a function only of p, we can express the volume

element in the spherical coordinates of momentum space in terms of energy. Now
we noted before that the volume of a sphere of radius p is  47rp3/3,  and thus
for the volume of a thin spherical shell:

= 47;rp’dp

We wish to express p’dp  in terms of the corresponding energy E, and energy

increment dE.  From Equation (10.60),

p2  = 2mE or p = &GE (10.612)

Then differentiation of both sides yields:

d p  = (10.6’3)

Thus,
dp,dp,dp,  - 4ap’dp  = 47r t/i;% dE (10.6’4)
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We may now define an energy distr ibut ion function g(E) by equating numbers

of particles in the range a’E  in the two alternative expressions:

f ( p )  dp,dp,dp,  4 N(2amkBT)-“”  4a  d3E  e-Or  dE  e g ( E )  dE ( 1 O.t55)

or for the distr ibution function in energy,

gAF) =: const.  X  &emdE

=: [N2r(rkgT)-3/2]  x GemBE (10~56)

A graph of the dependence of g(E) on energy E i s  given in Figure 10.) 1.
I t  h a s  a  m a x i m u m  a t  ag/aE  =  0 ,  o r  a t  E  =  ksT/2.  N o t e  t h a t  t h e  g r a p h  i s

g El

E

k,T

Figure 10.1 1. Graph of the energy distribution function, g(E) proportional to v’ze-@.

tangent to the vert ical  axis  at smal l  E,  whereas F(p)  was tangent to the hor i-
zontal  ax is  at  small  p. From equation (10.19),  the average energy per part icle
is “/z  keT,  whereas the most probable value of energy, % ksT,  is considerably
different from this.

The total  probabi l i ty  that o part icle is  in the energy range between E and

E + dE  i s  p(E)dE  =  g(E)dE/N  o r ,  a l t e r n a t e l y ,  ~@~v$dE/
s

I
emPE&dE.

0
Itisp(E)dE  = 2X(l/.lrk,T)3’2,-“‘~dE.

e x a m p l e What is  on express ion <giving  the probabi l i ty of a part icle’s having energy

between 0 and l//3 =  ksT?

kBT

soluiion
s

p(E)dE  =
0 s

kBT I

e e -SE  v’%  dE
0

The integral in the numerator cannot be written in terms of a closed farm

involv ing s imple functiorls. I t  m a y  b e  e x p r e s s e d  i n  t e r m s  o f  e r r o r  f u n c t i o n s
which may be found in tables. The numerical result is 0.843.

10.15 SIMPLE HARMONIC OSCILLATORS

The energy dependence of the distr ibution function in phase space, f  = (con-

s t a n t )  x  e-BE, was derived for the case of many systems in thermal equi l ibr ium
which were weakly interacting with possible heat flow between them. The internal
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structures of the systems were irrevelant. I f  we have any set of a large number

of identical systems, and the energy of a system takes on the values E, then the

number of systems in the set with energy E is proport ional to eetiE. These systems

might be macroscopic. Thus, in a cubic mile of air,  ‘we  might assume the systems

to be volumes containing a gallon of air each. Provided the assumption of weak

interaction holds, other systems such as l iquids can also be treated in the some

way.

Suppose we had a box containing a large number of part icles, each of which

has a mass m and is bound to on equil ibrium posit ion by a spring-l ike farce

with spring constant K .  At high temperatures, such a picture might be used to

represent the behavior of a soli~d,  where atoms oscil late in three dimensions

about their equil ibrium posit ions in the crystal latt ice. We shall  assume the

particles to be only very weakly interacting. The energy of a particle is that of

a three dimensional harmonic oscillator:

E = & (Pi + p;  + pf) + ; K(x’ +  yz  +  z’)

or

Here x, y and z are the displacements of the particle in the x, y, z directions from

its equil ibr ium posit ion. The number of part icles of this energy is then propor-

t ional to

e x p  [-/3(&  +  y)] (10.68)

The number of part icles whose posit ions x, y and z are in the range dxdydz and

whose momenta pX, pr, p. are in the range dp,dp,dpZ is then proportional to:

exp  10 (2 + $)] dxdydzdp,dp,dp, (10.69)

We shall  use this distr ibution function to calculate the average energy, (E).

The formula, written completely out, for this average is

(Q = fsssss( ‘/zmp’ +  1/2Kr2)e -BE  dxdydzdp,dp,dp,
-

JZ!L!Ue  -

(10.:70)
SE  dxdydzdp,dp,dp,

with all  integration l imits from - x to + 3~. There are, altogether, s ix separate

terms in the numerator of this expression. However, there are only two type!,-

integrals involving pt,  pz, or pt and integrals involving x2,  y2 or zz as factors, in

the integrand mult iplying the exponential.  Al l  three of the integrals of a given

type are equal, by symmetry. Furthermore, any of the six-fold integrals reduce to

a product of s ix single integrals,  so the integrations are straightforward with

the use of Table 10.1. Let us calculate this average term by term. First,  in the

calculation of (ps/2m),  all  factors in numerator and denominator cancel except
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those involving p. in the integrands, so

Similarly, by symmetry,

so the average kinetic energy is

;k,J

(10.71)

(10.72)

(10.73)

For the average of the potential energy, by symmetry, i t  is clear that in this

case also,

so

; (Kx2)

(10.74)

(10.75)

Now to calculate a typical term such as (Kx’), using the fact that al l  factors

in numerator and denominator cancel except those involving x, we find that

T h u s  (‘V’z  Kr’)  =  “/,  ksJ, so the total average energy per particle is

(10.77)

Note that for every quadratic term in the energy, either of the form % pf/m

o r  % Kz2, we find a contr ibution to the average energy per part icle of 5’2 kd  7.

This result is referred to as the theorem of equipart i t ion of energy. I f ,  for

example, the oscil lators were restr icted to move in only one dimension so that

E =  % pf/m  + % Kx2,  one would immediately expect that

(E) = ; ksJ  + ; k,J  = k,J (10.78)

For  the three-dimensiorlal  oscil lator,  the average energy per part icle is then

(E) =  3ksJ  and the specif ic heat per part icle is 3ks. We would expect this

specif ic heat per part icle in sol ids where the part icles osci l late about their

equil ibrium posit ions. The specif ic heat per mole, in terms of the gas constant

R  =  N,k,,would be equal to 3R = 5.96 calories/mole-degree K. This behavior

is observed in solids at high temperatures where it is called the Dulong-Petif  law.
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At low temperatures, quantum effects come into play which greatly reduce the
specif ic heat. In Table 10.2 the specif ic heat and molar specif ic heat at room
temperature is given for several colnmon  metals. Note that, although the specific
heats are quite different, the molar specific heats are close to 3R.

TABLE 10.2 Molar  Specific Heats of Some Metals

Metal
Specific Heat in
cnlories/gram

-degree K

Molar Specific Heat
in calories/mole

degree K
3R = 5.96

cal/mole-degree K

Aluminum 0.21 5 . 8
Calcium 0 . 1 6 6 . 4
Copper 0 . 0 9 2 5 . 9
Gold 0.03 1 6 . 2
Iron 0.11 6 . 0
lead 0.03 1 6 . 3
Potassium 0.18 7 . 2
Silver 0 . 0 5 6 6 . 0
Tin 0 . 0 5 4 6 . 5
Zinc 0 . 0 9 3 6.1

16 DETAILED BALANCE

‘When a system of noninteracting part icles is  in thermal equi l ibr ium, the averalae
density of the cloud of representative points in phase space remains constolnt
in t ime. Therefore, if we consider some fixed infinitesimal region da  in pholse
space, there will be just as many points entering this region as there are particles
leaving i t  on the average. I t  i s  necessary to keep in mind that these statements
refer only to t ime averages, for at any one instant there may very wel l  be mclre
or fewer points in d0  than the average number. However,  i f  a state of the

system were to develop in such OI  way that the number of points  in do  w a s
consistently greater or less than the t ime-averaged or equi l ibr ium number, the
system would no longer be in a thermal equilibrium state.

Now suppose we consider any two fixed regions, dOI and dfiz, with volumes
of equal magnitudes, dOI = d&,  in phase space. I f  at equi l ibr ium the average
rate at which points  in dL?,  are changing to d0,  is  equal to the average rate
at which points  in df&  are changing to dO ,, anid i f  t h i s  e q u a l i t y  o f  ra+es

is maintained for all such pairs of regions in phase space, then the average num-
ber of points in each region would remain constant. This would be a suficient-
but not a necessary-condit ion that thermal equi l ibr ium would be maintained.
More detai led calculat ion of these transit ion rates using quantum mechanics

shows in fact tha’  the rates of transit ions between any  two such equal regions
in phase space are equal.

We shal l  therefore make the reasonable assumption that this is  the case; the

assumption may be stated as follows:
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The rote of transit ions between any two equal  volume elements in phase

space are equal at thermal equilibrium.
This statement is  cal led the pr inciple of  deta i led balance.  I t  does not  mean

that the rate of transit ion from d62,  to dl2, equals the rate from dl2,  to some
o t h e r  e l e m e n t  dQk,  but  on ly  that  the  ra tes  f rom dl2, to  dl2,,  and back f rom

dQ, to dl2,,  are equal. This is i l lustrated in Figure 10.12.

Possibly unequal
rates

Equal rates

Figure 10.12 The principle of detailed balance asserts that between any pair of regions

in phase space with volumes of equal magnitude, the number of particles per unit time

making transitions from the first to the second is balanced,  on the overage, by on equal

number making transitions bock from the second to the first per unit time.

Now let us consider a classical ideal gas  in  wh ich  the  in te rac t ions  be tween

part icles may be neglected, but in which the part icles may interact with the
container wal ls  at temperature T.  We define P,~+  to be the probabi l i ty  that
one part icle in d0,  makes a transit ion to dQZ,  per unit t ime. Similar ly, P; .,
i s  the probabi l i ty per unit  t ime for a single particle to make a transit ion from
da2  t o  dQ2,. I f  t h e r e  a r e ,  o n  t h e  a v e r a g e ,  dTi,  p a r t i c l e s  i n  dl?,,  t h e n  ithe

number of part icles which change to dQ2,  per unit t ime is dfi,p,  .*. Likewise,
if dn2 i s  the  average  number of part icles in da 2,  the average trans i t ion rate
t o  dR,  i s  dn2p2-+,. The equation express ing the pr inciple of detai led balance
at equilibrium may therefore be written:

dii,p,+  = dn2p2  ., (1 0.:79)

I f  t h e  e n e r g i e s  o f  p a r t i c l e s  i n  dR,  a n d  dl2,  a r e  E, a n d  E2, r e s p e c t i v e l y ,
for a gas at temperature T,  then the rat io dii,/dfi,  i s  s imply equal to the ratio
of the Boltzmann factor!,.  Therefore, because the volumes df2,  and dl2,  were
taken to be equal in magnitude,

dii, e
-dE,_ --- = e

dn, - e-,‘E>
(10.80)
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.17

Therefore, from Equation (10.79),  the ratio of the s ingle-part icle transit ion proba-
bil it ies is:

P2  - 1 Cl%
-=--= ----
P I - + 2 Cfii,

exp  w2 - El)i 1k,T
(10.81)

This important result for the ratio of transit ion probabil i t ies is  general ly val id at
thermal equilibrium not only for the particles of a classical ideal gas, but also for
electrons, photons and other part icles having quantum propert ies.  We shal l  use
Equation (10.81) to derive the Fermi-Dirac and Bose-Einstein distr ibut ion functions

in the following chapter.

TIME REVERSIBILITY

The equations of class ical mechanics possess an invar iance property known as
fime  revers ibi l i ty.  For example, in Newton’s equation of motion F = ma =
m d2r/dt2, if the sign of the time t is  reversed, the equation of motion is
unchanged. The veloci ty ,  v  = dr/dt,  reverses direction when the s ign of if is
changed. Thus, classical ly, i f  t were reversed in s ign, al l  motions would s imply
reverse exactly, and the particles would retrace their previous paths. Since mag-
netic forces are proport ional to v x B, al l  magnet ic f ie lds would have to be

reversed in direction under this  t ime reversal in order to have the part icles
retrace their  paths. This would in fact occur, s ince the currents and spins which
are the sources of magnetic fields would all reverse direction.

Another way to state this prop’erty  of t ime reversibi l i ty is  that, for any solu-
t ion of the equations of motion, another solut ion exists in which al l  part icles
have exactly the opposite velocities, so that they all execute the reverse motions.

L ikewise in quantum mechanics, the change of probabi l i ty density with t ime
would exactly reverse i f  the s ign of the t ime were reversed, and there exists  a
motion of the system in which al l  velocit ies would correspondingly be reversed.
While time cannot be reversed in the laboratory, one can obtain the equivalent
result  by s imply revers ing al l  velocit ies and hence al l  magnetic f ields. Many

experiments have shown that for the usual forces, this pr inciple of t ime revers i-
bility is valid.

On the other hand, macroscopic systems in general show a type of behavior
which is i r revers ible. For example, a rock dropped into a st i l l  pool of water
wi l l  cause a splash, a succession of circular outgoing waves and turbulence in
the water as the rock s inks to the bottom; and after some t ime a s l ight increlgse
in the temperature, or heat content, of the water wi l l  occur. Although the time-
reversed motion-in which a rock at the bottom of a st i l l  pool is  thrown up into
somebody’s hand by turbulence and ingoing waves with a resultant cool ing of
the water- is  a possible solut ion of the equations of motion, i t  i s  never observed
because of the overwhelmingly small  probabil i ty of i ts occurrence. Situations of

thermal equi l ibr ium are, however,  s i tuations of relat ively high probabi l i ty.

We may i l lustrate this by consiedering  a container of an ideal gas containing
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N := 1O23  particles. At thermal equil ibr ium, the part icles are randomly distr ib-
uted in posit ion throughout the box. An example of o nonequi l ibr ium situati(>n
might be one in which more part icles were in the lefthand  half  of  the box than

rn the r ighthand half .  We can easi ly calculate the probabi l i ty of any distributitsn
of particles between the two halves of the box using the analogy that the proba-
bi l i ty of f inding one part icle in, say, the left half is  the same OS  the probcrbillty
of occurrence of a head in one f l ip of a fair  coin. The probabil i ty of f inding n
particles in the left half of the box is therefore given by the binomial probability
distr ibut ion, Equation (2.13).  and is

p,(n) =
N! 1

n!(N  - II)!  p

I f  N  =  10Z3, we can cert’ginly  use the gaussian  approximation for PN(n)  g iven
in Equation (2.53):

P&)  = 1
Now we can ask,  for  example, what i s  the relat ive probabi l i ty of  f inding a

macroscopically s ignif icant excess of, say, 0.01% of the particles, or n =
0.5001 x 1O23  part icles, n the left half of the box? The ratio of this probability
to that of finding half of the particles on each side is

p,,~3(0.5001  x 1023) = e x p  [  - ( 0 . 0 0 0 1  x  10z3)‘/(N/2)]

4$3(0.5 x 1023)  - exp I-  (0)  2/(N/?~l
=  e x p  ( - 2  X lOme  x  1023)  =  e x p  ( - 2  x  1 0 ’ : ‘ )

Such an excess would therefore never be observed.
A corol lary of this is  that i f  an init ial state were art i f icial ly created in which

there was an excess of particles on one side, such as by injecting particles through
a hole in the container w,~Il,  then after a short t ime, due to col l is ions with the
walls ,  the part icles’ posit ions would become randomized, and al l  posit ions woLlld
become equal ly probable. The system’s apparent ly i r revers ible behavior thus
consists of an evolut ion from a nonequi l ibr ium state, of low a prior i  probabil i ty,

to a state of thermal equilibrium, which is of much higher a priori probability.

SIX DIMENSIONAL PHASE SPACE

Phase space is  a s ix dimensional space whose coordinates are x,  y,  z,  pX, pv,
and pI.  The posit ion and momentum of a s ingle part icle at a given instant may

be represented by a poitlt  in phase space. A large number of part icles, each
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represented by a point in phase space, gives rise to a cloud of such points, whose
density may be approximated by a continuous dist r ibut ion function f  (r, p, t).
The number of part icles whose representat ive points are to be found within the
volume element d0  = dxdydzdp,dp,dp,  is equal to f (r, p, 1) dxdydzdp,dp,dp,.
This results from the assumption that the number of states in d0  is  proport ional
to dl2.

MAXWELL-BOLTZMANN DISTRIIBUTION

For a system of weakly interactiilg particles, or for a number of systems in
thermal contact, the distr ibut ion f(Jnction  at equi l ibr ium is proport ional to e-Of,
where E is  the energy of a part icular system and fl =  l/k,7 wi th  k, the Bolltz-
mann constant and T the absolute temperature. For N particles, each of mass m
a n d  e n e r g y  E =  % my’, In a box of volume V, thse normalized expression for

f (r, p) is

f(r,p) = f(p) = J(&-3’zexp  (*)

DISCRETE ENERGIES

If the particles of a system can have only the discrete energies E,, E2,.  . . E,, . .
then at equi l ibr ium the probabi l i ty of f inding a part icle with the energy Ei is
proport ional to e +Ej. The average of any function of energy, x(E),  is  then
computed by the formula:

MOMENTUM AND ENERGY A!; INDEPENDENT VARIABLES

If the magnitude of the momentum is considered to be an independent variable,
then for an ideal gas the number of part icles whose momenta are in the range
dp is F(p) dp, where F(p) is proportional to p*  exp (--  %  Pp*/m).  If the energy E
is considered as independent, then the number of part icles whose energies are
between E and E + dE  is g(E) dE,  where g(E) is proport ional to V% embE.

EQUIPARTITION  OF ENERGY

For a system in equil ibrium whose single-particle energies are a sum of M

quadratic terms in any of the phase-space coordinates, the average energy per
particle is % Mk,J.  Thus,  associated with each quadrat ic term is  an average

energy of % k,T per particle.
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D E T A I L E D  B A L A N C E

At equil ibrium, the number of part icles per unit  t ime making transit ions from a

region dill  to a region d$, is equal to the number making transit ions from

region df12  to region dQ,,  provided df2,  = dQ2.

1. Consider the air  inside a closed automobile as it travels at a velocity U. The air is
at rest relative to the automobile. What is the velocity distribution relative to an

observer on the ground? (Neglect gravity.)

Answer: The Boltzmann factor  is exp [-”  mE[x].

2. If the automobile in Problem 1 had an acceleration a, ond the gravitational force

mg acted, what would be the form of the distribution function f (r, p, f)?
Answer: The Boltzmann  factor is

exp [2([kyTmur2]  exp [-fn(a - g).&-.

3 . Consider a beach of approximately 1 km2 area, covered with grains of sand, whose
moss is approximately 1O-.4 gm and whose top layer covers the beach at a demity

of 15 grains/mm2.  Asjuming  the temperature is 27”C,  how many grains of sand

on the beach could you expect to see at any one time at a height of 1 mm or more
above the level of the tseach,  assuming the grains are in thermal equilibrium?

Answer : Approximately exp (-2.4 x 10”)  grains, or effectively none.

4. A particle in a system of weakly interacting particles has energy E = % mv2 +
K(x4 + y4 +  z4), where K is  a posit ive constant. For what temperature wil l

the average potential energy be 1 % times OS great as at 2O”C?  To solve this you
do not need to know explicitly what the integrals equal.
A n s w e r :  1 6 7 ° C .

5. N smoke particles, each of mass m, are floating in air inside a closed vertical

tube of length 1 and cross sectional area A. Assuming that ot equilibrium the

particles at the bottom are far apart compared to their size, find the number of
particles per unit volume at height h from the bottom, for gravitational potential
energy mgh and temperature T. Find the average height of the particles.

Nw
-mgh/kBT

ks  1 1Answer: ~ --!--. - - -__

AksT  (1 -. e-mgl/ktir)  ’ mg emghhT _ 1

6. N charged smoke particles, each of mass m, are floating in air of temperature T,
inside a conducting coaxial cylinder of inner radius a, outer radius b, and length L.

The inner cylir,der  is ctlarged  so that the particles have potential energy C In (r/a),
where C is o constani and r is the distance from the cylindrical axis. Assuming

that at equilibrium all the particles are far apart compared to their size, find the

number of particles per volume at distance r from the axis.
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Answer:
2-Y ~ ~-Y

Ify=C&J,  n=N---..------
2~1  b-y+’  ._  &y+’

7. Show that for a Boltzmann distribution,

(-d/d/3jem’1Ef  (E) dE)

J-e -liE f(E) dE
eva luated at  p =  bJ

B

8. From the result of Problem 7, find the average kinetic energy of a particle in an
ideal gas.
A n s w e r :  “/,  kbJ.

9. A “quantum mechanical” one dimensional oscillator has discrete rather than ton-
tinuous energies, E, =  ( n  + %?)h w, where w = t/K/m, t r i s  a constant and
n = 0,  1,2,.  From the result of problem 7, show that for a system of weakly
interacting oscillators the average energy per oscillator is

U s e t h e f a c t t h a t i f a  <  l,~,“_ca”  =  l/(1  - o)ondusea  = ehw”BT,
10. From the result of Problem 9, fincl the heat capacity of a system of N one dimensional

harmonic osci l lators as a function of J. Plot this  versus J up to J = 47iiwl’kB.
Also plot the specific heat of a one dimensional classical oscillator on the same
graph. (The three dimensional oscillator was discussed in the text.)

d (0A n s w e r :  - = (I=r2c02k~J2)
ev OI~lkn  J)

dJ (exp()iw/ksJ)  - 1)’

11. In addition to its kinetic energy, a free electro’n  in a magnetic field B has I W O

possible energies, *pB,  depending on whether the intrinsic angular momentum, or
spin, of the electron is in the same or the opposite direction of B. Here p is the
magnetic moment of the electron, a constant. For an electron weakly interacting
with the rest of the system, fincl what the probability is for an electron spin to
be pointing in the direction oi the magnetic field. Find the average magnetic
interaction energy.
Answer:  e#Vkr,(eiWT  +  e-~‘Wrl;  -p8(ed’/k~  ._ e-~Wr,,(erWr  +  e--~Wl.

12. Suppose a particle in a system had only two possible energies, E = 0 and E =
t > 0. If the system is in equilibrium at temperature J, what is the average energy
per particle?
Answer: ( E )  =  te-@‘/(l  +  tC@‘).

13. Make a sketch of the distr ibution function f (px)  for posit ive px  for  an ideal
gas, where f (px)  dp, is the probability that a particle is between px  and px  + dp,.

14. Find the root mean square deviation of the energy of a particle of an ideal gas
from the average energy at temperature J. Find the ratio of this root mean square
deviation to the average energy of the particle.
Answer: fikBJ, v’%  =  0 . 8 1 6 .

15. Find the root mean square deviation of v from its average for a particle of an
ideal gas at temperature J if the gas particles have mass m.
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A n s w e r :  d/(3  - 8/:r)  ksl/m.

16. At what temperature would the average speed of atoms in an ideal gas be 1.X
times as great as at 2O”C?  At what temperature would the average kinetic energy
be 1% times as great a!,  at 2O”C?
Answer: 386”C,  lC16”C.

17. Calculate the average value of l/v in an ideal gas at temperature 7.
Answer: xf%yaJ..

18. The molecular weight of O2  is 16 times that of Hz.  In a mixture of H2  and Csz,
what is the ratio of rms speeds of 02  and Hz?
A n s w e r :  Vi.

19. Find the root mean square deviation of v,  from its average for a particle of an
ideal gas at temperoturbe  J if the gas particles have mass m.
Answer: XAmFl.

20. In the diagram regions 1, 2 and 3 are three semiconducting solid rods of the same
cross sectional area separated by thin insulating films, so that there are changes
in electric potential between the two sides of each of the films. Thus, conducting

Battery

electrons are in regions of three different potential energies in the three semi-
conductors. If the poter~tiol changes at the films are 0.02 volts and 0.01 volts, the
potential  energies are approximately VI = 0, V2 = 3.2 x 10e2’ joules, Vs  =
4.8 x 10e2’ joules. Assuming the electrons act as an ideal gas, find the ratio of
the numbers of conducting electrons in regions 2 and 3 to those in region 1 for
&2 = .t,, 43  = 2 4, 3t 20°C.

Answer: 0 . 4 6 ;  0 . 6 3 .
21. I f  the energy as a function of momentum of a part icle depended on ap:  +

b(pgq  p;),  i t  might be useful to express differential volume in cylindric:al

coordinates in momentum space, p. and pxY  = p--7px  + or.  Here pxY  is the perpen-
dicular “distance” from the p.  axis. Show that this voLme  element is 27r pxydp,,dp,.
An energy depending on momentum this way occurs in some semiconducting solids.

22. We saw that if energy depends on momentum magnitude only, it is useful to Llse
4ap’dp  as the volume element in momentum space, and that nonrelativistically in
terms of energy, E = p2/2m,  this becomes 2a c-3  ,-2m L E dE. Using the relativistic
relationship between momentum and energy, show that this element of volume in mo-
mentum space becomes 4a \/E2  - mEc4-E  dE/c3. Also show that in terms of lk-

n e t i c e n e r g y ,  T  =  E  - mcc?,thisis 4rV?(2TtTj(mcc2 t  T)dT/c3.  T h i s
becomes 27r d2Ge3 t’?dTfor  T <<  mgc2.
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2 3 . A nuc leus  con decay,  g iv ing of f  CI  h igh  energy  e lect ron ,  o f  re s t  mc~ss  rno  w i t h  e n e r g y  E

and IJ neut r ino  o f  ze ro  res t  mass .  In  mony  cc~ses,  the  probabi l i ty  o f  decay depends

on ly  on  the  magn i tudes  o f  the  par t ic le  momenta so  the  resu l t s  o f  the  prev ious  p rob lem

can be used.  Show that  i f  the  sum of  the neut r ino  and e lect ron energ ies  i s  a  cons tant ,

Eo,  s o  t h a t  t h e  n e u t r i n o  e n e r g y  i s  EO  - E ,  a n d  i f  t h e  p r o b a b i l i t y  o f  e a c h  p a r t i c l e

hav ing a  g iven energy  i s  p ropor t iona l  to  vo lume in  phase space,  the probabi l i t y  that

an e lect ron  has  an  energy  between E  and E  + dE i s  p r o p o r t i o n a l  t o Z/FFp

E(E,,  - E)‘dE.  The  fact  that  many  exper imenta l  e lect ron  decay  d i s t r ibut ions  fo l low

t h i s  e q u a t i o n  e x t r e m e l y  w e l l  l e a d s  t o  p r o o f  t h a t  t h e  n e u t r i n o ,  w h i c h  i s  v e r y  difficult  t o

detect, is given off with the electron.

24 .  Cons ider  a  box conta in ing CI  gas ,  i n  wh ich  the  potent ia l  energy  o f  a  particle  v a r i e s

f rom one end of  the box  to  another  accord ing to  V  =: Vex/L,  w h e r e  1 i s  the  length

of  the  box .  What  f ract ion  o f  the  par t ic le s  a re  in  the  ha l f  o f  the  box  fo r  wh ich  5/4  1 <

x < ?hL?

25.  For  CI  s y s t e m  o f  t h r e e  dimensioncl  c las s ica l  harmon ic  osc i l la to r s ,  ~1s  d i scussed in  the

t e x t ,  f i n d  t h e  r o o t  mean  square  dev iat ion  of  the  energy  f rom the average fo r  one of

t h e  o s c i l l a t o r s .

A n s w e r :  &?kBT.

2 6 .  P a r t i c l e s  o f  mass  6 . 2  x  10-l’ grl  are  s u s p e n d e d  i n  l i q u i d  a t  2 7 ° C .  W h a t  s h o u l d  b e

the i r  rms  speed?  (Use  equiportition)

Answer: 1 . 4  cm/set.

2 7 . Co l lo ida l  par t ic les  in  so lu t ion  are  buoyed up by  the l iqu id  in  wh ich they are  suspended

by  a  fo rce  equa l  to  the  we ight  o f  the  l iqu id  they  d i sp lace.  Show that  the  number  o f

par t ic les  per  un i t  vo lume in  the  l iau id  var ies  w i th  he ight  as

” = “0  exp
[
+%P - P’)Sh 1

w h e r e  No  i s  Avogadro’s  number ,  no  i s  the number per  Iunit  vo lume at  h  =  0 ,  V  i s  the

vo lume of  a  par t ic le ,  p’ i s  the  l iqu id  dens i ty ,  and p i s  the mass  per  un i t  vo lume of  the

co l lo ida l  par t ic les .



11 quantum statistical
mechanics

A number of the results obtained in Chapter 10 concerning classical statist ical
mechanics of a system of particles are still valid when quantum mechanics, ratlrler
than classical mechanics, is  used to describe the part icles. For example, the
Boltzmann factor, emBE,  was found by considering a number of systems in thermal
equi l ibr ium, and by assuming that the probabi l i ty ot a system’s being in a given
state is a function only of the energy of the state and the common temperature.
These same assumptions can st i l l  be made for large quantum systems. In the
classical discussion, /3  was found to be l/kBT by evaluat ing the energy for  a
class ical ideal gas and comparing with the kinetic theory result .  This can st i l l  be
done if it is assumed that the quantum system to be investigated is in equilibrium

with at least one class ical ideal gas system. Once /3  i s  evaluated, i t  does Inot
matter whether or not the actual system is  real ly in thermal equi l ibr ium with a

classical ideal gas. Thus, ,even  for a large quantum system in thermal equi l ibr ium
with other systems, the probability that the system is in a state of total energ’y  E

is proportional to e
-E/kg1

.

How, then, does quantum mechanics change stat ist ical mechanics? There are
two main effects of quantum mechanics. First, there are often discrete energy
states in quantum mechanics so that, in addition to an integral over phase space
for continuous states, there may also be a summation over discrete states in fiend-
ing average values of quantit ies.  Second, the indist inguishabi l i ty of part icles in
quantum mechanics can affect the stat ist ics greatly,  especial ly when we look at
the energy distr ibution of one of the single part icles in a system of identical

part icles. Here the partic:le  i tself  cannot be treated as an independent system,
as was done in the classical case. For a system of identical fermions, this effect
can be treated as a consequence of the exclus ion pr inciple: no two identical
fermions in a system can be described by the same set of quantum numbers. For
a system of identical bosons, the effect is  quite different; there is ,  instead, a
slight tendency for the particles to collect in states described by the same quan-
tum numbers.

312
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I.1 EFFECTS OF EXCLUSION PRINCIPLE ON STATISTICS
OF PARTICLES

In the classical case of a system of identical particles, it was assumed that even

identical part icles were dist inguishable, and that the overal l  state of a system
could be specif ied by giving the single-part icle state of each part icle-for
example, by specifying the porticl’e’s  representat ive point  in phase space. How-
ever,  as has been seen in the disc(Jssion  of the exclusion principle, for identical
particles the wavefunction specifying the overall state is such that each particle
appears equal ly in al l  the occupiesd s ingle-part icle states. Hence, the state of a
system of identical particles may blz specified by giving the number of particles in
each single-particle state but not which particles are in each state.

This fol lows because in interchanging part icles, the magnitude of the square
of the wavefunction does not change; otherwise, the part icles would be clis-
t inguishable. Then when two bosons, or part icles of integral spin, are inter-
changed, the wavefunction i tself  remains unchanged. When two fermions, psmr-

titles of half-odd-integral spin, are interchanged, the wavefunction changes sign.
Thus for half-odd-integral spin, there are either no part icles or at most one p13r-
title in any given s ingle-part icle state, whi le for integral spin part icles, any num-
ber of particles from zero to infinity may occupy a given single-particle state.

In the case of a system of fermions, s ince the number of particles in a singlIe-
part icle state is l imited to 0 or 1, the s ingle-part icle distr ibution in energy wil l
differ from the classical Maxwell-B~~ltzmonn  distr ibution.

I .2  DETAILED BALANCE AND FERMI-DIRAC PARTICLES

We may use the pr inciple of detai led balance to f ind this distr ibution. Consider
the trans it ions between states 1 and 2 in a fermion system. In order for thermal
equi l ibr ium to be maintained, the average transit ion rate from 1 to 2 must be
the same as the average transition rate from 2 to 1, by the principle of detailed
balance. Here the term “transit ion rate” means the number of part icles making
transit ions per second. The exclusion principle strongly affects these transitlIon
rates; for example, i f  we begin with one part icle in state 1 and one part icle in
state 2, it is impossible for the particle in state 1 to make a transition to state 2:

i f  i t  were not,  there would then bl:  two part ic les in state 2,  which is  a v iolat ion
of the exclusion principle. Transitions between two single-particle states can ocI:ur
only when, before the transition, the initial state is occupied by one particle and
the final state is empty. Actually, the number of particles in a given state may fluc-

tuate considerably in t ime, because of the large variety of possible transit ions
between that state and al l  other Istates.  Hence, there wi l l  exist some probabil i ty
that a state is  occupied. Because the  maximum number of fermions in o state is
unity, like the maximum possible probability, the probability that a state is occu-
pied will be identical to the time-averaged number of particles in the state. Thus,
the probabi l i ty that state 1 is  occlJpied  wi l l  be the same as ri,, where the bar
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denotes the time average of the number of particles n, in state 1. The probability
that state 2 is occupied will be the same as ii,, the t ime average of the number

of particles n, in state 2. ‘The probability that state 2 is unoccupied will therefore

be 1 - ti?.
Let p, -?  be the trans it ion probabi l i ty per unit  t ime that,  given exactly one

particle in state 1 and zero particles in state 2, a transition from state 1 to 2 will
occur. Similarly, let P2-, be the transit ion probabi l i ty for a transit ion frlsm

2 to 1 per unit time, given state 2 is occupied and state 1 is unoccupied.
We may now use the rules for combining probabi l i t ies given in Equation (2.2)

to obtain the transit ion rate. The probabil i ty of occurrence of a transit ion from
state 1 to state 2 must be equal to the product of the probabilities that state 1 is
occupied, that state 2 is unoccupied, and that a tronsition occurs; or the transi-
tion rate must be

,5,(1  - k)Pl  *2

Simi lar ly,  the number of part icles per second making transit ions from state 2
to state 1 must be

n2(1  - n,)Pz  -1

On the average, for  the :,ystem  to remain in thermal equi l ibr ium, the above two
transit ion rates must be equal,  by the pr inciple of detai led balance. The matoe-
matical  equality can be expressed as follows:

n,(l  - G)p,-2  = &(l - fil)P2  -1 (11.1)

From Equation (10.81),  the ratio of p2  ., to p,  .2 in the classical case is

(11.2)

where E, and Ez  are s ingle-part icle energies. The ratio of the transit ion prob-
abil i t ies ple2 and pz+, in the quantum case should be the same as in the
classical case, s ince they are defined for condit ions in which only one part icle
is present in the init ial state. Thus the effects of part icle exchange are unim-
portant and Equation (1 ‘ I .2)  is still valid. Therefore, combining Equations (1 1 .l)
and (1 1.2) and rearranging, we obtain

.-

nl E,IkBr n2
----  e

f2/kgl
T-e

1 - ii, 1 - ii,

On the left side of the above equation is o combination of functions depend-
ing only on state 1, and on the right is a combination depending only on state 2.
Therefore, both s ides of Equation (1 1.3) must be equal to a  constant,  inde-
pendent of the state, and hence independent of the energy of the state:

n, El/LB1 ii(E) E/kg7
----e =  C o n s t .  =  ---e
1 -r, 1 - ii(E)
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1.3 FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION

It is convenient to write the constant  in this equation, which must be a positive

number,  by introducing a quantity cal led the Fermi  energy, EF. In terms of I!~,
the constant in Equation (1 1.4) is:

(1’  5)
This equation const itutes a definit ion of the constant, E,,  which, in general ,  i s  a

function of temperature. Substitutillg  the constant into Equation (1 1.4) and solv-
ing for the time-averaged occupation number n(E),  we find:

This distr ibution function is  cal led the Fermi-Di rac dist r ibut ion.  The addit ive 1 in

the denominator is  what dist inguishes i t  f rom the Maxwel l-Boltzmann distr ibut ion.
The Maxwel l -Boltzmann dist r ibut ion for s ingle part icles was val id in the class ical
case, because with noninteracting particles, each particle could be treated as a
single system. For part icles where the exclusion principle applies, even though
there may be no forces of interaction, the particles affect each other statistically
and s ingle part icles cannot be treated as s ingle systems. Thus the Maxwell-
Boltzmann distribution is not valid for fermion systems.

The form of the Fermi-Dirac distr ibution depends cr it ical ly on the magnitude

of the exponential function, e-EF’kBT appearing in the denominator.  This  function

is independent of the energy of the state and plays the role of a normalization
constant. Hence, if the total number of fermions in the system is N, then at a given
temperature the Fermi energy will be determined by the condition that

(11.7)

where the summation is  taken over al l  dist inct s ingle-part icle states labeled  by
the index i.

” (El

k,T
Figure 11.1. Graph of the Fermi-Dirac distribution function in the nondegenerate case,

E  =  -lOkBT.

Figure 11.2. Graph of the Fermi-Dirac distribution function in the degenerate case,

E  =  +lOOksJ.
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Under some condit ions, the Fermi-Dirac distr ibutibn closely resembles ihe
Maxwell-Boltzmann distr ibut ion. For example, in F igure 11 .l i s  plotted the aver-
age occupation number Ii(E) for the case E F =  -IOk8T.  T h e  f u n c t i o n  i s  s u b -
stant ial ly just  a Maxwel l -Boltzmann dist r ibut ion, s ince the exponential  in the de-

nominator is  much greater than unity.  On the other hand, i f  EF =  + lOOk,  7, the
function has a completely different character; the Fermi-Dirac distr ibution ,for
this case is plotted in Figure 11.2. Here al l  the states are f i l led up to an energy
approximately equal to ,EF, and all  the states of greater energies are almost

empty.

11.4 ONE DIMENSIONAL DENSITY OF STATES FOR PERIODIC
BOUNDARY CONDITIO~NS

In the case graphed in Figure 11 .l,  with the Fermi energy negative and EF <<

-k,T,  we say that the statist ics are nondegenerofe; this case resembles the
Maxwel l -Boltzmann distr ibut ion. In the case of posit ive Fermi energy with

E, >> kBT,  as in Figure 11.2, we say the statist ics are degenerate. Which of
these cases actually appl&  in a given system depends on the number of particles,
the number of poss ible states per unit  energy interval,  and on the temperature.
In class ical stat ist ical mechanics, the number of possible states could not be
calculated; information alDout.the  distribution of states was obtained by postulat-

ing that the states were uniformly distr ibuted in phase space. Using quant(Jm
mechanics,  we can calculate  from fundamental pr inciples what the distr ibut ion
of possible states must be.

To der ive the number of states per unit  energy interval,  which is  cal led the

density of states, we consider f i rst a problem closely related to the problem oii a
part icle in a one dimensional box. There, the possible wavelengths were l imited
by the condit ion that an integral  number of half-wavelengths must f i t  into the

box. We consider instead the one dimensional free particle wavefunction, written
in the form:

1 + 5 =  e x p  [i(kx  - w t ) ] (1 1.8)

where the wavenumber ir, related to momentum by k = p/h,  and the f requency

is related to energy by w =  Efi.  We then impose the art i f icial  periodic boundary
condition that

1c(x  +  L) =  #(x) (11.9)

where L is  some extremely large, but arbitrary length. We wi l l  eventual ly al low L
to approach inf inity,  so that the part icular boundary condit ion imposed is  of no
importance; that is,  for q system of many part icles the boundary condit ions
should affect the system only in the neighborhood of the boundary and should
have negl igible effect in the inter ior of the system. The wavefunctions $ corre-
spond to s ingle-part icle ,;tates  in which the momentum of the particle is com-

pletely known and the posit ion is  unknown. Thus, i f  we use free-part icle mo-
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mentum eigenfunctions to describl5  the single-part icle states of the system, it  no

longer makes sense to talk of phase  space in the ckassical  sense, for specifica-
tion of the particle’s momentum cmd  position at the same time would violate the
uncertainty principle.

The boundary condition, Equation (11.9),  gives us

e x p  i[k(x +  I )  - cot]  =  e x p  i(kx - wt)

This condition then means that

(1 1.10)

exp ikl = 1 (11.11)

In general,  e” = 1  o n l y  i f  0 =  27rn, w h e r e  n i s  a n y  i n t e g e r .  T h e r e f o r e ,  t h e

boundary condition limits the possible wavenumbers to the set of values:

k+ (11.12)

w h e r e  n  =  0 ,  +l, +2, &3,.  .  .  T h i s  i s  t h e  s a m e  a s  s a y i n g  t h a t  a n  integral
number of wavelengths must fit into the large length I.

Since p = Ak, the possible values of p are given by:

27ThPTTnTh"
i-

(11.13)

and the corresponding part icle posit ions must be completely undetermined.
Therefore, instead of a “phase space” consisting of one axis for x and one for p,
we can specify al l  the possible sirlgle-particle  states by drawing only one axis ,
the p axis, and labeling the discrete set of points given by Equation (1 1.13) with
its corresponding set of quantum numbers n, as in Figure 11.3. These states Iare

Figure 1 1.3. Discrete states for o free particle with periodic boundory conditions tore
uniformly distributed along the momentum axis. Positions along the x axis ore undeter-
mined.

uniformly distr ibuted in momentum space along the p axis in this case. As the
length I approaches inf inity, the possible states become more and more dens,ely
packed in momentum space, but still form a discrete set.

N o w  c o n s i d e r ,  f o r  s o m e  e x t r e m e l y  l a r g e  I ,  a  p h y s i c a l  r e g i o n  a l o n g  ,this

momentum axis of length Ap.  In this region as we ‘see  from Equation (1 1 .13),
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there will be a number of momentum states An given by:

h

Ap = i An
(1 1.14)

The number of states per unit  momentum interval is  thus AnlAp = L/h. Note
that the density of states in momentum space, AnlAp,  is proport ional to L, the
length of the periodicity region; this is  consistent with the classical idea that
states are uniformly distr ibuted in x - p space. We can div ide out the factor
of L and speak about the number of states per unit  momentum interval per  un i f

length,  which wi l l  be l/h.  In the l imit  as L approaches inf in i ty,  the boundary

condition becomes irrelevant, so that this result is completely general.

11.5 DENSITY OF STATES IN THREE DIMENSIONS

We may general ize this result for the one dimensional motion of a particle, to

the case of three dimensiclnal  motion, by considering the free-particle momentum
eigenfunction:

$(x,y,z,f)  = exp [i(k, x + k,  y + k, z  - cot)] (11.15)

We assume that per iodic boundary condit ions are imposed in the x,  y and z
directions, such that:

&qX,YJ,f)  =  #(x  +  Ly,z,f)  =  $(x,y  +  kt) =  $(x,y,z  + L,f)

Then all three components of the wavevector, and hence of the momentum, are
quantized s imi lar ly.  Thus,

pC  = trtx  n, = 0, il, *2,.  .  .

h
pr = my  ny =  0 ,  z&l,  zlC2,...

pr  = Fnz n, = 0 ,  +l,  rt2,...

The possible states form a cubical array of points in three dimensional
momentum space, (pX,p,,pz).  One s ingle-part icle state may be specif ied by
giving all three components of the momentum or, equivalently, all three quantum

numbers, nx,  n,,, n,.  The clistance  in momentum space, paral lel  to any one of the
axes from one state to the next, is h/L. Hence, we can imagine momentum space
to be f i l led up with cubes of s ide h/l, and there wi l l  effectively be one possible
momentum state per cube, or a volume of (h/L)3  per state.

To put this  another way, consider a volume element in momentum space of
sides Ap., Ap,,, and Ap,!.  The number of states in this volume element is
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which is  the momentum space volume div ided by the volume per state.  The
quantity L3 in this result could be replaced by V, the volume of the fundament~~l
periodicity region. Since the numbser  of states is proport ional to V, then as I
approaches inf inity and thus V approaches inf inity,  the number of states in the
volume element np,  /Ipv  Ap,  wi l l  increase without l imit .  We can then divicle
out the factor V and speak of the density of states in momentum space per

unif  volume. This density of states will be l/h3.

l/e  For a macroscopic system of electrons at room temperature, with dimensions
1 cm on a s ide, the spacing betweltn  energy levels corresponding to a change
of 1 in one of the quantum numbers nx,  nr,  n, is

~~ = A pZ = h ‘Lb,  + 1)’  -- n,2]
0 02m I 2 m

h2nE-2ml2 i f n, 3 1

At room temperature, the electrons will, on the average, have at least the enetgy
k,T ‘v .02 eV e pz/2m  =  h2n~/2mL2  - E .  T h e n

1om2
=- 1o-34 42 x 9 x 1O-3’ x6.6 x (0.02 x 1.6 x 10~19)

” 106

The ratio of the energy spacing to the energy is then A/!/E  - l/n,  - 10m6. Thus
the energy states are packed so close together that i t  should be a very good
approximation to pass to the limit in which the increments Ap.,  Apr,  are re-

placed by differentials and summations over states are replaced by integrations.

Although for a real physical system, periodic boundary condit ions may not
apply, as long as the volume V of the system is suff iciently large the part icular

boundary condit ions should not appreciably affect the density of states; there-
fore, to a very good approximation, the number of states in a momentum space

volume element dp, dp, dp, should be given by

An, An, An, = ; dpx dp,  dpz

The density of states in momentum space is V/h3.

.6  COMPARISON BETWEEN THE C:LASSlCAL AND QUANTUM
DENSITIES OF STATES

In class ical statist ical mechanics, i t  1,s  assumed that the number of states in the
phase space volume element dl2 =  dxdydz  dp,  dp,dp.  is pdQ,  where p is th,e
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unknown density of states in phase space. To compare this  to the quantum
mechanical result, Equation (11.18),  we must integrate over all positions:

; +x dp,  dpz  = d/j-  dxdydz)  dpx  dp,  dp,  =  ‘ V P  dp,  dp,  dpz (11.19)

Hence, the density of states in phase space must be

It  i s  at once clear why ill class ical theory the density of states could not be de-
termined; energy quantizat ion was unknown and Plcrnck’s constant was effec-
tively zero.

11.7 EFFECT OF SPIN ON THE DENSITY OF STATES

One further point must be mentioned in connection with the state density in
Equation (1 1.20),  which refers to the density of momentum states only. If, in addi-
t ion, the part icle described by the momentum eigenfunction in Equation (1 1.15)
has an intr ins ic spin,  with a total  spin quantum number s ,  then there wi l l  be

2s + 1 spin states for each momentum state. The total number of s ingle-part icle
states in the momentum space volume dp, dp, dp, will then be

(2s + 1) An, An, An, = i2’  l3 ‘)”  dp,  dp, dp,

One exception to this rule occurs for part icles of zero rest mass. Study of the
relativistic quantum theory of such particles shows that no matter what the total
angular momentum quantum number is ,  only two spin “or ientations” are pos-
s ible. The component of angular momentum in the direction of the part icle’s

momentum can be only +sFr,  corresponding either to spin paral lel to p or spin
antiparal lel  to p.  An erample of this appears in the case of photons, or l ight
quanta, which are known to be bosons with spin quantum number s = 1. Electro-
magnet ic theory shows that l ight waves are t ransverse,  and have two poss ible
states of circular polar ization. A left circular ly polar ized l ight wave has a z com-
ponent of angular momentum +Fr, a r ight c i rcular ly  polar ized l ight wave has a
z component of angular momentum -h.  Thus, for particles of zero rest mass, the
total number of s ingle-part icle states in the momentum space volume element
dp, dp, dp, will be

ZAn,  A n ,  A n ,  =  $ d p ,  d p ,  Sdp,r

11.8 NUMBER OF STATES PER UNIT ENERGY INTERVAL

I t  i s  f requently useful to know the number of states in the energy interval dE.

When the energy E depends only on the magnitude of momentum, as it  does for
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f ree part icles, this number may be obtained by considering the states in a
spherical shel l  of radius p and thickness do,  in momentum space. This was done
in classical statistical mechanics [see Equation (10.64):1,  where it was shown that
the spherical shell corresponds to an increment of energy dE  given by

dp,dp,dp,  -  4;rp2dp  = 2?r(2m)3/2  &dE (11.23)

The same expression holds in quantum statistical mechanics as well, if the energy
momentum relation is E  =  p2/2m.

The number of states between E and E + dE  for free particles of spin quantum
numbers in a volume V is then:

(2s + l)An,  An, An, = (2s + 1)2xV (1 1.24)

This i s  an important result ,  which wi l l  be used a number of t imes. The quantity
m u l t i p l y i n g  dE,  ( 2 s  +  1)2aV(2m//~2)3’2~ .IS cal led the density of states in

energy. It is the number of single-particle states per unit energy interval.

.9  FREE-PARTICLE FERMI ENERGY--NONDEGENERATE CASE

The density of states der ived above may now be used to f ind the Fermi energy
Er for var ious cases in which the part icles can be treated as free part icles. As a
first example, consider a gas consist ing of He3,  the i sotope of hel ium with a

nucleus containing two protons anol a neutron. This isotope has spin ‘/2 , and thus
it  obeys the exclus ion pr inciple. The numerical value of the quantity 2s + 1 is 2.
I t  i s  known experimental ly that ordinary gases at ordinary temperatures and
pressures are descr ibed very wel l  by Maxwel l -Boltzmann stat ist ics.  Let us then
assume that He3 gas is  nondegenerate under such condit ions, so that E,/k,T

must be negative, with e -EF/kgT >> 1, and the Fermi-Dirac distr ibution function,

Equation (1 1.6),  may be approximated by:

n(E)  =  e x p -(E - E,)[ 1ksT
(11.25)

We will check to see if this is a consllstent  assumption.
To determine the normalizat ion constant, eEf’k8r, we wi l l  fol low a procedure

simi lar to that used in the classical case. The number of states in the range

d p ,  d p ,  d p ,  i s  2 V  d p ,  d p ,  dp,/h3. For this nondegenerate case, the number

of particles N must be

N = JiJ$ ev[ e(EitFJ] dp,  dp,  dp, (1 1.26)

In terms of momentum, the energy for a free particle of energy E and mass m

is E = p2/2m.  After subst itut ing this into Equation (1 1.26),  one may perform
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s
m

the integration by using the definite integral e-*“‘!dx  =  dr/a.  T h e  r e s u l t
-ly

i s

Therefore,

e
EF/kBT

(1 1.27)

(1 1.28)

To check the self-consistency of this result, i .e. to see whether e~EF’kgT  X> 1
as assumed, we may evaluate the righthand side of Equation (1 1.28) for He3 at

standard temperature and pressure, using the following values:

m = 3 x (1.67 x 1O-27 kg)

1 =  2 7 3 K

ks =  1 . 3 8  x  1Om”3  j / K

h  =  6 . 6 3  x  lo-s4  i-set (11.29)

The particle density may be obtained from the fact that at standard temperature
and pressure, one mole of a gas has a volume of 0.0224m3  and contains
Avogadro’s  number N0 ==  6.023 x 10z3  molecules. The result is

EF/kgr =: 6.02 x 1O23  :< 6.28 x 5.01 x lo-”  x 1.38 x 1Om23  x 273
e -

2  x  .0224 ( 6 . 6 3  x  lo=)’

=: 3 x 10-6

This is much less than unity, so that in the Fermi-Dirac distribution,

ti ={exp[s.]+ l>’

(11.30)

(11.31)

the exponential  i s  always much greater than unity,  just i fy ing the approximation
of nondegeneracy. Othelr  atomic and molecular gases of half-odd-integral spin

at standard temperature and pressure would give similar results, and thus would
obey essential ly Maxwel l -Boltzmann stat ist ics.

I t  should be noted that the result  in Equation (1 1.28:1 is  wel l -def ined for a
system of a given density,  even when the volume V approaches inf in ity;  for N/V
is  just  the density of part ic les,  and then both N and V approach inf in i ty in a
constant ratio.

In order for the gas to be degenerate, eEF’kBr  should be at least comparable

to unity.  This  occurs at such a low temperature that al l  atomic and molecular
gases except hel ium are sol idif ied, and even hel ium is liquified. The effect of
degenerate Fermi-Dirac statist ics of atoms on properties of sol ids is negligible,

so the only substance in which degenerate stat ist ics of atoms can be studied is

liquid He3. We can estimate the temperature at which effects due to degenerate
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statist ics might begin to show up experimental ly in He3, by us ing the fact that
the volume of one mole of l iquid H e

EF/kgr
3 i s  a b o u t  2.S x  10m5m3. T h e n ,  w h e n

e E 1, the temperature should be given by

1 g---- N O
2  x  2 . 5  x  10--‘m3

-3/2
(11.32)

Taking for eEF”” the value 3  x 10e6  calculated above at 273” and a molar
volume of 0.0224m3,  we have

3x 10-b=-  No
2 x .0224  m3

(1 1.33)

Therefore, dividing the f i rst  of these equations by the second and solving for T,
we get

T ~ 273  x / .0224  x 3 x

\ 2 . 5  x  1o-5
(11.34)

This can be only an order of magnitude estimate, since a liquid will not act as a

degenerate ideal gas because of the important effects of interparticle inter-
actions. Also, expression (1 1.28),  which is  obtained assuming e~EF’kgr  >> 1,

actual ly  wi l l  not be val id at  low temperatures,  where e-EF/kIIT  .
I S  comparable to

unity.

IO FREE ELECTRONS IN METALS-DEGENERATE CASE

The most important case where l%mi-Dirac  effects are large is that of electrons
in metals. Here it  is  often a good approximation to treat the electrons as free

noninteracting part icles.

p/e  Assuming that nondegenerate statist ics apply for electrons in a metal, at room
temperature T = 273K,  take N/V Z”I 102s  mm3,  m = 9 x 10e3’ kg, and calculate- , , -
e CF’XB’  using Equation (11.28). Check the consistency of the result with the

prox imat ion,  eEF/kn  r
<< 1.

ion For this case,

e
EF,kgT  _ lo2*-

-4

6.28 x 9 x 1 O-3’ x 1.38 :<  1O-23 x 273

2 6 . 6 3  x  10-34--

= 4.6 x lo2

This is  much greater than unity,  so the assumption that the stat ist ics are non-
degenerate must be wrong.

A much better approximation than that used in the above example would be

to assume that:
fj =r  1 I E<E,

n ==  0, E > E, (11.35)
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as may be seen from FiglJre 11.2. In this case, EF may be evaluated most easi ly
by us ing the density of states given in Equation (1 1.24).  Then, us ing the ap-
proximations given in Equat ion (11.35),  the number of part icles would be given

by

s
x

The integral 6 dx  =  */3x3’*,  leads to the result:
0

and the Fermi energy is

( I  1.36)

(1 1.37)

(1 1.38)

Again using the parameters N/V = lo*‘,  m = 9 x 1W3’, EF in electron volts is

E =  ( 6 . 6 3  x  10-34)2 1
F X - - - -

2 x 9 x 10-3’ 1 . 6  x  lo-l9  i/eV

=  2 . 7  eV (11.39)

At room temperature, J = 273 K, k,J = 0.024 eV, so here EF >> ksJ; statist ics
are degenerate, and the approximation in Equation (11  1.35) should be a good
one.

11 .l 1 HEAT CAPACITY OF <AN ELECTRON GAS

Because, in the degenerate case, the Fermi energy EF is  much greater than ksJ,
and essentially all the states are filled up to the Fermi energy, it is to be expected
that the average electron kinetic energy will be much larger than ksJ. Since the
number of states in the energy interval dE is proportional to V% dE, and Equa-
tions (11.35) hold approximately, the expectation value of the kinetic energy per
particle is

with ri = 1 up to Er. These integrals may be evaluated as follows:

(11.40)

EF 2 EF
E3/2dE  =  - Es/*

5
F ;

s
E’12& = 3 E;/’ (11.41)

0
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Then

(E) = - =2E:/=/5
3 Er

2E;/=/3 5
(11.42)

This is  on the order of several ellectron  volts ,  much greater than ksT at room

temperature. On the other hand, classical statistical mechanics would have given
an average kinetic energy of 3kBT/2, by the theorem of equipart it ion of energy.

To calculate the heat capacity Iof  the electron gas, the actual dependence of
i i (E) on temperature must be taken careful ly into account, so that the average
energy per part icle can be calculated more accurately. When this is  done the
average energy per particle is foulId to be:

(E) = ; EF 0[  +  $ (zl[+  Orderof(k,T/E,,)4  +  aa.1 (1 1.43)

where EFo is the Fermi Energy calculated in Equation (1 1.38),  the Fermi energy at

zero temperature.
The total energy in a mole of electrons is then No (E), where No is Avogadro’s

number. The heat capacity per mole, at constant volume, is just the derivative of
N,(E) with respect to temperature and is

C”  = (1 1.44)

where we have used the expression for the gas constant, R = N,,k,. On the other

hand, the classical heat capacity is Cv = 3R/2.
Thus, the heat capacity of an electron gas is reduced by the effect of statistics,

by a factor of the order of magnitude k,T/E,,, - 0.01 at room temperature. This

can be understood qual i tat ively by not ing that for  heat to be absorbed by the
system, the electrons must make transit ions from lower occupied states, to higher
empty states. S ince the thermal eriergy avai lable for one electron is  about k,J,
only electrons with energies within about ksJ of the Fermi energy can change
their states when heat is added to lihe system. The fraction of the electrons in this

region of energy is of order of magnitude ksT/EFo.  Thus ,  one would expect  a
reduction of the heat capacity by about this factor. At ordinary temperatures, the
electronic heat capacity is negligible compared to other contributions to the heat

capacity in metals ,  due mainly to latt ice v ibrat ions.  However,  at very low tem-
peratures, the electronic heat capacity, although very smal l ,  i s  larger than the
remaining contr ibutions which approach zero OS  some higher power of the
temperature than T. Thus, the electronic heat capacity at low temperatures is the

main contribution to heat capacity in metals.

12 WORK FUNCTION

In studying the photoelectr ic effect,  i t  was found that the incident photons had
to be of energies greater than a certain crit ical energy in order to cause elec-
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trons to be ejected from the metal surface. The minimurn  energy needed to get
an electron out of the surface was cal led the work function, Cp.  In terms of the
work function, the minimum photon energy required to eject an electron is

15,;”  = hu,;, = Cp

In Figure 11.4, the potential energy of a single electron in or near the surface
of a metal s lab is  sketched. The curved port ions outs ide the surfaces approach

v = oI-_ Work function
%

- - - - - - - -  _-_--_~----___-___-

7
t

Fermi
energy

5

I

Surface

--__-----_-

,_._ ----__--.---.
- S u r f a c e

V  = - V, , the
overage potential
energy inside
the metal .

Figure 1 1.4. Potential energy of a single electron near the surface of a metal.

zero as x approaches inf inity according to the equation -e2/16xtOx,  w h e r e  x
is the distance from the s,urface.  This potential energy results from attraction of
the electron by posit ive charge induced on the surface near the electron. AS  a

result ,  electrons wi l l  be bound to the metal,  with an average potential  energy
-VI ins ide the metal,  where V, is of the order of from 5 to 15 eV for different
metals.  The electrons then f i l l  the energy levels above --V,  up to -VI + Er,

which is usual ly of the order of several eV higher in energy than -V, . The work
function is therefore the energy which must be added to the most energetic of
the electrons in the metal in order to remove it  f rom the metal,  and hence the
work function, Fermi energy and minimum potential energy -VI are related by:

a  = v, - E,

The work function is typically several electron volts.

(1 1 .46)

I 1.13 PHOTON DISTRIBUTION

Calculat ion of the distr ibut ion with energy of the average number n(E) of pho-
tons of energy E in a cavity is  of considerable histor ical interest,  s ince it  was
Planck’s study of this problem that launched the quantum theory. Photons can be

considered as particles of light, described by wavefunctions having the space and
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time dependence given in Equation (1 1.15). Inside a cubical cavity of side I, the
single-part icle states are therefore descr ibed by giving the momentum quantum

n u m b e r s  nr,  nr,  n,, just  as in Equat ion (11.16).  Photons have spin quantum

number s = 1, and are therefore bosons. Furthermore, they have zero rest
mass,  and hence only two spin ,jtates-or  two polar izat ion states-for each
momentum state. The density of states is given in Equation (11.22). Another com-
plication is that, in contrast to a system of massive bosons such as a gas of He”,
photons can be emitted and absorbed by the walls of the cavity; thus the number
of photons inside the cavity is not fixed, but may fluctuate as energy is exchanged
with the cavity walls. Hence, we clo not speak of one of the particles making a
transit ion from state 1 to state 2, but rather of a loss of part icles from state 1
due to interaction with the wal ls  and a gain of a poss ibly different number of

particles in state 2 from the same cause.
These propert ies of l ight waves require that the distr ibution function for pho-

tons be derived by a special method, based on the observation that if the radia-

t ion in the cavity i s  in thermal equi l ibr ium with the wal ls ,  then the probabi l i ty
that the radiat ion has total  energy E must be given by the Boltzmann factor,
eepr’.  After der iv ing the photon distr ibut ion n(E),  we may examine and gener-
al ize those special  features which are due to the fact that photons obey Bose-
Einstein statistics for application to a gas of bosons of nonzero  rest mass.

For simplicity of notation we shall let the single index j stand for the combina-
tion of integers (n,, nr, n,) describing a s ingle part icle state. I f  n,  is  the number
of photons in one of these states, the total energy of these n, photons is n,hv,,

where vI  is the frequency of the state, given by

“, = c = cp,  =
X h

5 (nf + n;;  + “Z, )“2

f rom Equations (1 1.16).  The total energy in the cavity wi l l  be a sum over al l
states j of the energy in each state, ni h u,,  so the total energy is

k = &,hv; (1 1.48)

The Boltzmann factor is

exp[--PTn,hu,]  =  exp[-(n,“,  +  n2b12  +  .  ..)&I (11.49)

Different overal l  states of the system wil l  then differ in the set of occupation
n u m b e r s  n , ,  n2,  ns,.  ., that is ,  they wi l l  differ in the numbers of photons in

the various single-particle states. To calculate the average number of photons in
the particular state i, we therefore have to calculate the following sum:

cnij=  Co4=OC~2=OCne=0...n,“xp[-(n,v,  +  n2uz,  -f  ...“;u,  +  .  ..)h/&.T]

**-n,u, + .-.)h/k,,T]

(1 1 SO)
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where the sums run over al l  the possible values of each of the integers;  i .e.,
n, =  0,1,2,3  I...,  n, = 0, 1,2,3,. .  corresponding to the fact that in any
state j, any number of photons may exist.

The above sum may immediately be s impl i f ied because the summations over
al l  of the n,‘s,  except j = i ,  i s  exactly the some in numerator and denominator.

The constant factor due to these other summations then cancels out. We thus have

~~=,  ni exp (--niu,h/kaT)

“’  = C~=oexp(ZAA~
(11.51)

The sum over n, may be faound  by performing the following differentiation:

-dldx  cc.;  emndx)  =_ C,,,  nie-“rx
C”,  e--nix -c”,  e-n;l (1 1.52)

The above result  i s  ident ical  to (n,)  i f  x  = uih/kBT.  The remaining sum in the
argument of the logarithm in Equation (11.52) is an infinite geometric series, of
the form:

1 +- emX + e-2x + . . .

In general,  i f  a < 1, C;  a” = (1 - a)-‘ .  Thus,  i f  x  i s  posit ive,

Combining these results, we obtain the fol lowing formula for (n,) :

(n,) =  -$  I n  ( 1  - e-‘)-’
x=  “,h,kBT

= l-&x(+e-x:l
X=~“,h,kgT

1=
e hu;PgT _ 1

(11.53)

(1 1.54)

o r
Z(E)  =  (ew  -.  I)-’ 1.1  1 .55)

where f is a  photon energy. This result str ikingly resembles the Fermi-Dirac

distr ibut ion, Equation (11.6),  except that -1 appears in the denominator in
place of + 1, and there is no constant s imilar to the Fermi energy. This latter
o m i s s i o n  i s  e n t i r e l y  rea!sonable,  a s  t h e  F e r m i  e n e r g y  w a s  d e t e r m i n e d  b y  a
normalization condit ion, c, (n;) = N, the total number of part icles. S ince the
total number of photons is not conserved, no such normalization condition can be

written down for photon,;.

11.14 PLANCK RADIATION IFORMULA

To f ind the infinitesimal number of photons dn in the cavity in the f requency

range du,  we may use the density of states, Equation (1 1.22). If we use spherical
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coordinates in momentum space, dp,  dp,dp,  + 4*p2  dp. For photons, the
momentum p and frequency v are related by p =  hu/c.  Hence, the number of

states in the frequency range du,  including polarizations, is

8irVu2du= - - -
2

The number of photons in the interval dv is therefore

87r\l u2du_-
c3 (ehvlk8’  -  1)

(11.57)

The energy per photon is h u.
If we then multiply hu by the number of photons in the interval du, we obtain

the energy dE,  contributed by photons of frequencies in the range du,  to the total
average energy i? in the cavity. The energy per unit Frequency, per unit volume,

is then

1 dE 8nhu3- -  =
V d u c”(e

hu,kgT
-  1)

(11.58)

This is Planck’s  radiation formula for the energy density per unit frequency

interval ,  ins ide a cavity containing only radiat ion at temperature T.  When

hu/k,T  << 1 ,  e h”‘k8r  = 1 + hu/k,,J  + -a -, and the Planck formula becomes

approximately:

1 dE 8ru2k8  J- _-  =
v tlu C3

which is  the Rayleigh-Jeans radiat ion formula. The Rayleigh-Jeans formula was
der ived or iginal ly by us ing class ical  ideas.  I t  i s  evident that such a der ivat ion is
possible because h  does not appear in i t .  The Rayleigh-Jeans formula agreed
wel l  with experiment at low frequencies but not at high frequencies.  The Planck
formula was one of the early tr iumphs of the idea of quantization of photon

energy. Using the same h as found from the photoelectric effect, Planck was able
to completely explain the radiation experiments. In Figure 1 1.5 are plotted both
the Planck radiat ion formula and the Rayleigh-Jeans law; the two are seen to
agree only at very low frequencies

If the walls of the container were perfectly black, that is, if they absorbed all
of the radiation incident upon them, then for thermal equi l ibr ium to be main-
tained, the frequency distr ibut ion of the radiat ion emiited by the wal ls  would
have to have the same form as that of the incident radiat ion. In other words,
s ince there is equi l ibr ium, if  energy is absorbed in a part icular frequency range,
on the average an equal amount of energy in this  f requency range must be
emitted by the walls.  For ordinary intensit ies of radiation, i t  is  to be expected

that the radiation from the walls should not depend significantly on whether the
walls are in equilibrium with the incident radiation. Hence we may conclude that,

in general,  the radiation from a black body has a frequency distr ibution the
same as that given in Equation (1 1.58) f or equil ibr ium radiation. This is therefore
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I dE- - -
V dv I I I 1--r-

I
;Ibyl.lgh-.hn.

Y

Figure 11.5. Graphs of the classical Royleigh-Jeans formula for energy density in a

cavity and the Planck radiation formula obtained from quantum theory. At high fre-
quencies, the classical energ’f density per unit frequency interval  becomes infinite, whereas

Planck’s formula agrees with experiment.

cal led black  body rad iat ion .  Other bodies when heated emit radiat ion whose
frequency distr ibution closely resembles the radiation from an ideal black body.
For instance, in the vis ible range the l ight from the sun is very much l ike that of

a black body near 6OOOK,  which would actually be “white hot.”
The usual procedure for performing experiments with black body radiation is

to form a cavity in any substance so there is  equi l ibr ium radiat ion ins ide. The
radiat ion is  sampled through a very smal l  hole in the cavity wal l ,  so that the

radiation is not significantly disturbed by the meosurements.
To find the total energy due to radiation in a cavity as a function of tempera-

ture, we may s imply integrate Equation (11.52) over al l  frequencies from zero to

infinity:

To s impl i fy the algebra, let-us designate by the var iable x the quantity hu/k,T

appearing in the exponential. Then

“=ksTx &=!??d
h ’ h ’

We therefore obtain:

The required integral is found in definite integral tables, and is

s

z
x3dx ir4-. = -

o  ex- 1 15

The energy density is therefore

(11.63)

E 8r5(kB  J)4
u z - =  _ _ _ _

V 15h3c3
(11.64)
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The s ignif icant feature of this expression is i ts dependence on the fourth power
of the temperature. This fourth power dependence could be calculated from
thermodynamics;  however,  the proport ional i ty constant,  because i t  involves

Planck’s constant, could not be calculated classically.
The result ,  Equation (1 1.64),  also impl ies that the power radiated from a hot

black body is  proport ional to J4. The radiation from non-black bodies frequently
has approximately the same temperature dependence.

1.15 SPONTANEOUS EMISSION

Let us now consider the processes of emiss ion and absorption of radiation in the
cavity f rom the point of v iew of detai led balance. Suppose, for  example, that
there is  one object ins ide the cavity which has two energy levels E,,  E2 > E,,
separated in energy by the amount h v,, where u;  i s  the frequency of a part icular
one of the single photon states in the cavity. We can assume that the object itself
obeys Maxwel l -Boltzmann stat ist ics.  Thus,  an equation such as Equation (1 1.2)
holds:

P I  4-BE, -- p?  +,e-BE; (1 1.65)

This  i s  a way of stat ing detai led balancing. In Equation (1 1.65),  the Boltzmann
factors can be interpreted as the relat ive probabi l i t ies that the object wi l l  be

found in the upper state E, or lower state El at thermal equilibrium.
Suppose that associated with CI  transition 1 + 2 of the object is the absorption

of a photon of f requency v,,  in the s ingle photon state i. Similarly, associated
with a t rans i t ion 2 4 1 of the object is the emission of a photon of the same
frequency.

Now let us analyze the transit ion probabi l i ty for absorpt ion of a photon per
unit t ime, p,+, in more detai l .  I f a beam of l ight is  incident on an absorbing
obiect,  such as the surface of a metal, it is well-known, even in classical electro-

magnetic theory, that a certain .fraction  of the incident energy is absorbed; this
fraction is independent of the intensity of the incident beam. In other words, if n,
photons of the mode i are incident per second on the absorbing object, the rate

of absorption by the object should be proport ional to n,.  Therefore, p,+  is
proportional to the number of incident photons n;. We write this as:

PI-Z  = Cn, (11.66)

where C is  some proport ional ity constant, not dependent on the temperature of
the walls because of the way the transition probability P,+~  was defined.

Next consider emission processes. An isolated object tends to spontaneously
emit radiat ion and make transit ions downward in energy, unt i l  i t  ends up in the

ground state. This process can occur even when there is  no radiat ion init ial ly
present. I f  the emiss ion were due entirely to spontaneous emiss ion, then pZ -,

would have to be independent of  temperature,  and we would wr i te p2  ., = A,
a constant independent of T .  Eiristein was the f i rst  to notice that thermal equi-

l ibr ium could not be maintained if  the emiss ion were due only to spontaneous
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emission, for then detailed balance would require that

or

Cf i  e-oEx  = Ae.-&
Y (11.67)

A
n, = --e -,+‘hv

C
(11.68)

which is  inconsistent with the photon distr ibut ion function derived in Equa-

tion (1 1.42). It would be consistent only if the photon distribution were a classical

Boltzmann distr ibution.

11.16 RELATIONSHIP BETWEEN SPONTANEOUS AND
STIMULATED EMISSION

Einstein recognized  that another process, called st imulated emiss ion, contr ibutes

to the emission probabil ity. In this process, i f  the system ils  ini t ial ly in the excited

State E2, and some number n, of photons in a mode frequency v, are init ial ly

present, then a kind of resonant interaction occurs between the object and the

radiation, which increases the probability of emitting another photon in the same

mode. In fact, the probability of stimulated emission is proportional to the

number of photons n; ini t ial ly present. I t  is  this proport ionali ty which leads to the

terminology “stimulated emission,” because the incident radiation “stimulates”

further emission of photons of the same type, the probabil i ty of emission being

directly proportional to the intensity of the incident radiatiion.

Thus, the total emission probability must be written:

pz-+,  =  A  +  hi; (11.69)

where B is another proportionality constant, independent of temperature. At

thermal equilibrium we must have, by detailed balance,

(~e-@~,  = (A  + BEj)emaE.- I (11.70)

Then, inserting the expressic>n,  Equation (1 1.55), for the photon distribution,

Ce
Bhu, - 6 =  &Oh”’ - 1) (11.71)

In order for this equation to be satisfied at all temperatures, we must have

A=B=C (11.72)

Thus, from Equation (1 1.69), the total emission probabil i ty is proportional to

A(1 + n;),  and hence to 1 + n,,  which is the number of photons present after

emission, or the number of photons present in the f inal state of the electromag-

netic field. In the factor 1 + n;, the 1 corresponds to the contr ibution from

spontaneous emission processes, and the n; corresponds to the contr ibution from

stimulated emission processes.

St imulated emission is the basis of operation of a celebrated invention--the

laser. The name of the device is taken from the init ial letters of the words “l ight

amplif ication by stimulated emission of radiation.”
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1.17

In a laser,  a large number of atoms are placed in an excited state by some
special means, such as by collisic~ns  with other atoms or by shining light of proper

frequencies upon them. The atoms are then not in thermal equi l ibr ium, because
the number of atoms in the excited state is larger than the number in the ground
state- in disagreement with the Boltzmann probabi l i ty factor,  which holds at

equi l ibr ium. I f  one of the atoms should spontaneously radiate a photon of
mode n;,  then the subsequent probabi l i ty of radiat ion of another photon in the

same mode is increased because of the factor 1 + ni in the emiss ion probabil i ty
--that is,  by the effect of st imulated emiss ion. As other atoms then radiate into
the same mode, the st imulated emiss ion probabil i ty factor for that mode bui lds

up into an enormous factor. A large number of the atoms can thus be made to
radiate into the same mode, so that a pulse of radiat ion containing as many
as 1019 photons, all going in nearly the same direction and with nearly the same
frequency, can result.  The bui ldup of energy in a s ingle mode is enhanced by
enclosing the active laser material  between part ial ly coated mirrors,  so that the
l ight is ref lected back and forth many t imes through the material before gett ing
out, thus contr ibuting further to the st imulated emission. This coherent l ight is
unl ike the l ight emitted by most natural sources, such as hot bodies. Due to its
high directional ity and the sharpness of the frequency, laser l ight has many

important uses.

ORIGIN OF THE FACTOR 1 .t n; IN BOSON TRANSITIONS

In the preceding section it was seen that the total emission probability for photons
in the mode i is  proport ional to the number of photons in the f inal state, or

proportional to 1 + n; where rt; is  the number of photons init ial ly in mode i.
This factor, 1 + ni,  occurs in general for transit ions of bosons to a state i ,  with
an init ial  number n; of bosons in the state i .  By way of contrast,  in Equa-
tion (1 l.l),  which applies for fermions, there is a factor 1 - A,  in the transit ion
rate to state i ,  where fii i s  the average occupation number of part icles init ial ly

in state i .  This difference of s ign is characterist ic of the difference between
particles of half-odd-integral spin, which obey Fermi-Dirac statistics, and those of

integral spin, which obey Bose-Einstein statistics.
A discussion of the factor 1 +  n, for bosons fol lows. Anyone not interested in

this discussion should skip to Section 1 1 .lB.
The wavefunction for a system of two or more fermions must be antisymmetric

under exchange of any two part icles,  which requires that when s ingle-part icle
states are used to descr ibe the system, the wavefunction must be an antisym-

metrized combination of single.,particle  states;  this  also requires that no two
single-part ic le states in the wavefunct ion can have the same quantum number.

This gives rise to the factor 1 - ii, in the transition rate.

On the other hand, tne wavefunction of a system of two or more bosons must
be symmetric, i.e., must not change even in sign, under an exchange of any two
part icles. For example, the symmetr ic wavefunction for two part icles in different
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states #,  and 1,5?  would be:

+(r ,rs,; r2,s2)  = $[Gl(r11.1)+2(r2.s2 ) + ~1(r2rS2)~2(r1rs,)1  ( 1 1 . 7 3 )

where the tactor  ~‘2  in the denominator, which is the square root of the number
of terms in the symmetr ized wavefunction, is for correct normalization. To see

that this normalization is correct i f  1c/, and 1c/ 2 are each normalized, we consider

the integral:

2./G*WV,dVz = [s 1$l(r,,  s,) 1 ‘dV,)(./”  1&.(rZ,  s2) 1‘dv,)

+(S l$,(r2,s2 11 ‘dV2)(  1 1 ic/2(r11  s, 111 ‘dV,)

+(he rl r 51  bhl(rl  I 51  )dV,)(./J/;(r,,  s2)1c/2(r2,  s2)dV,)

+(./“+rCrl  I 51 hb(r1 I 51 )dV,)(S#;(r,,  s2)1C/,(r2,  sZ)dV2]

(11.74)

As shown in Appendix 2, an integral such as .[$2*(r,,  81 M,(r,,  s, )dV, is zero.
Also an integral such asto uA,ty.  Thus  2s~

*
~dV  .[J  $l(‘;,  51)  1 ‘dv,  = 1 it  $1 and $2  are  normalid

12 t and l/v’%  the correct normalization. If
there are p terms in the symmetr ized wavefunction, the normalizat ion is  l,ldp
by the same reasoning. If two particles were in the some state, say $, , the sym-
metric wavefunction would be

$(rl I sl; rzl  s2) = #,(rl  I 5, Ml(r2,  s2) (1 1.75)

We may give a brief indication of the origin of the factor 1 + n in the transi-

t ion rate, by considering an init ial  state of the system with n, part icles in the
final s ingle-part icle state 2, and one part icle rn the init ial  s ingle-part icle state 1.
The symmetrized wavefunction of the system would be

$hial  = L-
-\/1+G

[11/~(r~~~~)~2(r2~S2)~~~~2(r,2+1,s,2+l)

+  1C2(rlrS1)~1(r2rS2)...~2(r,2+,,s,2.,,)  +  --*

+ $2 (rl  I 5,  ) - - * A (r,  2+1  I s,, 2-t  I )I (11.76)

Here there are 1 + n, terms in the symmetrized combination, and therefore the

normal izat ion constant is  ‘ I/-\/ in, .  The wavefunction,  of the f inal state, with
1 + n2  particles in state 2, 81s

hnaf = rC/2(r~,~1)~2(r2~~~)~~~1C/~(r,~+,,s.~+~) (1 I .77)

In calculat ing a transit ion probabi l i ty f rom quantum mechanics,  the square of
an integral  involv ing the product of the above two wavefunct ions appears . In

the product,  #ini+i,,  leads tc’ a factor of -\/n,+  1 in the denominator. Also, be-
cause there are r-t2 + 1 terrns in #,ni,iol  and one in $final, there are n, + 1 terms in

the product; each contr ibutes equal ly to the transit ion probabi l i ty,  so there is  a
n e t  f a c t o r  [(l +  nz)/.\/l-r  2n2]  in the transit ion probabi l i ty.  I f  the init ial  wave-
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function corresponds to n,  particles in state 1, n2  in state 2, and the final function
corresponds to n,  - 1 in state 1, 1 + n, in state 2, then s imi lar reasoning shows
that there is a factor n,  (1 + n2) in the transition probability.

18 BOSE-EINSTEIN DISTRIBUTION FUNCTION

We may proceed under the assumption  -that in al l  boson systems the transit ion
rate for transit ions from a single-particle state 1 to a s ingle-particle state 2 is
proport ional to 1 +  rtz. Letri,  ,~i, be the t ime-averaged values of the number of

part icles found in the s ingle-part icle states 1 and 2, respectively, of a system of
bosons at thermal equi l ibr ium. Then the pr inciple of detai led balance can be
written as:

n,(l  +  ii,)p,+  =  ilz(l  +  Ti,)pz-, (11.78)

Here, as in the Fermi-Dirac case, we assume that the ratio of transit ion prob-
abi l i t ies per unit t ime, p, .2/pZ-l, is the same as in the classical case. Then,

using Equation (1 1.2),  we obtain:

Fl E,IkBr 772-e T-e EzIk,q’

1 + ii, 1 + 772
(11.79)

Since each side of the above equation depends on a different energy, each side
must be equal to a constant independent of energy. We shall denote this constant
by the symbol Z:

ii(E) E/kg1--e  = Z
1  +  A ( E )

(1 1.80)

Then, solving for ii, we find the Bose-Einstein distribution:

_’E(E)  = 1
I

(11.81)

Note that for the special case of iohotons  which are not conserved in number,
Z = 1. The main difference between the Fermi-Dirac and Bose-Einstein distr i -
butions lies in the presence of the sign preceding the 1 in the denominators; this
s ign arises as a direct consequence of the symmetry, or antisymmetry, of the

wavefunction under particle exchange.
The constant Z in the denominator of the Bose-Einstein distr ibution, for a sys-

tem of particles of non-zero rest mass, serves substant ial ly as a normal iz ing

constant, just as did the factor e EF/kgr. In the Fermi-Dirac case. The condit ion used

to determine Z would be

z; fi,(E,)  = N (11.82)

for a system of N part icles. The summation could be written as an integration by

using the appropriate density of states, such as in Equation (11.24),  for a system
of noninteracting bosons with kinetic energy p2/2m.
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The most common isotope of helium, He4, with two protons and two neutrons
in the nucleus, has zero spin, and thus these nuclei obey Bose-Einstein statist ics.

A calculation at room temperature, assuming that the statist ics are nondegener-
ate for He4  gas ( i .e.  assuming that Z << l),  closely pa~rallels  that done for He3
previously.  I t  shows that Z i s  indeed much less than 1.  The 1 in the denominator

of the distr ibut ion, Equation (1 1.81),  gives negl igible effect in this case, and the
gas fol lows essential ly Maxwell-Boltzmann statist ics. The order of magnitude of
the temperature at which the 1 in the denominator would be important-  the

case of degenerate statist ics- is  a few degrees Kelvin; the calculation of this
would again be similar to that for He3. However,  in the Bose-Einstein case at low

temperature, many part icles tend to col lect in the state of zero energy rather
than f i l l ing states up to a Fermi energy. In Figure 11.6, the Bose-Einstein distr i-
but ion is  plotted for Z = 1 - 0.01 = 0.99.

101

.lkgT
E

Figure 1 1.6. Bose-Einstein distribution function for 2 = 1 ~  0.01 = 0.99.

Exper imental ly,  i t  i s  found that at 2.2K  the specif ic heat of l iquid He4  changes
abrupt ly,  and that below this  temperature the l iquid behaves as i f  i t  were com-
posed of two interpenetrating f luids, one of zero viscosity. The fraction of the
zero viscosity part increases as temperature decreases. This  superf luid exhibits a

number of interest ing propert ies connected with the lack of viscosity. The be-
havior of l iquid hel ium c:an be explained on the basis of Bose-Einstein stat ist ics,
with the zero viscosity component roughly connected with accumulation of helium
atoms in the ground stat’e.

NUMBER OF STATES

By consideration of free part icle wavefunctions and imposit ion of periodic

boundary condit ions at the boundaries of a volume V, i t  was found that in the
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l imit as V becomes very large, the number of s ingle-part icle states in the

momentum interval  dp,,  dp,, d p ,  i s  ( 2 s  +  l)Vdp,  d p ,  dp,/h3,  w h e r e  s i s  t h e
particle spin.

When the quantit ies to be integrated depend only on the magnitude of p, i t

is  often useful to write the volume element in momentum space as 4*pZdp,  so
the number of states in dp is  4?r(2s + 1)Vp2dp/h3.  For free particles, the energy
is E = p2/2m,  and in  dE  the number of states is 27rV(2s + l)m fidE/h3.

FERMI-DIRAC DISTRIBUTION

For identical particles of half-integral spin, for which the exclusion principle holds,
the average number of part icle!;  per s ingle part icle state of energy E at
temperature T is

yy= 1

e (E-EF)/~~T  + 1

EF  is a constant called the Fermi energy. If the smallest value of E is taken to be 0,

then if  Ef >> kT, the distr ibution is much different from the classical Maxwell-
Boltzmann stat ist ics,  and is  said tm3  be degenerate. I f  -(EF)  >> kT,  the distr i-
but ion is  nondegenerate, and is  substant ial ly the same as Maxwel l -Boltzmann
statistics.

For free electrons with degenerate statistics,

where N is the number of electrons of mass in volume V. Also for this case, the
average energy per part icle is  approximately “/,  E,.  A more careful calculation
results in a correction to the average energy proport ional to T2.  Th is  leads to a

specific heat on the order of k, T/EF  times the classical specific heat.

BLACK BODY RADIATION

For photons, the Z in the Bose-Einstein distribution is 1. Thus, the average number

of photons per state in the equi l ibr ium radiation is  l/(eh”“”  - l),  where hv
is  the photon state energy. In the relat ion giving the number of states,  2s + 1
should be taken as 2 for a zero rest mass particle. Also, p = hv/c.  Thus,  the
number of states in du is 8XVu2du/c3.  Mult ipl ication of this number of states by

the average number of photons per state and the energy per photon, hu, gives
the energy in du:

dE =
8rVhu3du

c”(e
hv/kgT

- 1)

The energy radiated by a perfect ly black wal l ,  and often approximately by
other objects, is  proport ional to this function. Integration gives a total energy

radiated proport ional to T4.
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STIMULATED AND SPONTANEOUS EMISSION

The probabil i ty of emiss ion of a photon of a part icular mode or s ingle-part icle
photon state, is  proport ional to 1 + n, w h e r e  n  i s  t h e  n u m b e r  o f  p h o t o n s

init ial ly present. The term 1 in 1 + n corresponds to the contr ibution to emission
p r o b a b i l i t y  f r o m  s p o n t a n e o u s  e m i s s i o n ;  t h e  t e r m  n  a r i s e s  f r o m  s t i m u l a t e d
emission. In any system of bosons, the probabil i ty for ,transition  to a f inal state
occupied init ial ly by n particles  is proportional to 1 + n.

BOSE-EINSTEIN DISTRIBUTION

For identical particles of integral spin, the average number of part icles per
single particle state of energy E at temperature T is

ii= 1

(l/Z)eE””  - 1

I f  Z  <<  1 when the minimum of E is 0, the statist ics are nondegenerate, closely
l ike Maxwel l-Boltzmann stat ist ics.  For Z N 1, the degenerate statist ics are quite
different from Maxwell-Boltzmann statist ics. The ground state is much more
densely populated for part icles obeying Bose-Einstein statist ics.

1. Calculate the number ‘of  states of electromagnetic radiation using periodic boundary
conditions in o cubical region 0.5 meters on a side, between 5000 and 6000 Ang-
stroms in wavelength.
Answer: 3 . 5 3  x  1o18.

2. Suppose a gas of particles of energies E =: p2/2m  wo!j confined to move on a flat
plane of area A, rather than in three dimensional space. Find the density of states
per unit energy interval dE  for zero spin.
Answer: 2mxA/h2.

3. The density of electrons in some regions of interplanetary space is about 10/cm3.
Would the statistics be degenerate or nondegenerate? Estimate the Fermi energy in
eV  for these electrons, assuming they are in thermal equilibrium with the sun.
(Temp. of sun =  600ClK)
Answer: EF  =  = - - 2 4  eV.

4. The overage energy per particle of an electron gas at low temperatures is E =
“/,  EF +  a2kiT2/4EF.  Calculate the specific heat per particle of the conduction elec-
trons in copper (8.5 x 10” electrons/cm3)  at a temperoture of T = 2.OK.  Compare
with the classical result, “/,  kB.
Answer: Cv  = 1.66 x 10ez7 i/K.  Classical result is 12.07 x 1O-23  i/K.

5. In oluminum,  there are three free electrons per atom. The density of aluminum is
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6.

7.

8.

9 .

10.

11.

12.

13.

2.7g/cm3,  and the atomic weiglht  of Al is 26.97. Find the Fermi energy at zero
temperature.
A n s w e r :  1 1 . 7  eV.
In a crystal of the compound iridium  ontimonide, the number of “free” electrons
can  be varied by introduction of impurities. Also, because of the mteraction  of elec-
trons with the crystal atoms, ttle electrons behave as free particles with ‘/,,  the
true electron mass. Show that at concentrations of lOI  electrons/cm3  the statistics
are nondegenerate at room temperature. Show that at liquid nitrogen temperature,
about 80K,  and at CI  concentration of 10”  electrons/cm3  the statistics are degenerate.
Find the Fermi energy.
A n s w e r :  0 . 2 9  eV.
The density of states in energy rlear E = Er, for the part of a degenerate electron
gas with spin parallel to magnetic field, is 2aV(2m)3’2dEF/h3.  A similar relation
holds for the antiparallel spin part. In the magnetic field, in addition to the kinetic
energy, the electrons have potential energy +~,,,6, where p,+, is the electronic
magnetic moment eh/2m and 8 is the field strength. The plus and minus correspond
to the spin parallel and antiparallel  cases. If ~~8 e:  Er, show that the dipole

strength of the electron ga!, ot equil ibr ium is 4*V(2m)3’2p,$B  z/Eflh3  =

3N/.~i6/2f,.  This is on the order of kbT/E,  smaller than classical statistics would
give. (Use the fact that the Fermi energy is the same for the two spin parts, but that
the lowest energy of one spin part  is 2~~6  lower than the other, so there are more
electrons with the antiparallel spin orientation.)
Most metals melt at temperatures below 3000K. Explain why the Fermi energy of a
metal is almost independent of temperature.
Estimate the decrease in work fur,ction  of o metal at lOOOK,  in eV,  as compared to OK.
A n s w e r :  0 . 1  eV.
In a metal of Fermi energy 7.0 eV, at a very low temperature, what fraction of the
electrons have energies between 6.9 and 7.0 eV? In CI  low density nondegenerote
electron plasma at 25,00OK,  what  fraction of the electrons have energies between
6.9 and 7.0 eV?
Answer : 0.02 1; 0.0037.

By the classical equipartition thee>rem,  the average kinetic energy per particle of a
Maxwell-Boltzmann gas is 3/2ks  7’. The average thermal wavelength XT = h/p is de-
fined so that :/*ks T = % m(h/X,)2.  Compute XT for o gas of hydrogen atoms at
300K. Show that for a  gas of N electrons in CI  volume V, the statistics will be non-
degenerate if A:N/V <<  1, that is, if the thermal wavelength is small compared

to the distance between partiazles.  (Hint :  Assume e-EF/kgr
>>  1, show that

X;N/V  << 1.)
Answer : XT =  1 . 4 6  x  lo-‘cm.
If light of energy density du is hitting CI  wall at an angle of incidence B, show that
the energy hitting per second per unit area is (cdu) cos 0.  Show that if the energy

density for black body radiation is u, then the contribution to u arising from radi-
ation propagating in the solid angle dQ = 25~  sin I I d0 at angle 0 from the wall
normal is du =:  % u s in /3 d0.  From these results,  argue that the total intensity
emitted by a black wall is cu/4. This quantity, cu/4 = rT4.  Evaluate c.
Answer : cr =:  5 . 6 7  x 10~8watt/m2K4.
Verify that for black body radiation the wavelength for the energy maximum of
I / V  x  dE/du i s  a t  X, = hc/2.82k,T.  If the sun’s surface temperature is about
6000K,  what is X,?
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14.

15.

16.

17.

18.

19.

20.

21.

2 2 .

Answer: 8 5 0 0  A n g s t r o m s  ( t h e  v i s i b l e  r e g i o n  i s  a r o u n d  4 0 0 0  A n g s t r o m s  t o

7000  Angs t roms) .

S h o w  t h a t  t h e  e n e r g y  p’er un i t  wave length  per  un i t  vo lume in  b lack  body rad iat ion  i s

l/V(dE/dX)  = 8ahc/JL5(e
hr/AkB  T

- 1 ) .  V e r i f y  t h a t  t h e  w a v e l e n g t h  f o r  t h e  m a x i m u m .

o f  t h i s  f u n c t i o n  i s  a t  X,,,  = hc/4.97ksT.  T h i s  d e p e n d e n c e  o f  XM  o n  J  i s  c a l l e d  t h e

W i e n  d i s p l a c e m e n t  l a w .  I f  J =  6000K  fo r  the  sun ,  what  i s  A,,+?

Answer: 4 8 3 0  Angsiroms.

I f  the  energy  dens i t y  o f  b lack  body  rad ia t ion  i s  u, s h o w  t h a t  t h e  p r e s s u r e  o n  t h e  w a l l

at  equ i l ib r ium due to  the rad iat ion i s  ‘/z  u.

A  combinat ion  o f  the  f i r s t  and second laws  o f  the rmodynamics  fo r  a  rever s ib le  p rocess

i s  JdS =  d(uV)  + pdV,  w h e r e  S  i s  e n t r o p y ,  V  i s  v o l u m e ,  p  i s  p r e s s u r e ,  a n d

u i s  e n e r g y  d e n s i t y .  I f  t h e  p r e s s u r e  f o r  b l a c k  b o d y  r a d i a t i o n  i s  ‘/z  u a s  f o u n d  i n

P r o b l e m  1 5 ,  f i n d  (cYS/&)  a t  c o n s t a n t  V  a n d  (dS/dV)  a t  c o n s t a n t  u .  A s s u m i n g  t h a t

u i s  a  f u n c t i o n  o n l y  o f  7, f i n d  a/13V(dS/?Ju)  a n d  I?/&J(~S/CYV).  S e t t i n g  t h e s e  s e c o n d

d e r i v a t i v e s  e q u a l  t o  e a c h  o t h e r ,  s h o w  t h a t  4(dJ/J)  =: du/u, a n d  t h u s  t h a t  u =

const.  (J)4.

The re  ex i s t s  a  k ind  o f  exc i ta t ion  in  magnet ic  so l id s  ca l led  sp in  waves ,  wh ich  may  be

t reated as  par t ic le s  l i ke  photons  but  w i th  no  sp in .  The  e f fect i ve  par t ic le s  have  an

e n e r g y  E  =  vop2, w h e r e  vc,  i s  a  c o n s t a n t  a n d  p  i s  t h e  “ m o m e n t u m ”  a s s o c i a t e d

w i t h  o  w a v e .  S h o w  t h a t  t h e  c o n t r i b u t i o n  t o  t h e  s p e c i f i c  he’at o f  the  so l id ,  a r i s ing  f rom

s p i n  w a v e s ,  i s  p r o p o r t i o n a l  t o  J3”.

T h e r e  e x i s t s  i n  s o l i d s  a k i n d  o f  e x c i t a t i o n  o r  v i b r a t i o n  o f  a t o m s  c a l l e d  p h o n o n s

(par t ic le s  co r re spond ing  to  sound  waves ) ,  wh ich  may  be  t reated  as  pa r t ic le s  s im i la r

t o  p h o t o n s  b u t  w i t h  t h r e e  k i n d s  o f  polarization,  one long~~tudinal  a n d  t w o  t r a n s v e r s e .

At  low energ ies ,  the  energy  i s  p ropor t iona l  to  the  e f fect ive  phonon momentum,  as  fo r

l igh t .  Show that  a t  low temperatu res  the  spec i f ic  heat  due  to  phonons  i s  p ropor t iona l

t o  J3.

The energ ies  of  a one d imens ional  harmonic osc i l lator  of  f requency v are  ( n  + % )hv,
n = 0, 1, 2, 3,. .with  o n e  s t a t e  p e r  n .  I f  hu  =  10eR  eV  a n d  t h e r e  o r e  3  x  10’

p a r t i c l e  o s c i l l a t o r s ,  f o r  J = 300K f ind the approx imate nl and energy cor responding

to  the Fermi  energy  fo r  sp in  “/,  par t ic les ;  f ind the numbelr  o f  pa r t ic le s  approximaiely

i n  t h e  Jowest  e n e r g y  l e v e l  f o r  s p i n  1  p a r t i c l e s .  ( U s e C~=O l/(ae”&  - 1 )  E

l/(a  - 1) - l/6 In(a  - e -“26)  f o r  d << 1 .  A s s u m e  t h a t  a  =  1  +  1,  w h e r e

L i s  v e r y  s m a l l . )

Answer: n  =  7 5  x  108;EF  =  0.75eV;  1 . 8  x 10’.

An  impur i t y  a tom in  a  c ry s ta l  has  one  va lence e lect ron  wh ich  has  the  pos s ib i l i t y  o f

e i ther  be ing bound to  the atom in  e i ther  s tate  or  be ing in  the cont inuum wi th  the

other  c ry s ta l  e lect rons .  In  wr i t ing  the  deta i led  ba lance equat ion ,  one shou ld  inc lude

the fact  that  i f  there  i s  no  e lect ron  bound to  the  atom,  cont inuum e lect rons  o f  e i ther

sp in  o r ientat ion  can go to  the bound s tate .  However ,  in  the absence of  sp in -changing

in te ract ions ,  a  bound e lect ron  w i th  a  particular  sp in  s ta te  can go to  on ly  thot  some

s p i n  o r i e n t a t i o n  i n  t h e  c o n t i n u u m .  U s i n g  t h e s e  i d e a s ,  sh,ow  t h a t  i f  ii  = l/[e(“mEF’kr)

+ l] f o r  t h e  c o n t i n u u m  e l e c t r o n s  a n d  E b i s  t h e  e n e r g y  o f  a  b o u n d  e l e c t r o n ,  tllen

Ti = l/[% e
Fb-EF)lkT

+ l] for  the average number  of  bfound  e l e c t r o n s .

I n  a  ce r ta in  Bose -E in s te in  l iqu id  a t  a  ve ry  low temperature,  t h e  v a l u e  o f  Z  i s  v e r y  c l o s e

t o  1 :  Z  =  1  - lo-‘*.  I f  t h e  l i q u i d  h a s  10”  p a r t i c l e s  i n  a  v o l u m e  0.2m3,  w h a t

i s  the number of  partic  e s  i n  t h e  s t a t e  o f  e x a c t l y  z e r o  e n e r g y ?

Answer: 1/(1/Z  - 1 )  =  lo’*.

S h o w  t h a t  0  < Z 5 1  fo r  the  idea l  Bose-E ins te in  gas .
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Sol id state physics, as the name Implies, is  the study of physical propert ies of
sol ids, as dist inct from those of l iquids and gases. This f ield has been the subject
of intense research activity in the past two decades, which has resulted in many
important technological  advances.  Examples of  sol id state devices which have
recently seen widespread use are transistors,  corntouter  memory elements and
lasers.

In this chapter we shal l  discuss some of the most basic propert ies of sol ids. In
al l  our discussions, we shall  consider only crystal l ine sol ids, i .e., sol ids in which
the atoms or molecules are arrarlged  in some s imple repetit ive pattern. Whi le
many sol ids--such as glass-are not of this type, more progress has been made

in understanding crystal l ine sol ids because they are s impler to treat mathemat-
ical ly. Some of the consequences of having a crystal l ine structure wi l l  be i l lus-
trated in the discussions of crystal lattice vibrations (sound waves.11  and of electron
energy bands in solids.

2.1 CLASSIFICATION OF CRYSTAL!;

The primary property of crystals which simplif ies their discussion is their periodic
or repetit ive structure, or t ranslat ional symmetry. For example, in discussing lat-
t ice vibrat ions,  we shal l  set up an equation of motion for a general  atom in a
one dimensional crystal;  an equat’lon  of the same form then describes any other
atom. Another way of stating this property is to say that, except at the bounda-
ries, a translation of the crystal by a laftice  vector leaves the crystal unchanged.
A lattice vector is a vector from one atom site in the lattice to a similar site, such
as vector A in Figure 12.1. Thus we could consider translating the crystal by vec-
tors a, b or c in the Figure, and nothing would be changed except at the bounda-
ries. The general lattice vector by which one could translate would be an integer
times a plus an integer times b plus an integer times c.  Because of the periodicity,
i t  is  clear that the crystal can be considered to be composed of small  volumes
cal led unit  (cells, which al l  have the same propert&.  The three smallest inde-
pendent lattice vectors a, b and c, which can be used to build up the crystal by
translations,, are called the primitive lattice vectors. ‘The unit cell of a crystal can
be taken as the parallelepiped formed on a, b and c.

Crystals are classif ied into 14 possible types of Bravais  latt ices according to
other possible symmetries, in addit ion to translational ones. F igure 12.2 shows
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Figure 12.1. Diagram illujtrating  how a solid crystal may be built up of identical Iunit
cells stacked together.

the basic structures of the 14 types, together with their names and some proper-
ties. Each lattice point in these diagrams might represent one atom or a group of
atoms. In some crystals tllere  may be several atoms per unit  cel l  represented by
the latt ice point.  The latt ice point represents the basic periodic structure, clnd
there is one lattice point per unit cell. Some of the basic structures shown are not
unit  cel ls  as defined above. That is ,  the edges shown in F igure 12.2 are not the
smallest three independent lattice vectors. For instance, the unit cell of the body-
centered  cubic is actually a parallelepiped based on the two cube edges and a
vec:tor  from a corner of .the  cube to its center. The reason for showing f igures
other than unit  cel ls  is  tlat  they allow easier visualization of other types of

symmetries.

1 2 . 2  R E F L E C T I O N  A N D  R O T A T I O N  S Y M M E T R I E S

The classif ications into these fourteen crystal types are based on symmetries of
rotation and reflection. Let us choose an origin of coordinates at the center of each
structure in Figure 12.2. All rotat ion axes and ref lect ion planes we discuss wi l l  be

ass#umed  to pass through this or igin. By “rotation axis” here we mean a l ine
through the origin such that a rotation about the line through some angle would
leave the crystal unchanged so far as physical properties are concerned. For ex-
ample, in Figure 12.3 imagine identical atoms at each of the sites marked A, and
imagine a rotation axis normal to the paper at the geometr ical center 0. Rota-
t ions about 0 by any of the angles a/3, 2a/3,  3?r/3,  4x/3,  5~13,  67r/3,  which
are multiples of lr/3, would bring the set of atoms back to the sites marked A.
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Figure 12.3. A set of positions, marked A, having rotational symmetry. Rotation by any
multiple of the angle 7r/3  atlout  an axis through zero and normal to the paper takes the
set of positions into itself.

Since there are six possible angles of rotation which will leave atoms at the same
sites, the axis is called a sixfold rotation axis.

In a s imi lar  way, a re0ection  plane i s  a plane such that a mirror reflection of
the crystal  relat ive to the plane leaves the crystal  physical ly unchanged. In F ig-
ures 12.4(a,  b,  c) the plane through M, M’ i s  to be imagined normal to ,the
palper.  In Figure 12.4(b), the l ine MM’ is a ref lection plane, whereas in Figures
12,4(a)  and 12.4(c), ref lection through MM’ would change the posit ions of some
of ,the  atoms; hence in these two figures, MM’ is not a symmetry reflection plane.

One symmetry that all the structures in Figure 12.2 could have is inversion sym-
metry. Inversion is a change in sign of all coordinates of each atom. As indicated
in F igure 12.5,  i t  i s  equivalent to a rotat ion by 180” about an axis ,  (which
changes the signs of two coordinates) fol lowed by a reflection of the atom co-
ordinates in a plane perpendicular to the axis  (which changes the s ign of ,the
third coordinate). The invers ion s imply interchanges points on opposite s ides of
the or igin, and it  may be seen by inspection that it  is  possible for this operation
to leave the crystals unchanged. While there may be some structures in each crys-
tal  c lass  which have this  symmetry,  i t  i s  poss ib le that a crystal  would not have
inversion symmetry if  the combination of atoms or ions corresponding to a single
cel l  did not have the proper symmetry. Invers ion symmetry’ is  the only possible
symmetry of the triclinic system.

lln the monoclinic systern, o reflection in a plane parallel to the face containing
the angle cy may leave the structure unchanged. Also, a rotation of 180” about
an axis  perpendicular to the face containing cy may leave the st ructure un-
changed. This 180” rotation I S  cal led a twofold rotat ion, because two such rota-
tiolns  would give one complete revolution. Likewise, a threefold rotation axis cor-

responds to symmetry under 120” rotation, a fourfold axis to 90”,  and a s ixfold
axils  to 60” or a/3. Because of the translational crystal symmetry, these four kinds
of rotation axes are all ttlat  can occur in a crystal.

In the orthorhombic system, there can be symmetry reflection planes each of

whlich is  perpendicular tc, a face and paral lel  to an edge. Also, there may be a
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. M’ .

(Cl1

. M .

Figure 12.4. Diagrams illustrating symmetry under mirror reflection. Diagrams (a) and
(c) do not have reflection symmetry in the MM’ plane. In diagram (b), MM’ is a mirror
reflection symmetry plane.

x

Re-
f lect ion

in XY
p l a n e

Figure 12.5. Diagrams illustrating symmetry under inversion. Inversion is equivalent to
a reflection in one plane, followed by a 180” rotation about an axis normal to the re-
flection plane.

twofold rotation axis perpendicular to any face. The rhombohedral system,
among other possible symmetries, can have a three-fold rotation axis through the
diagonal connecting corners, where the angles LY  meet. Threefold axes may oc-

cur in the hexagonal and cubic sysiems as well. Fourfold rotation axes may occur
in the tetragonal and cubic systems, while only hexalgonal  systems can have six-
fold rotation axes.

The reason for being interested In rotation and reflection symmetries is that for
a crystal of known symmetry one may derive limitations on the possible values of
some physical quantit ies, i .e. they must be consistent with the symmetr ies. Such
quantit ies as electr ical conductivi+y,  heat conduct iv i ty,  dielectr ic constant and
permeabi l i ty can vary with the directions of the corresponding f ields.  However,
for a rotation symmetry axis of order greater than two, i t  turns out that these
quantities have to be independent of direction in the plane perpendicular to the

axis. Then, i’n  a hexagonal crystal of a metal such as zinc, the electrical conduc-
tivity can vary at lnost with the arlgle of the applied field relative ta the axis of
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the hexagon. Similarly, the conductivity in a cubic crystal is independent of direc-

t ion since there are threts  fourfold axes and four threefold axes, or iented at
various angles with respes:t  to each other.

12.3 CRYSTAL BINDING FORCES

A different classif ication ‘of  crystals could be made on the basis of the types of
forces holding the crystals together. There are four general kinds of binding in-
volved:

(1) Valence crystals are held together by the same kinds of forces that hold
organic molecules togethcer.  While the electrons of the atoms are bound fair ly
t ightly to the atoms, there is a sharing of electrons between neighboring atoms.
For example, Figure 12.6 represents a valence crystal in two dimensions, in which

Figure 12.6. In covalent bonding, the crystal is held together by concentrations of nega-
tive electronic charge between positively charged cores. The negative and positive charges
attract each other, giving a net binding effect to the crystal.

each atom contr ibutes an electron which spends most of i ts t ime somewhere in

between the atom and its nearest neighbors. Then, on the average, the positively
charged atoms which remain wi l l  be attracted toward the negative charge
cloluds,  and hence toward the other atoms. The electrons are shared, sinc:e one
such electron cannot be said to be bound to any particular atom. The attraction
caused by this sharing can give rise to a lower energy than if the electrons were
all bound to individual atoms; therefore, if the atoms are to be separated, forces
must be exerted to give work to make up this change in energy. A typical crystal
with this kind of binding is the diamond, made of carbon atoms.

(2) Ionic crystals are held together primari ly by Coulomb forces. A typical
crystal of this type is sodium chloride-table salt.  The outer electron in sodiurr  is
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fair ly loosely bound, s ince it is the only electron outside a closed n = 2 shel l ,
whereas the chlor ine atom needs one electron in the n = 3, & = 2 orbits in
order to form a closed 3p subshel l .  Then, when a sodium atom comes near a
chlorine at’om, this electron tends to go over to the chlor ine atom. The result ing
positive and negative ions are then bound by electrilcal  forces. likewise, a crystal
made of such dissimilar ions of valences * 1, or +2, is held together by Coulomb
forces between ions.

(3) In metals the outer electrclns  are very loosely bound, and each electron
moves through the whole crystal ,  being shared about equal ly by al l  the atoms.
As in the case of valence binding, this sharing lowers the energy and causes the
atoms to be bound together.

(4) In crystals consist ing of neutral atoms or molecules where the electrons are
bound so tightly that there is little shuring of electrons, the forces are weaker and
are cal led ‘van der Waals forces. These arise primari ly from electric dipole inter-
actions. SoBme  molecules have permanent electr ic dipoles and interact through
these. In other cases, such as in s#olid  crystals of argon or neon, there are only
fluctuating dipoles to give the binding.

1 2 . 4  S O U N D  W A V E S  I N  A  CONTIINUOUS  M E D I U M

In discussing physical processes which occur in solicds, two things are of pr imary
interest: f i rst,  the properties of the latt ice of atoms; and second, the electronic
wavefunctions and energy level structure for the outermost atomic electrons. One
of the important latt ice propert ies is  that of latt ice vibrat ions.  These vibrat ions
are osci l lat ions of atoms in the crystal about their equi l ibr ium posit ions, and are
responsible for such diverse phelnomena  as sound waves and specif ic heats  at
high temperature; they are also important in limitling  electr ical conduction and

heat conduction. The interaction of electrons with latt ice vibrat ions can, under
some condiltions,  cause electrons to be bound together in pairs, and can give rise
to the phenomenon of superconductiv i ty at sufTiciently  low temperatures. Elec-
trons in crystals play an extremely important role in phenomena such as magne-
t ism, propagation and absorption of l ight in crystals,  and conduction of elec-
tr icity.

In the following two sections we shall discuss the classical and quantum theo-
ries of lattice vibrations in crystals and see how they enter into the calculation of
the specif ic heat of a crystal. For purposes of comparison, in the present section
we shall consider the classical theory of sound waves in a continuous medium.

To describe wave propagation through an elastic medium in classical mechan-
ics, the medium is treated as a continuous one with a mass density p,  and a suit-
ably defined elastic constant. The wove equation can then be derived by straight-
forward application of Newton’s laws of motion in an inf initesimal element of
the medium.

Consider, for example, compressional waves in aI  long, thin, elast ic, sol id rod,

as in Figure 12.7. We introduce the variable $(x,  t) to describe the displacement
from equil ibrium at t ime f of a Floint  in the rod whose equi l ibr ium posit ion is  x.
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Displaced positions of points in the
rod as the wave passes

Equilibrium positions of
points in the rod

Figure 12.7. The motion of o long, thin rod, os compressional waves propagate through
it, is described by o variable Ic/( x, f), the displaement at time t of a particle where
equilibrium position is x.

Consider an inf initesimal port ion of the rod of length Ax, between x and x + Ax
at  etquilibrium.  Under the act ion of the wave as i t  propagates through the rod,
this portion of the rod may be stressed so that its length is changed. The change
in length will be

31  ==  #(x +  A x ,  f )  - #(x,  t)

and the fractional change in length will be

(12.1)

Al G(x  + A&f) - e&t) Mx, f)-= ._~_
A X A X ax

(12.2)

if Ax is sufficiently smal l .  The part ia l  der ivat ive taken here indicates that the
change of length is calculated at a particular time.

The fractional change in length, called strain, is related to the elastic constant
Y - Y o u n g ’ s  m o d u l u s - b y

(1 2.:3)

where 7 is the tension in the rod at the point x and A is the cross-sectional area
of the rod. The quantity T/A is called stress; it is the force per unit area tending to
change the length of the rod. Young’s modulus is  thus the stress divided by the
fractional change in length of a piece of mater ial .  Combining the above two
equations, the equation

expresses the elastic property of the rod.
Next, applying Newton’s law of motion to the inf initesimal section Ax of the

rod, we find that the net force in the positive x direction is

7(x  + Ax,t) - T(x,f)  N $JAx (12.5)
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This must equal the mass pAAx,  times the acceleration d*$/?t’:

(12.6)

Thus,  dif ferent iat ing Equation (12.4) and combining with Equation (12.6),  w e
obtain the ‘wave equation,

(12.7)

I t  i s  easi ly ver i f ied that # satisf ies this equation if  i t  is  any function of x - wt  or
x  +  wt ,  where  w  = 6. T h us,  the phase speed of propagation of the waves
will be

w = qp

For a wave which is  of the form 4 ==  #0 cos (kx - wf), where tiO is  a constant,
the angular frequency w and wavenumber k of the wave will be related by w =
wk = .\/t/p k, where w wi l l  be essential ly independent of k or w.

1 2 . 5  W A V E  E Q U A T I O N  F O R  S O U N D  W A V E S  I N  A, D I S C R E T E  M E D I U M

Let us now consider sound waves in u crystalline solid to see the effect of having
a medium made up of discrete atoms or molecules, rather than a continuously

distr ibuted mass. For s implicity, the discussion wi l l  be based on the one dimen-
sional crystal- l ike system shown in Figure 12.8, in which the forces between

Figure 12.8. A one dimensional model of a  solid lott~~ce,  consisting of atoms of mass
~0,  connected by springs of spring constont K/a.

neighboring atoms are approximated by massless springs. When al l  the springs
are at their  equi l ibr ium length a,.  the atoms are said to be in their  equi l ibr ium
posit ions. The one dimensional siructure pictured is then crystal- l ike, because it
has a s imple repetit ive, or periodic, structure. If  one of the atoms is displaced

sl ight ly and then released, i t  wi l l  v ibrate about i ts  equi l ibr ium posit ion, and
neighboring atoms wi l l  start to vibrate because of the elast ic forces between
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atoms. In CI  real crystal,  something very s imi lar occurs,  but the vibrations take
place in three dimension,;.  The basic unit is  the mass m E pa,  connected to
neighboring masses by the massless spr ings of spr ing constant K/a. The equi-
librium spacing of the masses is a.

Clearly, /J is  the effective mass per unit length, or the l inear mass density. I f
a force tends to compress an object giving CI  change in length At, the same
force acting on an object half OS long would give a change in length A 442;  i.e.
the spring constant would be twice as big. Thus in our case we have chosen to
write the spr ing constant as K/a, so that the spr ing constant t imes the length of
an indiv idual  spr ing i s  a constant,  K, which is  independent of length. These
springs can be thought of as simulating actual forces between atoms in a crystal
for smal l  v ibrat ions.  The quunt i t ies K and ~1 for the one dimensional case are
analogous to Y and p for the three dimensional case.

We shal l  consider only ongitudinal motion of the atoms, paral lel  to the length
of the system. Then, in analogy to the displacement variable #(x,  t)  used in de-
scr ibing wavemotion in ct  continuous medium, we define $,,(t)  as the displace-
ment from equil ibrium of ihe  nib atom in the l ine. In terms of the spring constant
K/a,  the force on the nth  atom is:

This,  force gives the mass bra  an acceleration d2#,/dt2.  Hence, using Newton’s
second law for the nth  particle,

There is one such equation for each atom in the l ine of atoms, corresponding to
different values of the index n.

The above set of coupled differential equations is closely related to the wave
equat ion,  Equat ion (12.7),:  in the l imit of inf initesimally small  spacing a, Equation
(12.10) reduces to Equation (12.7).  Let us see how this happens. In the l imit of
smal l  a, the distance na must be replaced by the corresponding distance x of
the atom from some reference position. Then,

a

Similarly,

lim  -l [W.  - #n-l)  + (#. - #“+,  )]0 ‘002

= lim 1 a’(x)
1

W(x  + 0) l- a'+-_~-- - (12.12)
0 -0 a ax ax ax2

Also, d2#Jdt2  is  the t ime der ivat ive at a certain part icle, so i t  becomes a

der ivat ive at  constant  x ,  or  the part ia l  der ivat ive a’$./&‘.  Hence, Equation

(12.10) becomes:
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a’4 CL  a’+--::  --
dx 2 K at2

(12.13)

and the phase speed will be given by w = v%/P.

In the model for latt ice vibrations which we are using here, a is small-of the

order of a few Angstroms-but f inite. We would expect variations from the con-

tinuous wave solutions when the wavelength is comparable to a. We must return

to Equation (12.10) and find solutions valid for all n and all t, for fnnite a.

6 SOLUTIONS OF THE WAVE EQUATION FOR THE DISCRETE
MEDIUM

Equation (12.13) has solut ions for continuous x and for a definite frequency w,

of the form:

#  = A, cos (kx + wt  i-  ul)  + A2 cos (kx - wt  + (~2) (12.14)

w h e r e  AI,A2., cp,  a n d  (p2  a r e  a r b i t r a r y  c o n s t a n t s ,  and  w  =  w k  =  V%/P k.

Here, the terms in Al and A2 correspond to waves pr’opagating  in the negative

and positive x directions, respectively. By superposition of such solutions, one can

find solutions representing standing waves; for example, one standing wave

solution is

1c,  = A cos kx cos (wt + a) (12.15)

where @ is an arbitrary phase constl>nt.
In the discrete case, on the other hand, the variable na corresponds to the

posit ion variable x. This leads us to attempt to f ind solutions for the discrete

equation of motion, Equation (12.10),  of a form similar to the above but with x

replaced by no. Here we shall consicler only standing ‘wave solutions. let us then

try the function

4,(f) = A cos (kna) cos (wt + ‘P) (12.16)

in Equation (12.10),  to see i f  we can obtain a solut ion. Then on the left  s ide of

Equation (12.110),  among other terms, the quantity,

-#“+l --I/-, := - A  cos(wt  +  a)

[co:,  (km +  k a )  +  c o s  (km - k a ) ] (12.17)

occurs. The tr igonometric identity cc~s(B  +  p) +  cos(B  - CP  )  = 2 cos 6’  cos  (0,

with 0 =  km and CP  = ko, then gives us:

-$,+1  -#“-I  =  -214  cos(wt  +  (P)cos(kna)cos ka (12.18)

Hence, when #. of Equation (12.lti)  is substi tuted into Equation (12.10),  the

factor A cos(kna)cos(wt  + a) occurs in each term. This substitution gives us

-t  [ A  cos(kna)cos(wt  +  +)I[2  - 2  c o s  ka] =  pa 9

= jm[  --  w2A  cos(kno)  cos (wt + CD)] (12.19)
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T h i s  e q u a t i o n  i s  s a t i s f i e d  i f  w2 =  2Kj/.~a~(l  - -  c o s  k o ) .  S i n c e  1  - co!;0  =

2 sin2(Yz  r9),  the relationship between w and k may be written in the form:

W2 (12.20)

This equation has two solutions for w which are opposite in sign. Only the positive

solution for w need be ‘considered, so with the choice of the positive square root,

this solution for the possible frequencies may be written as:

(12.21)

Thus substitution of the assumed solution, Equation (12.16),  into the differential

equation gives us a solution i f  w and k are related in a certain way given by

Equation (12.21). Such a relation between frequency and wave number is c:alled

(I dispersion relation. The same dispersion relation would have resulted it we had

worked with any of the other standing wave solut ions, such as B sin(kno) cos

(,wt  + @).

A graph of the dispersion relat ion, Equation (12.21),  is  given in F igure 12.9.

The corresponding dispersion relat ion for the continuous medium, w = v’%/,  k,

w

l,~,,l,,,,l,~,,l,,,,l,,,,I,‘,,,~
2/c ll/a

IFigure  12.9. Graph of the dispersion relation, Equation (12.21),  for  waves on o one
tdimensronol  linear chain of atoms, connected by springs. Dotted line is the dispersion
relation for a continuous Imedium,  Equation (12.7).

ils  indicated by dashed l ines on the same graph. Thus it  can be seen that for

k << I/a (long wavelengths), the phase speed w = w/k = m is approxi-

mately a constant, and  is  the same  for the continuous and discrete media. For

large  k in the real solid, the phase speed deviates appreciably from this colnstant

value.

12.7 NUMBER OF SOLUTIONS

To count up the total r,umber of physically different possible standing wave solu-

tions, we note f i rst that from Equation (12.21),  i t  is evident that the frequency w
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is a periodic function of k, with a maximum value of:

(12.22)

The frequency w of Equation (12.21) is unchanged if  ,k  is  changed to -k or if k
i s  changed to (27r/a)  - k. l ikewise, #.  =  A cos (kna) cos (wf + a)  for a fixed
n is the same for these changes in k. Therefore, we can restr ict the discussion to
values of k in the region 0 to r/a,  since we get nothing new by taking a k outside
that region. For larger values of 1 k / ,  th e wavelengths  2r/k would be shorter
than the lattice spacing; this would b’e  meaningless, since there are no atoms this
close together to vibrate with such wavelengths.

Many sol ids have wave speeds at low f requencies of  around 103m/sec.  The
spacing, a, between atoms is  around 2 x 10-“m.  /In  estimate of the highest
possible angular frequency of a wave propagating in such a solid is then:

2W ~5l!E-- = 10’3  se,: -1
mox  =

2  x  lo-I0

The speed of sound differs by only (about 1% from its  low frequency value at
4 x 10” cps. Thus in the audible range, zero to 20,001O  cps, the speed of sound

in a solid is essentially independent of frequency.
Up to this  point,  we have specif ied neither the s ize of the one dimensional

crystal  nor the boundary condit ion:, on the displacements #.. Once these are
specif ied, even in classical mechanics a discrete set of values of k results.  I f ,  as
in the discussion of the density of states in Chapter 11, we impose periodic
boundary condit ions at the ends of a periodicity region of length Na = L,  then
for #” = A cos(kna)  cos  (wt  + a),  we would requi re that

# #”n+N  = (12.23)

Here N is the number of masses, or crystal cells, in the length 1.  Equation (12.23)
results in:

This means that

cos(kna  +  kNa)  =  cos(kna) (12.24)

o r

kNa =  kL =  2 m x (12.25)

k=?!!?
Na ’

m = 0,1,2,...

Theother  standing wave solut ions,  J/A  =  B sin kna cos (ot + a),  would give these
some values for k.

The independent values of k l ie in the range 0 to $-a/a, corresponding to m

ranging from 0 through % N for even N, or 0 through %  (N - 1) for odd N.

The values k  = r/a and k = 0 give nothing for the solut ion $A =  B s in (kna)
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c:os(wt +  a),  s i n c e :

sin (0) = sin Tna  = 0
( )a

(12.27)

for any n. Then for even N there are % N - 1 solutions for the solution $:,  and
14  N  +  1  s o l u t i o n s  f o r  t h e  s o l u t i o n  #,, =  A  cos(kna)  c o s  (wt  +  a).  T h u s  t h e r e
are N different states. l ikewise, N states occur for odd N. The number of different
osci l lation states (or normal modes, as they are called in classical mechanics) is
equal to the number of movable atoms in the fundamental periodicity region.

Also, i f  other types of boundary condit ions were used, such as requir ing

rili ,.,+, =: #0 = 0 for f ixed endpoints, the number of different modes of osci l lation
would equal  the numbcsr  of degrees of freedom of the system. In this case, the
number of degrees of freedom would equal the number of movable masses or
cells, N.

Imposit ion of the periodic boundary condit ions for the one dimensional (chain
corresponds to taking the long chain of N atoms and bending it  into a circle, so
that one end fits onto the other. If N is sufficiently large, the slight curvature intro-
duced into the chain has negl igible effect on the equations of motion. A wave
propagating out past one end, however,  must then propagate back in f rom the
other end.

12.8 LINEAR CHAIN WITH TWO MASSES PER UNIT CELL

To see the effects of introducing internal degrees of freedom in the crystal cell,
we next consider a s l ight ly more complicated one dimensional crystal with two
inequivalent atoms in ench repeated unit. The chain is diagramed in Figure 12.10;
the alternate masses are denoted by pa  and Ma, and the distance between suc-
cessive masses of similclr type is a. The distance between neighboring masses Ma
and pa is a/2, and the displacements from equilibrium of the masses pa  and Ma
are denoted by $r’, #y’, respectively. The springs connecting the masses are
1011  assumed to have the same spr ing constant K/a. The crystal cei l  i s  one com-
plete unit f rom which ithe  whole crystal  can be bui l t  by repetit ion; hence, in this

K/a  K/a  K/a  K/a K/o K/a  K/a K/a  K/a

Figure 12.10. linear chain with two dissimilar atoms per unit cell.
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case, the cell width or lattice constcznt  is a, and the c:ell  contains two masses: pa,
Ma, and two springs.

let us assume that the displacement of the nth mass pa is

J/y’ = Al COS(~~~)COS(O~  -I- a)

and the displacement of the nth  mass Ma is

#!,”  =  A2 cos[k(n +  Vi )a]cos(wt  +  a)

The Newtonian equations of motic’n are:

~ad2$~)/df2  = -(K/a)(2#i’)  - $‘r) - #gi,)

Mad’$(.?)/dt’  = -(K/a)(2#k2)  - $;i, - I,&;‘)

These equations of motion lead in a straightforward way to:

(12.28)

(12.29)

(12.30)

A,(w2po  - f)  +  A.@cos;  ka)  =  0

A ,  [$os  ; ka;)  +  A2cu2Ma - f) =  0 (12.31)

For these two equations to be consistent, the determinant of the coeff icients of
Al and A2 must vanish. The resulting dispersion relation is

a4pMw’ - 2K02(p  +  M)02  +  4K2  sin’;  k a  =  0 (12.32)

The solut ions

#a) =  6, s i n  (kna)  c o s  (wt  +  +a)

$L”  = B2 sin k n + 1 a cos (wt  + a)I 211 (12.33)

would lead to this same dispersion relationship. The positive solution!; for w are:

w, = ‘,  &Fqk). --$sin2iki (12.34)

For long wavelengths, ti ka << 1, the solutions may be approximated by:
-.~

1
w +  ” - -. - - - - k2a2

a
(12.35)

and

1w -  E -
2

(12.36)

Note that again w is unchanged in changing k to -k, or to 2ir/a  - k.
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12.9 ACOUSTIC AND OPTICAL BRANCHES

Sketches of crw+ m and aw-  *K for the special case M = 2~ are given

in Fig. 12.11. There are now two branches to the w versus k curve. In general, if

there are 4, masses per cell that differ in mass or geometry, or that have different
w

*/o
&lure 12.11. The two branches of  the dispers ion relation  f o r  o linear  chain o f  o+c,ms,
with two diss imi lar  atoms per uni t  cel l ,

forces acting upon them, there will be 4, branches to the curve. In the one dimen-

sional case, only one of tllese curves will pass through the origin w = 0 at k = 0.

This branch is called the acoustic branch because for small k it describes the

sound waves to which we are accustomed. The other branches lie at frequencies

of the order of lOi3  cps. Electromagnetic infrared waves also are in this fre-

quency range, and although lattice vibrations are not electromagnetic waves,

these branches are called optical branches. The high-frequency branches have

been detected experimerltally  in absorption experiments with infrared light, and

also by low energy neutron scattering experiments. Each branch is periodic iin k
and if periodic boundary conditions are applied, it can be shown, as in the dis-

cussion following Equaticon  (10.26),  that each branch has N modes if N is the

number of cells (not necessarily the number of masses).

While our discussion has been for one dimensional spring-like forces, a three

dimensional discussion with more realistic forces leads to very similar results.

Instead of a single k, there is then a vector k with three components. There are

still acoustic and optical modes with the number of modes per branch equal to

the number of cells in the crystal. The cell now has three characteristic lengths

and has a volume. Likewise, the zone giving the independent values of k is a vol-

ume in three dimensional “k-space.” The main change is that now, in addition to

the longitudinal modes, there are transverse modes in which the actual motion

of the atoms is perpendicular to the direction of wave propagation. Consider,

for instance, the two dimensional array shown in Figure 12.12. If the nth  column

of atoms is pulled downward uniformly, it exerts forces on the n + 1” column,

giving rise to wave propagation to the right with vertical displacement. Of

course, the longitudinal modes exist also. In three dimensions, for a given direc-

tion of k there can be displacements either parallel to k or displacements in two
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h .-  1 " n+1

Figure 12.12. Two dimensional solid, consisting of atoms connected by springs. In addi-
tion to the longitudinal (compressional) waves supported by a linear chain, this model
con support transverse (shear) waves.

directions perpendicular to k. Thus, for each longitudinal branch, there are two

transverse branches; a branch may be either acoustic or optical. (Actually, for

on onisotropic crystal with dif ferent propert ies in di f ferent directions, the various

branches or modes of definite freaiuency  are, in general ,  nei ther purely longi-

tudinal nor purely transverse, but a mixture of the two.)

0 ENERGY OF LATTICE VIBRATIONS

Now we shal l  return to the consideration of the simple l inear chain, F igure 12.8,

in order to discuss the similari ty between latt ice vibrations and a collection of

simple harmonic oscillators.

The solut ions to the equation of rrlotion,  Equation (12.10),  were found to be of

the form:

#. =  A  c o s  k n a  cos(wt  +  a)‘)

$L  =  8 sill  k n a  cos(wt  +  a) (12.37)

and by superposit ion of these solut ions, one can describe al l  possible wave mo-

tions of the atoms in the crystal lattice.  The essential feature of a normal mode

solution is that all the atoms vibrate with the same frequency. In a standing wave,

successive atoms in the l ine would vibrate with sl ightly dif ferent amplitudes, but

the vibrations would be in phase. (In a running wave the amplitudes could all be

equal, but the phase could change slightly from one atom to the next.) The

changes in vibration amplitude from one atom to the next are  described by

the factors cos kna or sin kna in the above solutions. The t ime-dependence for

a// atoms is contained entirely in the factor A cos(ot  +  @). Thus, the factor

A cos(wt  +  a) describes, in a colle,:tive  sense, the simultaneous vibrations of al l

the atoms in the crystal. We can, in fact, introduce a collective displacement

“variable” q”(t),  and write the solution $” as:

#. =  ~‘2  c o s  k n a  qw(t) (12.38)

The factor ais  for convenience. I f  we had assumed a solution of this form in-

stead of Equation (12.16),  in which the time-dependence is given explicitly, then
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upon substitution into the equations of motion we would have immediately found

that q*(t)  must satisfy the differential equation of the harmonic oscillator,

d2q
2 +  w2q,  = 0

dt2
(12.39)

where w is given by Equation (12.21). Thus fi  q,,(t) = A cos (at + a)  is the

most general real solution of such an equation. Let IJS think of qU(t) as the dis-

placement variable of a single oscillator.

Since the displacement of each part icle in the latt ice is proportional to q-(t),

each has a kinetic energy proport ional to (dq,/dt)‘. Therefore, the total kinetic

energy T of the lattice is some number C times (dq,/dt)2,  or

1 =  % A2Cw2sin2(ot  +  @a)

C is constant in t ime. Since total energy-kinetic plus potential energy--is con-

served, the total energy is a constant in time and the total potential energy Imust

t h e r e f o r e  b e  % A’Cw’cos’(wt  +  a) =  C  w’qi. The kinetic energy and poten-

tial energy of the crystal for this mode are thus the same as for a harmonic oscil-

lator of displacement cl,, f r e q u e n c y  w, m a s s  2C,  a n d  s p r i n g  c o n s t a n t  2Cw’.

(Also,  q, satisf ies the harmonic oscil lator equation d*q,/df’  +  w’q, = 0).
Hence, the whole latt ices appears similar to a single harmonic oscil lator of mass

2C.  We will show that this mass is Npa, the total mass of the chain of atoms.

Let us examine the t,>taI  kinetic energy of the latt ice, to f ind C. The kinetic

energy is, from Equation (12.38),

N-l
= C

n=O
(12.40)

If the phase kna in cos’!(kna)  varies over a large number of values as n goes

from 0 to N - 1, we would expect that in the summation the square of cos’(kna)

could be replaced by its average value, % . The kinetic energy is therefore simply:

(12.41)

Ini  fact, this can easily be proved to be exact by writ ing cos(kna)  as % (e”“”  +

e -‘kna),  using the formula for the sum of a geometric series,‘and  noting that by

Elquation  (12.26),  k  = 2mT/Na,  where m is an integer.  This kinetic energy is

exactly the same as that of a single harmonic oscil lator of displacement qw  and

tnass  Npa, which is the mass of the entire latt ice. Hence 2C = Nya. The total

energy is thus:

E(w)  =  1 +  V  =  :paN
+q2

dt )
+ Jqz, 1 (121.42)

Both in the equation of motion, and in the expression for the energy, the vari-

able q,--which  in a sense describes the motion of all  the masses in the crystal

for this particular mode-is effectively a simple harmonic oscil lator displacement
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variable. Since the Schrodinger  equation is obtained from the energy expression,

the importance of Equation (12.42) can be part ial ly  recognized  trom the ease
with which one may ut i l i ze Equation (12.42) to obtain the quantum descr ipt ion
of lattice vibrations. This will be discussed in the following section.

I ENERGY FOR A SUPERPOSITION OF MODES

The above expression, Equation (12.42),  for lattice vibration energy was derived
for a s ingle mode. The quest ion ar ises as to whether, when several modes are
excited s imultaneously in the crystal,  the total energy wi l l  be the sum of indi-
vidual contributions from each mode. That this is so may be seen from the follow-
ing argument. Suppose that the displacement were a superposition of the form:

riin =  fiq,,  cos(klna)  +  ~‘2  qw2 cos(kzna) =  $“(w,)  +  #n(w:!) (12.43)

Then the kinetic energy has the form:

1 2 + 2 drl/n(w,)  d$.(e)~--
dt dt

= J(u,) + J(w~)  + $a.2C  .yT!!!$!d
n

(12.44)

The cross product summation involves:

c cos(k,na)cos(kzna)  =  ic (cos[(k,  +  kz)na]  + cos[(k,  - kz)no]j
n 0

(12.45)

Since kr # kz,  one would expect the cosines to oscillate as n changes and hence
to average out to zero. That this surr  is exactly zero can be shown by again ex-
pressing the cosines as sums of exponentials,  and using the equation for the sum
of a geometric series. Likewise, eve11  for equal frequencies the cross product of
the solut ions, proport ional to cos(kna)  and sin(kna), sum to zero. Thus the cross
product terms never contribute to the kinetic energy. A similar argument holds for
the potential energy. Therefore, i f  13  number of modes are excited, the total
energy is just the sum of the energies of the individual modes. Thus the normal
modes in a sense act l ike independent part icles. Although al l  the atoms in the
lattice participate in a normal vibratl,on  mode, the various normal modes do not
interfere with each other in any way, even though a great many of them may be
present; and the total energy of the system, which is basical ly a sum of kinetic
and potential energies of individual particles, can also be written as a simple sum
of energies of the individual normal modes. I t  is  this last fact that makes normal

modes so useful.
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12.12 QUANTUM THEORY OF HARMONIC OSCILLATORS AND
LATTICE VIBRATIONS

All  our previous discuss ion was based on Newtonian mechanics.  We wish ,to see
now what modificatiorls orise in quantum mechanics. In quantum mechanics, the
SchrGdinger  equation describing stationary states (states of definite energy) is
obtained by expressin,  the energy E in terms of the coordinates and the mo-
menta, then replacing the momentum component pX  by -iM/r3x,  and so forth.
The result ing expression is  then a differential operator which acts on the ‘wave-
function. In calculating the energy contr ibuted by one normal mode of a latt ice
,vibration,  t h e  effectivt? c o o r d i n a t e  i s  q, and the mass is  Npa.  The ef fect ive
“momentum” is then Nwa  dq,/dt.  Thus, in treating the quantum theory of lattice
,vibrotions,  one would expect that in the energy expression the effective momen-

‘turn  should be replaced by letting

(12.46)

This can be shown r igorously from the foctthat  /.~a  d$,/dt,  the classical mo-
lmentum of the ith particle, is replaced by -iFta/c?$,  , and the fact that in general,
1+5” is a superposit ion of terms of different frequencies proportional to qw.  W e
shall not prove this here, however. The energies of the lattice vibrations in quan-
tum mechanics are, then, found from the quantum mechanical  discussion of the
one dimensional harmonic oscil lator of mass N/.Lu and angular f requency w.

From the study of the simple harmonic osci l lator of spring constant k and mass

m in Chapter 7, it will be recalled that in Newtonian mechanics the energy of the
oscil lator is

(12.47)

and the natural angular  frequency of oscillation is

(12.48)

I ln solving the SchrGdinger  equation for this system, it was found that only dkcrete
energies of the system were possible, given by

E, = (n + %  )hw (12.49)

where n  i s  a posit ive integer or zero. These energy levels ore equal ly spaced;
the minimum possible energy is E. = % fto, and is called the zero point  energy.

In quantum mechanics, whenever a system has energies which can be written in
a form corresponding to that of a s imple harmonic osci l lator, Equation (12.47),
the energies will be quantized according to Equation (12.49).

In the case of lattice vibrations, each normal mode then has the possible ener-

gies, (n + % )hw.  The smallest possible vibrational energy of the crystal is
‘T
‘2 N modes % hw. While our discussion was for a one dimensional crystal,  except for
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the fact that k becomes a vector and addit ional palar izat ians are poss ible,  al l
these results still hold far a three dimensional crystal.

‘e  I f  the average natural  f requency w of the normal modes in a crystal is  about

10’3/sec,  t h e  n u m b e r  o f  c e l l s  i n  a  c r y s t a l  o f  r e a s o n a b l e  s i z e  i s  1023,  a n d
A z 10-34i-sec,  what is  the order of magnitude of the zero paint energy of the

crystal?

n  Z e r o  P a i n t  E n e r g y  ??  %iic~N  =  ‘/z  (l0~““)(10’“)(10’“)
= 50 joules.

e  I f  the binding energy of the crystal is of the order of 1eV per atom, what is  the
order of magnitude of the ratio of the zero paint energy ta the binding energy?

*leVe 1 . 6  x  10~19  h, 3oo
% hw % (10-3")(lo'3)

I PHONONS; AVERAGE ENERGY PER MODE AS A FUNCTION
OF TEMPERATURE

Frequently,  i t  i s  convenient (though not str ict ly correct) ta think of the quantum
number n in the energy expression, (n + % )hw,  as meaning the number of
“part icles” of sound, cal led phanans. Thus,  i f  due ta an interaction of a latt ice
vibrat ion made with an electron, n increases by An, we say that  &I phanans
were created. Usually, phanans are thought of in association with traveling sound
waves rather than standing waves.

The specif ic heat of a sol id due ,ta motions of atoms can be found from a
knowledge of the relat ionship between w and k far  the latt ice vibrat ions.  The
Baltzmann factor of statistical mechanics  far one made is

e -E,/knr  ~=  e (n  + 1/2)hw/kgT (12.50)

This factor gives us the relative prabmclbility  of finding the solid in the state char-
acterized by the eigenvalue E, of energy.

At high temperatures, when k*T  ir, large compared with the average of Aw,
then the Baltzmann factor e~(“c”2)h“‘k~r I S slowly varying far small changes in n,
and many states are excited. The quantizatian  of energy should then be of no
signif icance, and one could as well  describe the crystal in terms of the classical
osci l lators. Far a simple crystal containing one male of atoms (No atoms) in No
unit cel ls,  there are 3iVo  modes of osci l lat ion (s ince there are 1 longitudinal and
2 transverse modes per atom). By thle  equipart it ian of energy theorem, each of
the quadratic terms proport ional ta qi  and (dq,/dt)’  in the energy of one
made, contributes an average energy of %  ksT  ta the total crystal energy. Thus,
the total energy is 3Nok8T  = 3R1,  and the heat capacity per male is  3R. This
is  cal led the Wang-Petit  law, and it  agrees wel l  with experiment far mast sol ids.

Far very law temperatures,  only ttie  lowest f requencies can give a Baltzmann

factor much different from zero. In calculating a thermal average ta f ind the
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average total  energy, we have to average over al l  s tates of the system. This
involves an average over  a l l  the quantum states with energy (n + %  )Ftw fo r  a

given mode, and then a sum over all modes of various frequencies. The average
energy for a given mode is

wi th  E, = (n + % )hw.  The summation in the denominator D is

D=e
-I,21u,k87~ (e-Xw{k,T)n

n=O

(12.51)

(12.52)

and therefore s imply involves a geometr ic ser ies.  Thus, the standard formula for
the sum of an infinite geometric series, B.“=,,a”  =  l/(1  - a) for 1 a / <  1 , (gives
for the denominator: C =  e - 112 Wkg  7,( 1 _.  e -*u/kg  7 ). The reader can easi ly ver-
i fy from Equation (12.51) that (E)mode  = ( l/D) (dD/d(-l/k,T)],  S O  that after
carrying out the differentiations, the average energy contributed by one mode-

or by phonons of frequlsncy  w- is

f

12.14 LATTICE SPECIFIC HE:AT OF A SOLID

Next,  we want to sum over the var ious modes for a given longitudinal  or  tlrans-
verse polar izat ion, to f ind the average total  energy for that given polar izot ion.
In discussing statist ical mechanics, we found the density of states for part icles
by consider ing per iodic boundary condit ions on a wavefunction of the type
exp[i(k,x  + k,y + k,z)];  and we found that the number of states in an ele-
ment ot momentum space and volume V of ordinary space was

Vdk, dk, dk, Vdpx  dp,  dpz- = ~--

(W3 h3
(12.54)

where, in that case, p =: hk. Here, we could write the spatial dependence of the
phonon wavefunct ions ,for  running waves as an exponential  of this  same form,
and a similar applicaticln  of periodic boundary conditions would lead to:

Vdk, dk, dk,

PI3

for the number of states of each polarization. This can also be seen easi ly by

general iz ing Equation (12.26) to the three dimensional case. Since E. =  ‘/2  h(k)
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is the minimum possible energy of each mode and does not change when more

phonons are created in that mode, it is of more physical interest to calculate the

average of the difference .IE, = E, - Eo  = ntrw  from the zero point or ground

state energy. This average is

(112.56)

Since only the lowest frequencies contribute at low temperatures, we can as-

sume that w is in the acoustic brclnch,  i.e. depends linearly on 1 k ( . If we are

dealing with the longitudinal mode, then we may assume that for small w,

where wlis  the speed of propagation of that mode, at low frequencies, which

might differ from the speed of propagation of the transverse acoustic modes.

Since w is a function of the magrlitude of k, we can choose a spherical shell in

k space of radius k and thickness dk,  for the element of volume, and write:

dk, dk, dk,  - -  4rk’dk

Since k = w/w C, this becomes:

(12.58)

d k d k  d k  -+  %‘dux Y 2
w,;

(12.59)

and similarly for the two transverse modes with speed wt. Thus, (A,!!)  has the

form of

( A E )  :=  I- w3f(w/J)dw
0

(12.60)

where f (w/J) = 2
l=l

WksT  _ ,

is a function of the ratio w/J.  While the range of w is actually finite, we have, for

simplicity, taken the upper limit to be infinity for temperatures low enough so that

ksJ <<  hw,,,. Then the factor l/(e’“‘kBr - 1) makes the integrand negligible

for the large frequencies. Thus at LDW  temperatures,

(AE) = const. x T4 $‘,~~)‘f(~)d(~)  = const. x J4 (12.61)

The integral involved is the same IJS  was encountered in the discussion of black

body radiation in Chapter 11, and has the value a4/15.  We may then evaluate

the constant of proportionality to obtain:

(12.62)
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I f  1E i s  p r o p o r t i o n a l  .io .T’ a t  l o w  t e m p e r a t u r e s ,  t h e n  t h e  h e a t  c a p a c i t y
d  .I,E /d7’at  low temperatures is  proport ional to T3.  These results agree well
with experiments for substances where the phonon energy gives the primary con-
tribution to specific heat at low temperatures. In Figure 12.13 the specific heat C,
is plotted, showing the limiting behavior at low and high temperatures.

T/O  ’ *
I’igure 12.13. Specific heat at constant volume, due to lattice vibrations in o solid.

1 2 . 1 5  E N E R G Y  B A N D S  O F  E L E C T R O N S  I N  C R Y S T A L S

In electr ic conduction, hesat  conduction, the photoelectr ic effect, absorption of
light, index of refraction, magnetism, and many other phenomena, the effects are
primarily dependent on the behavior of electrons in solids. In this section we shall

discuss some of the properties of wavefunctions and of the energies of electrolns
in crystals.

To get an intuit ive idea of the structure of the energy levels of the electrons,
let us consider a sodium crystal and begin by imagining the atoms very far apart,
so that the wavefunction due to an electron on one atom is  negl igible at t’he
poslitions  of those atoms closest to it .  Also, we wil l  start with the outer electrons
(one per atom) on all the atoms  in their lowest energy state, except for some olne
electron which we single out to investigate. This one electron could be in any olne
of tile energy states of its atom, and for each such energy there are two possible
orientations of the electron spin. Also, if  there are N atoms, there are N possible

atoms in which the excited electron can be found. Thus, for any one atomic
energy level there are, i r  general,  at least 2N dist inguishable states for this
electron.

As the atoms are brought nearer to each other to form the actual crystal, elec-
troniic  wavefunctions start to overlap, and one can no longer say that an electron
is associated with any one atom. Then the 2N energy states,  der ived from any
one single atomic state, wi l l  ordinari ly develop into 2N states that differ s l ightly
frorn each other, and have energies that are slightly different. Therefore, a band
of energies results containing  2N states. In the final crystal, the electrons will have
an energy band structure, the bands being derived from the single atomic energy

states and each band containing 2N closely spaced energy states.
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!.16  BLOCH’S THEOREM

Now, uti l iz ing the translational symmetry of a crystal,  we wil l  f ind some proper-
t ies of the electron wavefunctions, and we wi l l  show more r igorously that
energy bands occur with 2N states per band. An electron in the crystal sees pri-
mari ly the Coulomb potential energy of interaction with the atomic nuclei of the
crystal,  and the Coulomb potential energies of interaction with other electrons.
We will assume, as is usually done, that the other electrons can be treated as a
continuous charge distr ibution which, because of the electrons’ interactions with
atomic nuclei of the latt ice, has the spatial periodicity of the latt ice. Thus, the

overall potential energy has the periodicity of the lattice.
Again for simplicity, let us trea,t a one dimensional latt ice. Then, i f  V(x) is  the

periodic potential  energy and a is  the latt ice spacing, V(x  + a) = V(x).  The
one dimensional Schrgdinger  equtgtion  for  the wavefunct ion G(x)  of the electron
is

Tlz  a’+(x)_---
2 m  ax2 + V(xM(x)  = W(x) (12.63)

If x is replaced by x + a in the above equation, dx ----+  dx, so the kinetic energy
operator is unchanged. Also, V(x + a) = V(x), so the potential energy is un-
changed. However, all we can say about $(x)  is that it becomes ,$(x + a); hence
the wave equation becomes

h2 az+tx  + a)
- -

2m ax 2 +  V(x)#(x  +  a )  =  E$(x  +  a ) (12.64)

The wavefunct ion IF/(x + a) therefore satisf ies the same equation, with the
same energy E, as does $(x).  Now we can make an argument very similar to that
made in discuss ing the exclusion pr inciple in Chapter 9, to derive information
about the possible form of the electron wavefunction. Since the point x, and the
point x + a, are physically equivalent, we expect that it is possible for the elec-
tron densit ies at the two points to be the same. Thus,  we expect that a wave-
function q(x)  may be found such that #*(x)$(x)  = $*(x  + a)#(x  + a). This
can only be true if # is of the form

$(x  + a )  =  eik”#(x) (12.65)

where ka is some real constant. That is ,  i f  two complex numbers G(x)  and
IF/(x + a) have equal absolute values, they can differ by at most a multiplicative
phase factor,  which we have wr i t ten in the form elk”.  The phase factor cannot
depend on the coordinates, for then both Equations (12.63) and (12.64) could
not simultaneously be satisfied. Likewise, then,

$(x + 2a) = e”‘$(x  + a) = e”@)+(x)

J/(x  +  3 a )  =  e’k(3”1 J/(X);.  ;#(x  +  n a )  =  (e”“‘)+(x) (12.66)



3 6 6 Solid sfofe  physics

for n an integer. The result i s  that upon trans lat ing by an amount no, the wave-
f u n c t i o n  is,  IF/(x +  no)  =  ~e’k(na) G(x)  and hence is  changed only by a mult ipl ica-
tive factor.

One such function that has this property is

$(x)  = e’ki (12.67)

Thus, i f  in this function x I S  replaced by x + a, the tunction  becomes e””  n e’lrX.
This function therefore satisf ies:

#(x  +  a )  =  e”“+(x) (12.6~8)

[but wi l l  not sat isfy the Schr ldinger equation unless V(x) = constant].  Suppo’se

we multiply elkX  by u(x), w ere u has the property u(x + a) = u(x) ,  i .e.  u(x)  hash
the periodicity of the lattice. Thus we set

l)(x)  = e’LXu(x) (12.69)

Theln elk(“’ ‘) u(x +  a )  =  t!‘koeikiu(x)  =  e”‘$ (x).  This is ,  in fact, the most general
function that has the desired periodicity property expressed in Equation (12.65).
Thus the wavefunction can be chosen to have the general form,

l)(x)  = e’kxu(X) (12.70)

where u(x + a) = u(x).  In three dimensions, s imi lar reasoning gives us

+(r) = e’k”u(r) (12.71)

where u(r) has the periodicity of the lattice. This is called the Bloch  theorem. Tile
fact that the wavefunction takes this simple form allows many calculations to be
performed in a relatively s imple fashion.

12.17 NUMBERS OF BLOCH FUNCTIONS PER BAND

Once again considering the one dimensional case, Equation (12.65),  let us apply
boundary condit ions to f ind the number of possible different values of k. Tlqe
boundary condit ion we wi l l  impose is  the per iodic boundary condit ion, which
states that #(x)  at one side of the crystal is the same as at the opposite side. In
our case, this is q(x)  =  I~(X + No). While periodic boundary condit ions are
hartdly  related to actual physical boundary conditions, they are simple to use and
will give the correct number of values of k; this is because, as in the similar prob-
lem of lattice vibrations and in the previous discussion of statistical mechanics, the
number of values of k is not sensitive to the particular boundary conditions.

S ince u(x + No) = u(x) from the periodicity of u(x),  the condit ion q(x)  =
$(x + Na) means that

,k(x+No) ,kxe = e (12.72)

o r  tlhat elkNo = 1. But, in general, i f  e” = 1, @  must equal 27rn,  where  n  i s  a
positive or negative integer or zero. Thus,

k  =  2rtr/Na, R = 0,+1,*2,... (12.73)
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While these values of k are the only possible ones, not al l  these values are

physically distinct. Suppose, for example, we consider two possible values, k and

k  + 2?r/a.  T h e n
e4k+W4~ = e “’ e ‘2*x’a (12.74)

Then, when a translat ion x -+  x + a is performed, the function e”*“”  + e”*“O,

and so is unchanged; i .e. i t  has the periodicity of the latt ice. Thus, e’2*X’a  could

be taken as part of u(x), s ince it  has the latt ice periodicity. Hence k + 27r/a  is

equivalent physically to k. We can then restrict k to lie within the Brillouin  zone:

This is very similar to the restriction on k which arose in discussing lattice vibra-

tions. Here it meons that allowed wavelengths shorter than twice the lattice spac-

ing are included in the function u(x);  the exponential  e”’ varies only with wave-

lengths greater than twice the latt ice spacing. The Bloch theorem thus separates

the spatial variat ion of the electron wavefunction into a long-wavelength (slowly

varying) part and a short-wavelength (rapidly varying) part:  the long-wave-

length part, e”“, is completely determined. In many calculations, it  is only this

long-wavelength part that is needed.

The restr iction (12.75) on k, along with the possible values of k from Equa-

t ion (12.73),  means that the total number of independent values of n, and thus

of k, is N,  the number of unit cells. As n changes by unity, k changes slightly, and

we can expect the energy to change slightly. Thus, as k changes over its range,

we get a band of energies. The actual values of the energies can be obtained

only by solving the Schrtidinger Eqluation  (12.63) in a periodic potential .  This is

ordinarily very difficult. For each k, ithe  spin of the electron can have two orienta-

tions. Then the number of states per band is 2N. Likewise, for a three dimensional

crystal with N cel ls  there are 2N stlgtes  per band, in agreement ,with  the qual i-

tative reasoning in Section 12.15.

8  T Y P E S  O F  B A N D S

There wil l  be an inf inite number of energy bands in a crystal,  but only a rela-

tively small number correspond to bound states which are important in explaining

normal crystal propert ies. The enercgy  E  is  a function of k and can be compli-

cated. Some possibi l i t ies are indicated in Figure 12.14. One simplif ication is that

E(k) = E(-k).  This can be shown from the fact that, except for $, Equation

(12.63) is real.  Hence, i f  rc/(x)  = e’“‘“(x)  i s  a  w a v e f u n c t i o n ,  1+5*(x)  =  e-“‘u*(x)

is a solution with the same E. Note the similarity between graphing E ver sus  k

here, and graphing w versus k for latt ice vibrations. In some cases there wil l  be

an energy gap (or minimum energy difference) between bands, such as E, be-

tween bands 3 and 4 of Figure 12.14, which corresponds to energies not allowed

for the electron in the crystal. Such gaps are typically of the order of magnitude

of an electron volt.  In other cases the bands may overlap, such as in bands 1, 2

and 3, or bands 4 and 5 of the figure.
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Figure 12.14. Diagram illustrating o number of different possibilities for electron en’ergy
bands in crystals.

12.19 EFFECTIVE MASS IN A BAND

For a free particle, E =  % p’/m, where p is  the momentum and m is  the mass.
The free-part icle wavef#Jnction  is proport ional to e””  in one dimension, where
k  =  p/Ii.  T h u s  f o r  t h e  f r e e  p a r t i c l e ,  E =  (1%  A*/m)k’.  N o w  i f  Q m i n i m u m  o r
maximum occurs at k = ko  for the electron energy E(k)  in  a crystal  band, then
when k is near this minimum or maximum, i.e. when k - ko is small, the energy in

the band as a function of k - k,, may be similar to that for the free particle:

E ( k )  ” Ee  +  cu(k  - kg)’ (12.76)

where ED  and a ore constants. Let us then rewrite o as fi h2/m*,  where m* is

a constant. Then, near ttle  maximum or minimum,

E(k) E  E. + FA:  (k - kO)’
( )

(12.77)

Comparison with the energy expression for the free particle leads one to the idea

of an “effective” mass,

ii2m* = -
2a

(12.78)

In a sense, the electron can then be treated OS a free particle of mass m*, ,with
no periodic potential  energy present. Near a maximum of energy, the effective
mass i s  negative, and nfear  a minimum, the effective mass is the more famil iar
positive quantity. In three dimensions, where k is a vector, 01  may (and frequently
does) vary with di rect ion in k space, so that the effective mass is  a function of
direction. The concept of effective mass is useful in calculating densities of states
and in discussing phenomena in applied electr ic and magnetic f ields, for situa-
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t ions in which particles near the minimum or maximum of energy contr ibute sig-
nificantly to the effect.

n/e Suppose that for the one dimensional case,

E =  “‘(1 - c o s k a )
ma2

For small  ka, the expansion, cos 0 = 1 - % 8’ + . .. ,  can be used. A s imi lar
expansion near ka = 7r  can be usecl by not ing that cos 19  =  -cos(a  - 0).  F ind
the effective mass at the energy maximum (k = r/a),  and at the minimum
(k = 0).

on  Forka < <  1,E  =  51 -{I - ~11

h2k2%-
2 m

, m*=m

For 1 s - kal  << 1,

~5  = %I + cos(ka -
ma2

r)l

h,  2h2%‘(k  - r/a)’___-
ma2

m* = -m
2171

0 CONDUCTORS, INSULATORS, SEMICONDUCTORS

Since the Pauli  exclusion principle applies to electrons, in sol ids it  is  important to
use Fermi-Dirac statist ics for the electrons rather than classical statist ics. This is,
f i rst,  because the number of states tper  band (which equals  twice the number of
cel ls) is comparable to the number of outer atomic electrons. Secondly, the

energy spread within a band is  comparable to electron volts ,  whereas ksT at
room temperature is about l/40  eV.  Then the electrons wi l l  f i l l  up the var ious
different states in a band, and their  average energy wi l l  be around an electron
volt. Thus, the classical equipartition theorem does not hold and the effect of the
exclusion principle is important; the <statistics will be degenerate.

Let us f i r s t  ver i fy  that the band width AE might be of the order of electron
volts .  The change in k i s  about Ak z r/a.  I f  the latt ice spacing,  a,  i s  3  x
lo-“m,  a reasonable value, then

Ak E lO”m-

Assuming that AE E %ti2~k2/m*  wi th  m*, the effective mass,  approximately
the true electron mass, or about 1O-3o kg, then U,  in electron volts,  is  X  z
2 eV.  If AE were a different function of Ak or m were significantly different from

the mass of the electron, a different numerical result would be found; but this
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argument does give the Iright  order of magnitude of the band width for the outer

elfectrons.  Inner electron;  of  the atoms have a very smal l  band width,  and the
effective mass is very large because of their tight binding to the nucleus.

The average number of electrons per state, using Fermi-Dirac statistics, is

rl(E)  =  [ e x p ( E  - EF)/~BT  +  11-l (12.79)

and for the degenerate case, EF >> k8T.  Then each state is essentially filled with
one electron, up to an energy of about E F, and there are almost no electrons in
s tates  above EF. The transit ion region where f(E) drops from - 1 to - 0 has a
width of the order of magnitude of ksT in energy. In the crystal, therefore, this
trlonsition region wi l l  ordinari ly be a smal l  f raction of the band width. Suppose,
then, that the energy bands do not over lap, as indicated for  bands 1 and 2 in
Figure 12.15, and that t i le energy gap E, is  several electron volts .  Suppose there

-A ”
--

Figure 12.15. The energ:,  difference between the conduction band minimum (band 2)
and  valence bond maximum is called the energy gap,  E,.  In insulators, the valance band
is filled, and the energy gap is of the order of several electron volts; the conduction bond is
empty.

are enough electrons to f i l l  al l  the states in band 1 and al l  of the lower bands,
but not enough to fill band 2 completely. If there are N cells, and hence 2N avail-
able states per band, then if there are an even number of electrons per cell, there
wil l  be almost no electrons in band 2. This is  because the even number of elec-
trons wi l l  just f i l l  an integral number of bands. The last f i l led band (band l),  is
called the valence band, and the higher unfilled band is called the conduction
bond (band 2 in F igure 12.15).

On the other hand, if again the bands do not overlap, but there are an odd
number of electrons per cell, there will be only N electrons in the last band, and
N unfilled states in that band (the conduction band).

On the basirof the foregoing discussion, one may obtain a simple explanation
of the main differences between conductors and insulators. In order for an electric
current to f low, there must be more electrons moving in one direction as com-
pared with another.  S ince hk is somewhat l ike the electron’s momentum, this
means the electrons must  have wavefunctions with average k different from zero.
With no electric field applied, both cases of odd and even numbers of electrons
per cell have an average k of zero, since wavefunctions of k and -k correspond
to the same energy. When an electric field is applied to a substance having an

odd number of electrons per cell, it can easily excite electrons with energies near
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EF into states producing a net current, because there are unfilled available energy
states nearby in energy. Thus this crystal wi l l  be a conductor.  For a substance
having an even number of electrons per cell, the unfilled states, are several elec-
tron volts away in energy, and it would take a very large electric field to produce
appreciable current. Such a crystlal  is then an insulator.

From what has been said so far, all conductors should have obout equal, and
large, conductivities. This is because we have assumed a perfectly periodic crystal
latt ice. One deviat ion from a perfect crystal  latt ice that is  always present is  the
latt ice vibrat ion, or  phonon. Elec:trons  can interact with these phonons and be
scattered away from current-carrying states. This is  the main effect that l imits
conductivit ies in most conductors at room temperature. Other latt ice imperfec-
tions which reduce conductivities are impurities and atoms missing at lattice sites.
Also, in the discussion above it was assumed that the bands do not overlap. Sup-
pose bands 1 and 2 of Figure 12.15 had overlapped. Then there would be more
than 2N states having energies below the top of energy band 1, and thus for
an even number of electrons per cel l ,  the last 2N electrons could f i t  in,  leaving
nearby energy states unf i l led. This crystal would then be a conductor.  Calcium,
with an even number of electrons per cell, is a conductor of this type.

Suppose that a crystal with an even number of electrons per cell had valence
and conduction bands which did not overlap, but the energy gap was only a few

tenths of an electron volt. Since k,rT at room temperature is about l/40  eV,  then
the gap is not enormously greater than k&T,  and there would be a reasonable
number of electrons in the conduction band; so the crystal would conduct elec-
tr icity, but not as wel l  as a normal conductor. A crystal of this type is  cal led a
semiconducfor.  Germanium, s i l icon and various compounds ure of this type.
Semiconductors are used in many devices, especially in transistors.

12.2 1 HOLES

Suppose there is a semiconductor in which the gap E, between conduction and

valence bands is less than an electron volt, as in Figure 12.16. Then at room tem-
perature there will be some electrons in the conduction band, and there will be
an absence of electrons in the valence band, primarily at the energy maximum.

E

Conduction

band

1.3

f-
- k

Figure 12.16.
gap.

Illustration of conduc:tion  and valence bands having a very small energy
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These unfilled states in the valence band are called hales. The effective mass asso-
ciated with these unfilled states at the energy maximum is negative.

For s implicity, let us assume that just one state, the j’” state, near the energy
maximum is unfi l led, so there is one hale. If  the charge of an electron is e ==
- 1 ,e / and V, i s  the expectat ion value of the velocity of the ith state, then the
current is  proport ional ta:

C (- I e I vi)
I’;

(12.80)

Here, the summation is aver all valence band states except the one that is unfilled.
This can be written as:

C - I e I v, = C (- I e I vi)  +- I e I v,
i+; .I1 I

(12.8’1)

I f  the valence band were completely f i l led, the electr ic current would be zero.
T h u s ,  c.,,;  (-  ( e  1 vi)  =  0. T h e net current is  then proport ional ta ( e ( vi.  Thus,
a hale acts as a particle with a velocity associated with the empty state, and with
a positive charge equal in magnitude ta the electronic charge.

The rate of change in tilne  of the current is  proport ional ta 1 e 1 dv;/dt.  Sup-

pose there were an electrc’n of charge - 1 e ) and effect ive mass m* in the j’”
state, and an electric field E were present. Then, using the expectation value of
Newton’s second law, we giet

I e 1 dv, _ - le12E

dt m*

Near a maximum in energy, m* is negative, m *  =  -lm*I,so

1 e 1 dv, _ +/e12E

dt Im*l

(12.82)

(12.83)

The motion is that of positively charged particles with positive mass. Thus, such a
hale wi l l  contr ibute ta electr ic current in the same sense as an electron in thle
conduct ion band, which has negative charge and posi t ive effect ive mass.  This
discussion shows that in a semiconductor the electr ic current wi l l  consist,  in gen-
eral, of an electron current due ta conduction band electrons, and a hale current
due ta valence band hales.

12.22 n-TYPE AND p-TYPE !XMlCONDUCTORS

By introducing impurit ies into a semiconductor, the number of electrons in the

conduction band, or the number of hales in the valence band, can be greatly in-
crealsed.  Far example, the germanium atom, like carbon, has a valence of 4 and
farms a valence-bound crystal, in which each germanium atom is surrounded by
four other germanium atoms. I f  an arsenic atom impurity with 5 outer electrons
is substituted far a germanium atom, 4 of the 5 electrons are bound tightly by the

valence bands, but the fifth is loosely bound. To see how loosely, let us treat the
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impurity as if it were like a hydrosgen  atom. Thus the arsenic nuc:leus and all elec-
trons but the f i fth outer electron form an effective nucleus of charge 1 e 1 ,  and
the electron of charge - 1 e 1 is  bound by the attractive Coulomb-l ike force
between it  and the core, and wi l l  be descr ibed by hydrogen-l ike energy levels
lying below the conduction band minimum. However, the Coulomb force inside a
medium with a dielectr ic constant K  is -e2/4~t,Kr2,  so the effective charge
for this hydrogen-l ike atom is e/-&-The  dielectr ic constant in germanium is 16,
and al l  electr ic f ields are hence reduced by a factor l/16  in germanium. Also,
one should use the effective mass m* rather than the true electron mass. While the
effective mass is dependent on dIrection,  the average effective moss at the mini-
mum of the conduction band is  about m/5. The binding energy of a true hydro-
gen atom in free space is 13.6 eV and is proportional to me4.  The binding energy
of the fifth electron may then be estimated as:

1 m”
Eb  g 13.6 x - x - = 1 3 . 6

K2 m (16)2  x  5
= .0106eV

This result  agrees in order of magnitude with the actual ly measured binding
energy. Since the binding energy below the conduction band is about .Ol eV and
is smaller than k,T - l/40  eV,  at room temperature a large fraction of the
impurit ies wi l l  be ionized, with the extra electrons going into the conduction
band. The Fermi level  Ef wi l l  l ie near the bottom of the conduction band rather
than halfway between bands as in a pure material, and so there will be very few
holes in the valence band. Almc8st  al l  conduction electrons wil l  come from the
impurities. Because the impurities give electrons to the conduction band, they are
called donors. Also, s ince the current is  due to negatively charged part icles be-
cause there are few holes, this is called an n-type semiconductor.

L ikewise, the germanium could be doped with impurit ies of valence 3 instead
of 5. In this case, the impurity would draw an electron out of the valence band,
to give itself 4 electrons. The resull’ing  negative ion would then have the resulting
hole bound loosely to it .  Because this kind of impurity takes electrons out of a
band, it is called an acceptor. Many of the holes are unbound at room tempera-
ture and move freely in the valence band. The Fermi energy is near the top of the
valence band, and so there are few electrons in the conduction1 band. Thus the
electrical conduction is mainly due to hole motion. Because the hole is effectively
a positive particle, we say this is a p-type semiconductor.

A pure semiconductor, where there are equal numbers of electrons and holes,
is cal led an intr insic semiconductor. When the electrons or holes are due pri-
marily to impurities, it is called an extrinsic semiconductor.

.23  H A L L  E F F E C T

The fact that both holes and electrons can exist  in semiconductors can be ob-
served in the Hall  effect. Suppose a piece of semiconductor (or any other ma-
terial) is  hooked across a battery as in Figure 12.17. Indicated on the f igure by
arrows labeled  H  and E are the average directions of motion of holes and elec-
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Figure 12.117. Schematic diogrom  of the experimental setup for observing the Hcrll
effect. The dots indicate o magnetic field out of the paper. Current flowing from right ‘ t o
left in the sample is forced downward by the Lorentz  force acting on o moving charge. A
resulting potential difference, the Hall voltage, then builds up across  the sample.

trons, respectively. I f  a magnetic f ield is  appl ied perpendicular to the appl ied

electric field (B out of the paper in the figure), the magnetic forces tend to deflect
the (charged particles, due to their overage velocity. The deflections that a hole
and an electron, respectively, would receive, are indicated on the diagram by
curved arrows labeled  h and e. Thus, electrons ond holes are deflected in the
some direction. I f  there are more electrons than holes, a negative charge bui lds
up on s ide B and a posit ive charge on s ide A, unti l  the result ing electrostatic
forc(es  are equal  and opptssite  to the magnetic forces. If there were more holes,
side B would be positive and side A would be negative. The electrostatic potenti’al
difference result ing between sides A and 6, proportional to the magnetic f ield
strength, is called the Hall voltage. The fact that experimentally the Hall voltage
can be either posit ive or negative, demonstrates that both holes and electrolls
can be responsible for electrical conductivity. This is the Hall effect.

C R Y S T A L  C L A S S I F I C A T I O N

Crystals ore classif ied intc’  the 14 Bravais latt ices of Figure 12.1 according to
symmetry axes and ref lection planes. The possible symmetry axes consistent with

translational symmetry are twofold, threefold, fourfold and sixfold, correspond-
ing to rotations of 180”,  120”,  90” and 60”,  respectively.  Each latt ice point of

a Bravais  lattice can correr,pond  to several atoms or molecules.
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BINDING FORCES

Valence crystals are bound by electrons being shared by neighboring atoms,
whi le metals are bound by each electron’s being shared by al l  the atoms. Ionic
crystals are bound by direct Coulomb electrostatic forces. The fourth type of
binding is due to permanent or fluctuating electric dipoles.

LATTICE VIBRATIONS

Because a sol id is  not a continuous medium but consists of discrete atoms, the
equation of motion leading to sound vibrations is  somewhat different from the
wave equation for a continuous medium. Instead of al l  frequencies being possi-
ble, the number of frequency modes is equal to three times the number of atoms
(for three dimensions), and there exists a maximum frequency of propagation.
There are branches of the w versus k curves, with the number of modes in each
branch equal to the number of cel ls.  The frequency is a periodic function of k
and thus k can be restricted to one of these periods. The branches of modes for
which w = 0  when k = 0 are cal led acoustic branches. There are, in general,
one longitudinal and two transverse acoust ic branches. I f  there are several  in-
equivalent atoms per cel l ,  there are other branches which are cal led optical
modes and correspond to w - 10’3/sec  near k = 0.

ENERGIES OF VIBRATIONS

The total vibration energy of the crystal is the sum of the energies associated with
the individual modes. The energy of such a mode can be put in the form of the
energy of a harmonic osci l lator witn the mass of the crystal and the frequency
of the mode.

QUANTIZATION  OF LATTICE VIBRATIONS

The quantizat ion of a normal mode is  the same as the quantizat ion of a har-
monic oscil lator. The possible energies are (n + % )Aw,  where n =  0 ,  1 ,  2 , .  .  .
and w is the angular frequency of ttie mode. For many purposes, it is convenient
to think of the vibrations as composed of part icles cal led phonons. Then the
integer, n, is considered to be the number of phonons present.

LATTICE SPECIFIC HEAT

At high temperatures, one can treat lattice vibrations as classical harmonic oscil-
lators with 3N modes. The equipartition of energy theorem then gives an average

energy of ksJ  per mode, leading tc a specif ic heat of 3R per mole. At low tem-
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peratures, because the energy is proport ional to w and the density of statses is
proport ional to k’dk  -. W’dW,  the average energy is  proport ional to T’  and
the specific heat to T3.

EILECTRON ENERGY IlANDS

Due to the periodic potential energy that any one electron sees, the electronic
wavefunct ion can be put  In the form of a Bloch  function, #(r) =  Ae””  u(r),

where k is a constant vector and u(r) is a function which has the lattice periodic-
ity. Since the energy is a periodic function of k, k can be restricted to a Brillouin
zone. When boundary conditions are imposed, it is found that if N is the number
of cells, there are N independent k’s. Then, because of the two possible orienta-
ti’ons of electron spin, the resulting electron energy bands contain 2N states each.

EFFECTfVE  MASS

I f  at a maximum or minimum  of E versus  k at  k = ko the energy var ies <qua-
dratical ly with the components of k -ko, by analogy with the free part icle
elnergy  E = ()ik)‘/2m,  one can find an effective mass for each direction.

CONDUCTORS, INSULATORS, SEMfCONDUCTORS

B’ecause of Fermi-Dirac stat ist ics and the fact that there are 2N states per band,
i f  there are large energy gaps between bands, then at normal temperatures a
crystal with an even number of electrons per cell has the bands below the Fermi
energy  completely f i l led, and those above completely empty. S ince the nearest
elnpty  states are far away in energy, a reasonable electric field gives little current
and the crystal is an insulator. For an odd number of electrons per cell, the Fermi
level is in the middle of the last band containing electrons. The band is half-filled,
and since unfi l led states are nearby in energy, this is  a conductor. L ikewise, i f
there is  overlap in the last bands containing electrons, there are more than 2N

states below the energy gap, and there are unfilled states in these bands, form-
inlg a conductor. If there are an even number of electrons per cell, but the energy
g’ap  is small ,  there may be a reasonable number of electrons in the conduction
bsand  at room temperature, so there wil l  be some conduction of electr icity. The
substance is then called a semiconductor.

HOLES

The empty states left  in the top of the valence band of a semiconductor when
electrons go to the conduction band act as i f  they were part icles of posit ive
charge 1 e / and posit ive effective mass. These part icles are cal led holes. They

can conduct electricity just as the electrons in the conduction band.
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n AND p-TYPE SEMICONDUCTORS

I f  an impurity is in a semiconductor and has one extra electron, the electron is

loosely bound and is easily excited to the conduction band. The impurity is called

a donor .  Conduction is then primarily due to the negative electrons and the ma-

terial is called n-type. A deficiency of one electron on the impurity causes the

impurity to bind an electron t ightly from the valence band leaving a hole. The

impurity is called an acceptor. The posit ive hole conduction leads to the term

P-Vf=

HALL EFFECT

When a potential is applied to a substance, current tends to f low parallel to the

electric field. If a magnetic field is applied perpendicular to the electric field, the

charges are deflected unti l  the new charge distr ibution produces electr ic forces

equal and opposite to the magnetic forces. The resulting potential difference due

to the charge redistr ibut ion is the Hall  voltage. Because electrons and holes are

deflected in the same direction, the Hall  voltage has opposite signs for the two

kinds of conduction.

1 . Sodium has o b o d y - c e n t e r e d  c u b i c  s t r u c t u r e  w i t h  t w o  a t o m s  p e r  c u b i c  (cell.  The dens i ty

o f  s o d i u m  i s  0 . 9 5 2  g/cm3, and i t :  a tomic  we ight  i s  23 .0 .  Ca lcu la te  the  length  o f

the  edge of  a  cub ic  ce l l  and the  smal les t  d i s tance between atoms .

A n s w e r : 4 .31  Angs t roms ;  3 .73  Angs t roms .

2 . Copper  has  a  face-centered cubic  s t ructure  wh ich has  on the average four  atoms per

cub ic  ce l l .  The dens i ty  o f  copper  i s  8 .9  g/cm3, a n d  i t s  a t o m i c  w e i g h t  i s  6 3 . 5 4 .  W h a t

i s  the  length  o f  the  edge o f  a  cub ic  ce l l ,  and  what  i s  the  sma l le s t  d i s tance between

a t o m s ?

A n s w e r : 3 .62  Angst roms;  2 .56  Angst roms

3 .  Show that  a  body-cente red rhombohedra l  la t t ice  i s  equ iva lent  to  a  d i f fe rent  s imp le

rhombohedra l  la t t ice.

4 . S h o w  t h a t  o base-centered tetragolal  la t t ice ,  where  the  bases  a re  the  square  faces ,

i s  equ iva lent  to  a  d i f fe rent  s imp le  tetragonal  l a t t i c e .

5 . The  d iamond s t ructu re  i s  a  face- ten- te red cub ic  la t t ice ,  but  w i th  two carbon atoms  per

l a t t i c e  p o i n t  s o  t h a t  t h e  c r y s t a l  d o e s  n o t  h o v e  t h e  f u l l  c u b i c  s y m m e t r y .  I t  h a s  t h e  s y m -

met ry  o f  the  regu la r  te t rahedron  imtead (equ i la te ra l  t r iang le  faces ) .  I t  has  fou r  s im i -

l a r  t h r e e f o l d  a x e s ,  t h r e e  s i m i l a r  t w o f o l d  a x e s ,  a n d  s i x  s i m i l a r  r e f l e c t i o n  p l a n e s .  A l s o ,

the re  a re  th ree  s im i la r  axes  fo r  wh ich  a ro ta t ion  o f  90”,  fo l lowed by  re f lec t ion  about

o p lane perpendicu la r  to  the ax i s ,  re tu rns  the  tet rahedron to  i t s  o r ig ina l  conf igura-

tion. Find all these axes and planer. If the inversion were added and combined with
a l l  these  operat ions ,  one  wou ld  obtclin  the  complete  cub ic  g roup of  symmet ry  opera-

t i o n s .
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6.

7.

8.

‘9.

The  rhombohedra l  la t t ice  has  a  th reefo ld  ax i s ,  th ree  s im i la r  twofo ld  axes ,  th ree  s im i -

la r  re f lect ion  p lanes ,  and the  inver s ion .  In  add i t ion ,  there  i s  an  ax i s  such that  o 60”

ro tat ion  fo l lowed by  a  re f lect ion  about  a  p lane perpend icu la r  to  the  ax i s  leaves  the

s t ructu re  the  same.  F ind  these  axes  and p lanes .

In  liquation  ( 1 2 . 3 4 )  t h e  results  fo r  w v e r s u s  k w e r e  g i v e n  f o r  t h e  l a t t i c e  v i b r a t i o n s  o f

a  one d imens iona l  c rys ta l  o f  a l te rnate  masses  ~a a n d  M a .  V e r i f y  t h e s e  r e s u l t s .

Suppose a one d imens ional  la t t ice cons i s t s  o f  masses,  pa, connected  by  sp r ings .  I f

a l t e r n a t e  s p r i n g s  h a v e  s p r i n g  c o n s t a n t s  K / a  a n d  K’/a,  s h o w  t h a t  t h e r e  a r e  t w o

branches  g iven  by :

i f  a  i s  the  equilibriunl  d i s t a n c e  b e t w e e n  a l t e r n a t e  masses,  o r  t w i c e  t h e  d i s t a n c e  b e -

tween  succes s i ve  masses .  To  so lve  the  p rob lem,  labe l  amasses  w i th  sp r ings  o f  cons tant

K/a t o  t h e  r i g h t  b y  clisplacements  $“, a n d  t h e  n e i g h b o r i n g  masses  w i t h  a  sprirlg  o f

cons tant  K’/a  to  the  r igh t  by  d i sp lacement s  +c,,  W r i t e  t h e  t w o  e q u a t i o n s  o f  m o t i o n ,

one fo r  each of  these types  of  mass ;  then assume sollJtions  of  the form:

4” =  Acos(kna)cos(wf  +  a)

an  =  8 cos(kna +  (Po)cos(ti>t +  a)

where  A  and  6 are constants .  The phase angle @o i s  dete rmined by  us ing  ident i t ie s

s u c h  a s  cos(kna +  <bo) =  cos(kno)cos  QI o  - sin(kna)sin  ao,  a n d  s e t t i n g  c o e f f i -

c ien t s  o f  sin(kna)  and cos(kna)  i n  the  equat ions  o f  mot ion  separate ly  equa l  to  ze ro .

In  the  two d imens iona l  la t t ice  shown on  the  nex t  page,  each mass  i s  m,  ana l  the

spr ings  a l l  have sprinsg  cons tant  K  and equi l ibr ium tens ion T .  The hor izontal  row!:  a re

labeled  b y  t and the ver t ic le  by  n .  Fo r  smal l  d i sp lacements  in  the  p lane,  the  fo rces

on the +C,  n* mass  a re  (d i sp lacements  a re  <and q i n  t h e x  a n d  y  d i r e c t i o n s ) :

A s s u m e  t h a t  Ex,,  = I:,J  s i n  ( n k ,  a  +  -!,  k,a  - w t ) ,  a n d  f i n d  w a s  a  f u n c t i o n  o f  k, a n d

k , .  I f  k, =  0 ,  a  l o n g i t u d i n a l  w a v e  r e s u l t s ,  a n d  i f  k, =  0 ,  i t  i s  a  t r a n s v e r s e  w a v e .

Another  branch i s  g iven by assuming a s imi la r  fo rm for  ox  ,”  wh ich  ju s t  i n te rchanges

the  ro le s  o f  k,  and k , .
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10. If the lattice spacing of a one dimensional lattice ot atoms of mass 3.7 x 10m27kg
is 3 Angstroms and the effective spring constant is 15 x 10m3nt,/meter,  what is the
maximum angular frequency of waves which can be propagated in the lattice? Of
what angular frequency are wwes  of 0.95 the wavenumber of the maximum fre-
quency waves?
Answer: 4 . 0 3  x  10’2sec-‘;4.02  x  10’2secC’.

11. The maximum phase speed of an  elastic wave  in a one dimensional  crystal of atoms
of mass 6.3 x 10-27k g is 3 x 105cm/sec.  I f  the atom density is  3.14 x 10’  per
centimeter, what is the cutoff frequency? Describe the motion of neighboring atoms
at this frequency.
Answer: v =  3  x  10’3cps;  18O’out  of phase.

12. In a  one dimensional crystal with atoms of only one mass, when the wavelength of
oscillations is 100 times the interatomic distance, the phase speed is 4 x lo5 cm/set.
What is the phase speed and  group speed when k is r/a?
Answer: 2.55 x 1 O5  cm/set.,  0.

13. In finding the kinetic energy for CI  mode, it was assumed that

N-l

c cos2(kna)  = f N if  k=Tt?L!?! m  =  0,1,2,
n=O No ’

Prove this  by us ing cos(kno)  =  !Iz  (eik”’ + e-‘line ) and the formula for the sum of o
geometric series. Also, in showing that modes do not interfere in #energy,  it WQS as-
sumed that

N - l

c cos(kna)cos(k’na)  =  0

n=O

if k # k’. Prove this.
14.  I f the density of vibrational states between k and k + dk is kdk/2r  in two dimen-

sions, find what the high temperature lattice specific heat is in two dimensions, and on
what power of Tit depends at low temperatures.
Answer: 2R/mole;  T2.

15. In the chapter on quantum statistical mechanics it was found that the heat capacity
per mole of electrons was on the order of Rks J/El,  where EF  is the Fermi energy
and R is the gas constant. To measure the low temperature dependence of the specific
heat of a solid lattice due to phonons, should you use a conductor or an insulator?
Why?
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16.

17.

18.

19.

2 0 .

2 1 .

2 2 .

2 3 .

2 4 .

2 5 .

I f  t h e  e n e r g y  i n  a  b a n d  i s  g i v e n  b y  E ( k )  =  E,,  +  p[3 - cos(k,z)  c o s  (k,o)  -

cos(k,a)cos(k,a)  - cos(kp)cos(k,a)],  hw  e r e  Eo  and pare  cons tant s ,  f ind  the  e f fec-

t i v e  m u s s  i n  t h e x ,  y  a n d  z dlrections  a t  k, =  k, =  k, =  0 ,  a n d  a t  k, =  P/O,  k, =

k, = 0.

A n s w e r :  m,  =  my  =  mz  =  h2/(20  ‘@);m,  =  -h2/(2a2~),  my  =  mz  =  I,

I f  i n  t h e  c o n d u c t i o n  balld  o f  CI  c o n d u c t o r ,  E  =  ‘/zh2k2/2m*  a n d  t h e  d e n s i t y  Iof

s t a t e s  b e t w e e n  k  a n d  k -t d k  i s  k2dk/a2,  s h o w  t h a t  t h e  o v e r a g e  e n e r g y  I S “/15  of  the

F e r m i  e n e r g y  EF,  a s s u m i n g  all  s t a t e s  b e l o w  Er are  f i l l e d  a n d  a l l  s t a t e s  a b o v e  ,EF

clre  e m p t y .

In  d iamond,  the  gap w idth  i s  7  eV.  What  f requency of  inc ident  e lect romagnet ic  radio-

t i o n  w o u l d  cause  an e lect ron to  go f rom the va lence to  the conduct ion band?

Answer: 1 . 6 8 9  x  lC~‘~cps.

The valence  band and conduct ion  band of  severa l  c rys ta l s  a re  separated by  3 .0  e’V,

0 .3  eV,  and 0.00 eV  ( o v e r l a p ) .  D e s c r i b e  t h e  t y p e  o f  e l e c t r i c a l  c o n d u c t i v i t y  e x h i b i t e d

by each c rys ta l  i f  the re  a re  on  even number  o f  e lect rons  per  ce l l .

The  gap w idth  o f  s i l icon  i s  .I.21  eV.  Arsen ic  donor  atoms in  s i l icon have an energy

0.046  eV  b e l o w  t h e  bott,>m  of  the  conduct ion  band.  Make a  sketch of  the  energy  leve l

d iagram,  rough ly  to  sca’e,  fo r  th i s  s i t ua t ion ,  and  es t imate  the  temperatu res  a t  wh ich

the  donor  leve l s  wou ld  be  f i l l ed .

Answer: T <c 5 3 3  K

In  a  semiconducto r ,  the  e f fect ive  mass  m*  of  the  ho les  and  e lect rons  a re  the  same,  !so

t h a t  t h e  d e n s i t y  o f  s t a t e s  b e t w e e n  k and k + dk  fo r  each i s  k2dk/X2,  and the energy

above the bot tom of  the  conduct ion  band or  be low the top of  the  va lence band

( a t  k  =  0 )  i s  (hk)2/2m*.  T h e  F e r m i  e n e r g y  Ef  i s  h a l f w a y  b e t w e e n  t h e  t w o  banols.

A s s u m e  t h a t  t h e  g a p  e n e r g y  E,  i s  l a r g e  e n o u g h  s o  t h a t  l/[e-(EF-E)‘kBr  +  l] rV

e(EF-E)‘kB’for  E i n  t h e  c o n d u c t i o n  b a n d ,  a n d  t h e  d i s t r i b u t i o n  f u n c t i o n  i s  a p p r o x i -

m a t e l y  1  - e -(EFmE)‘ks7  fo r  E i n  the va lence band.  I f  the bands  are  w ide compared

t o  ksJ,  f ind the number of  holes  per  uni t  volume in the valence band and the number

of  e lect rons  per -un i t  volume in the conduct ion band.  For  Es = 1 eV  and m*  equa l  to

the t rue e lect ron mass ,  f ind th i s  number  fo r  T =  273  K .

Answer: 2(mkT/2ah2)3’2e-Eg’2kBT.

When an impur i ty  atom,  such OS  a r sen ic , in  the f i f th  co lumn of  the per iod ic  tab le ,

rep laces  on atom of  s i l icon in  o c r y s t a l  o f  s i l i c o n ,  t h e r e  i s  o n e  e x t r a  e l e c t r o n ,  w h i c h

e f f e c t i v e l y  s e e s  o  c h a r g e  + e  a t  t h e  p o s i t i o n  o f  t h e  a r s e n i c .  A s s u m i n g  t h e  s i l i c o n  i s  a

medium of  d ie lect r ic  constant  K = 11 .9  and the  average e f fect ive  mass  i s  0.4m,,

ca lcu la te  the  b ind ing  energy  o f  the  e lect ron  to  the  a r sen ic .  a tom in  e lect ron  vo l t s .  A l so ,

ca lcu la te  the  rad iu s  o f  the  lowes t  Boh r  o rb i t .

Answer: ,038  eV;  15 .7  Angs t roms .

I f  a  smal l  amount  of  ind ium i s  combined wi th  germanium to make a semiconductor ,

w i l l  i t  b e  p - t y p e  o r  n - t y p e ?

In  the semiconductor  germanium,  the  energy  gap i s  0 .79  eV  i n  w i d t h .  W h a t  i s  t h e

wave length  o f  the  photon  wh ich ,  when  abso rbed by  a  pu re  ge rman ium c ry s ta l ,  w i l l

c reate an e lect ron-ho le  par?  A t  w h a t  t e m p e r a t u r e s  w o u l d  t h e s e  p a i r s  b e  e x c i t e d

thermal ly  in  appreciable numbers?

Answer: 1 5 , 7 0 0  a n g s t r o m s ;  T > 9160K,  f a r  g r e a t e r  t h a n  t h e  m e l t i n g  o r  b o i l i n g

po in t  o f  Ge.

I f  s i l i c o n  i s  d o p e d  w i t h  a smal l  amount of  aluminum,  w o u l d  y o u  e x p e c t  i t  t o  b e  a

p- type  o r  n - type  semiconducto r?
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In Chapters 8 and 9 atomic structure was discussed assuming that the nucleus,
which actual ly contains over 99.94% of the mass of the atom, is  s imply a point
mass carrying a charge Ze, where Z is the atomic number. There it was seen how
an enormous amount of experimental data can be assembled into a s imple
conceptual scheme: energy level structure and spectra of the elements, the
periodic table, chemical propert ies of the elements, x-ray spectra, and so on.

These phenomena may be understood quantitat ively,  by largely ignor ing any
internal  st ructure the nucleus may have. However,  i t  i s  natural  to expect that
the nuclei  may themselves have an internal  st ructure and exhibit  a r ich var iety
of phenomena, particularly if sufficient energy is given to the nuclei so that they
can approach one another and react or scatter from each other.

The study of nuclear structure began in 1896 with the discovery of radio-
act iv i ty by Becquerel ,  and s ince then it has been of major concern in physics.
In this chapter we shal l  discuss one of the most important methods used in the
study of small  part icles: scattering. In a scatter ing experiment, a beam of
particles of some type is produced, which may be described by some parameters
such as kinetic energy, charge, ITlass,  spin direction, etc. This beam is al lowed
to str ike a selected target, and ?he  angles of deflection, number and type of
recoil particles, losses of energy, and other quantit ies,  are observed. This in-
formation may then be used in formulating a theory of the forces involved;
or, with the aid of a theory or model of the scattering process, information
may be obtained about the internal structure of the target particles. For example,
Laue spot patterns are observed when x rays are diff racted from crystal l ine
sol ids.  This may be considered as a process involving scatter ing of the x-ray
photons in the incident beam. By observing the spot patterns, one may determine

the internal structure and arrangement of the atoms in the crystal.

3 . 1  A  N U C L E A R  M O D E L

For s implicity, in our f i rst discussions of the nucleus we wil l  consider a model
in which the nucleus is assumed to be spherical in shape, and in which the charge,
Ze, and the mass are uniformly distr ibuted throughout the sphere. Experiments

show that these assumptions are not quite correct in general,  but we should
nevertheless be able to obtain reasonable est imates of nuclear dimensions using

this model.

3 8 1
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Let the radius of the sphere in this model be R; this radius is  the distance
from the nuclear center at which the mass and charge densities fall to zero, and
is somewhat of an abstmraction because in real nuclei no such sharp outer
boundary exists .  In order to design a scatter ing exper iment which would reveal
some of the internal structure of a nucleus, one would f i rst l ike to have a rough
idea of the radius R for a nucleus of a given charge and mass.

Imagine, for example, a point test charge Q, such as an electron, placed at a
distance r  from the center of the spherical nuclear charge distr ibution. The force
on this test charge wi l l  be a function of both r  and R ,  and hence if this force
could be measured, R  coLlld  be determined. I f  r is  greater than R ,  so that tlhe

test charge is  outs ide the spherical distr ibut ion, then by Gauss’ law the enti re
charge Ze of the nucleus may be considered to be concentrated at the center
of symmetry. The force between test charge and nucleus would then be equal to

ZeQ/4?rtorz.  H o w e v e r ,  i f  r  i s  l e s s  t h a n  R ,  s o  t h a t  t h e  t e s t  c h a r g e  i s  in&de
the nucleus,  then by Gauss’ law only the charge at radi i  less than r  effectively
acts on the test charge. Since the nuclear charge is assumed to be uniformly
distr ibuted, the fraction of nuclear charge acting on the test charge wi l l  equal
the fraction of nuclear volume at radi i  less than r. The total  nuclear volume is

“/,  7rR3.  The volume at radii less than r is %  xr3. Therefore, the fraction of nuclear
charge acting on the test charge is equal to (r/R)3.  The total amount of nuclear
charge effectively acting on the test charge at r <  R  i s  then equal to Zer3/R3,
ancl the force on the test charge is equal to ZeQr,/4rcoR3.  Summariz ing, the
force is given by:

ZeQF=-
47rtor2  ’

for r > R

fz = ZeQr

47mOR3
f o r r < R (13.1)

LI-r-
R 2 R 3R 4R

Figure 13.1. Graph of the force between a test charge Q and a spherically symmetric,
uniformly distributed nuclear charge of finite radius R.
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In Figure 13.1 the force is plotted as a function of r .  Thus, for a distr ibuted

charge, at small radii  the force does not continue to approach inf inity as l/r2

but approaches zero instead. If  the ledge of the nuclear charge dist r ibut ion were

sharp, there would be a sharp change in the slope of the graph of F(r)  at a

value of r equal to R, the nuclear radius. Then i f  we could place a test charge

in this region, we could measure R. Actually, we cannot measure forces directly

in nuclear physics, but we can measure some of the effects to be expected from

different potential energies of interaction.

2 LIMITATIONS ON NUCLEAR SIZE FROM ATOMIC CONSIDERATIONS

From the above considerations, i t  is  seen that for radii  r >  R ,  the potential

wil l  be a Coulomb potential. By (considering deviations between theory and

experiment for hydrogen-like atoms with heavy nuclei, we may obtain some idea

of the value of R ,  at which the potential ceases to be Coulombic. Thus, in the

theory of the hydrogen atom which was developed in Chapter 8, the calculated

electron energies agree with experilnent  to at least s ix s ignif icant f igures.  There

it was assumed that the nucleus is CI point charge, with R  = 0. In the 1s state

of hydrogen, the electron spends most of i ts t ime in a region of space at radii

comparable to the Bohr radius, a = 4at0ti2/me2  = 0.53 Angstroms. The fact

that the agreement between theory and experiment is so good means that the

nuclear radius R must be much smaller than 0.5 Angstroms. To put an upper l imit

on R, we observe that the order of magnitude of the electron probabil i ty

d e n s i t y ,  ( $(r)  1 ‘, d oes not change signif icantly for the 1s state for radii  f rom

r  N 0  t o  r  2 a .  S i n c e  t h e  volume  o f  a  s p h e r e  o f  r a d i u s  r  i s  4xr3/3,  t h e

fraction of the t ime spent by the electron in the neighborhood of the nucleus is

of the order of magnitude R3/a3, and because the theoretical energy is correct

to at least six significant figures, we should have:

f i !3
a < 1o-6

or R should be less than about 10m2 Angstroms.

We can go farther. In a hydrogen-l ike atom with nuclear charge Z, the radius

of the f i rst  Bohr orbit  is a/Z. In the heavy elements where Z is around 100,

this radius can get as small as ab#Dut  0.005 Angstroms. Moseley’s law, which

gives x-ray frequencies based on a hydrogen-like model, is in good agreement

with experiment. The argument used above in connection with the hydrogen

atom, would then indicate that nuclear radii  cannot be greater than around

1 O-4 Angstroms.

A /J meson is an elementary particle which has charge -e and a mass m,

about 200 times that of an electron. It is possible for a CC- meson to be attracted

to a nucleus, and to replace an electron in an atom to form a relatively stable

atom with the p meson in a 1s starte. The equation for the radius of  the Bohr

orbit is the same as for the hydrogen atom, but with the mass of the /.L meson
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replacing the mass electron. This radius, aP = am/m,Z,  is inversely proport ional

to the mass and is around 0.00025 Angstroms for a Z of 10. The binding energies

of /L mesic atoms may be determined by various means, and it is found that

the energies begin to differ from that expected for a pure Coulomb potential

by 10% or so, for Z E 10. This means that the /.I  meson is spending a signif icant

part of i ts t ime at radii  r  inside the nucleus. Using the argument above,. we

find very roughly that (R/aJ3  <  ‘/,,, so the nuclear radius is  less than around

0.0002.S/10”3  A n g s t r o m s ,  o r  a b o u t  lo-l4 meters. This is probably an over-

estimate of the nuclear :size, since ) $ 1 ’ is  largest near the or igin,  which was not

taken into account.

The point here is  that in the 1s state, the wavefunction does not vanish at the

nucleus but approaches the constant value tiIO,, =  ,dm as r + 0. Hence

there is some f inite prol>ability of f inding the electron (or meson) in the region

of the nucleus, and herlce the internal structure of the nucleus may have some

effect on the atomic energy levels. In lead, for example, a 1s  p meson spends

most of i ts t ime inside the nucleus and the atomic energies are changed by

large factors.  For lead, Z = 82, and the f i rst  Bohr orbit  of a p mesic atom of

lead would be ‘v  4 x 10.’  Angstroms.

Historically, nuclear radii were known to be of this general order of magnitude

long before mesic atoms were discovered. These radi i  were found by Rutherford

and his co-workers by allowing a beam of heavy charged particles of high

speeds to strike a thin foil, and observing that a few of the incident particles *were

deflected through large angles. To produce a large deflection requires a Large

force. From Figure 13.1 it can be seen that the maximum possible Coulomb force

is,  inversely proportional to R ‘. Hence the smaller R is, the larger is the maxilmuin

possible force, and to hove a large force, and hence a large deflection, R mu!jt  be

very small .  Quantitat ive considerations show that i f  the nuclear charge ‘were

sipread  out over the whole atom-i.e. R ‘u 1 Angstrom-then the part icles in the

incident beam should suffer only very sl ight deflections due to Coulomb forces.

The fact that large deflections are observed means that the nucleus must be much

sIrnaIler  than an Angstrom in radius. Of course, i t  is possible that forces other

than Coulomb forces are present. However,  as wi l l  be discussed later in this

chapter, Rutherford’s scattering formula, based only on Coulomb forces, com-

pletely explained the scattering results down to very small radii.

Because of the rather small  lengths that occur in nuclear physics,  i t  is  con-

venient to introduce a Iunit  of length comparable to nuclear radii .  A unit called

tile  fermi (named after the nuclear physicist, Enrico Fermi) is frequently used:

1 fermi =  lo-l5  meters = 10-s  Angstroms

Thus nuclear radii ,  on the basis of our above rough estimates, must be of the

o’rder  of several fermis.
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3 SCATTERING EXPERIMENTS

A great deal of useful information may be obtained by al lowing part icles to
col l ide with var ious targets.  In invest igating the structure of some object by
means of a scatter ing experiment, i t  is  desirable to use a beam of incident

particles whose de Broglie wavelerlgths  are either of the same general order
of magnitude as, or less than, the s ize of the structures being invest igoted.
For example, in the scattering of n  rays by a crystal ,  Laue spot patterns are
formed when the wavelengths of the incident photons are comparable to the
latt ice spacings. Similarly, in scattering off of nuclei, interesting phenomena

should occur when the wavelengths of the incident particles are of the same order
of magnitude as the lengths characterizing  nuclear structure, a few fermis. I f
the incident part icles are protons of wavelengths h  E 10 fermis, the protons’
momenta would be about p = h/X  = 6.6 x lo-*’  kg m/set. The kinetic energy
would be p2/2m.  Since the proton rest mass  m. = 1.67 x 1O-27  kg, the corre-
sponding kinetic energy is 1.3 x 10-‘*  ioules, or 8.3 MeV.  This is roughly the
kinetic energy of the incident part icles used by Rutherford, Geiger and Marsden
in their early experiments. To decrease  the proton wavelength to X z 1 fermi,
the required kinetic energy is roughly 600 MeV,  in the relat iv ist ic range. The
speed of the protons would be c’p/E  =  0.8c,  comparable to the speed of l ight.
To get electrons of wavelengths X ,V 1 fermi requires an energy of this same
order of magnitude, and hence the electrons would have speeds very close to that
of l ight. The smaller X is,  the larger the kinetic energy of the incident particles

must be. Therefore, the smaller the features of nuclear structure are thot we wish
to detect, the larger the incident kinetic energies must be.

The scattering process wi l l  usual ly depend on the kinetic energies of the
incident part icles in an important woy. Hence, the incident beams should be
beams of definite known energies as nearly as possible. If  the energy is really
very sharply defined, so is  the momentum, and so, according to the uncertainty
principle, the posit ion of an incoming part icle is  unknown. The incoming beam
would then be described by a wavefunction like that of a plane wave. Consider
a beam of part icles of known energy travel ing in the x direction, as shown in
Figure 13.2. Since pr = 0,  the uncertainty in pr  is zero, and the y posit ions of

the part icles are unknown. The same is true for the z posit ions. Hence, i f  this
beam fal ls  on some target, the exact posit ions at which the incident part icles
wi l l  st r ike the target wi l l  be unknown. The target may consist of a sol id chunk
of material or o vial of l iquid; this wi l l  be a piece of matter of macroscopic
size because in practice, we cannot put one nucleus in a given position and hold
it  there, unless i t  i s  attached r igidly to the laboratory apparatus. In a sol id

piece of material as big as 1 mm3, we do not know exactly where the nuclei
are. We wi l l  only know that the nuclei are distr ibuted in some fashion through-

out the target.  Hence, we would not know how close a part icular incident
part icle could come to a nucleus e’ren i f  we knew exactly the posit ion of the
incident particle.
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Figure 13.2. A beam of particles traveling  in the x direction and striking a target.

Because of these posit ional uncertaint ies, i t  is necessary to describe the

scattering process in terms of probabil i t ies. I f  the beam intensity is uniform

across the target, we must assume that an incident particle is just as l ikely to

fall  at one oosition  on the taraet as on anv other. In Figure 13.3, a target of

A3
A2

-I
lm--

Figure 13.3. The relative probability of an incident particle striking an area A is pra-
portional to the area A.

area 1 m 2 i s  r e p r e s e n t e d  a s  i t  w o u l d  a p p e a r  t o  t h e  i n c o m i n g  b e a m .  I t  i s

oriented with its area perpendicular to the beam, and divided up into elements

of area Ai. If element A2 has twice the area of A,, on the average twice as

many particles should fal l  on A2 as on A,. In general, the probability that an

incident particle fal ls on an area A is proportional to A. Suppose that a total

of N; part icles per square meter per second are incident on the target. This

number N; is called the ,incident  flux  densify. Then the number of particles incident

on the area A per secorld  would be given by:

Number incident on A per second = N;A (13.2)

13.4 CROSS-SECTIONS

Suppose the target con,sisted  of a large number of circular scatterers of e’qual

area u,  as indicated in f:igure  13.4, randomly placed throughout the target, and

all oriented so that the circles are broadside to the incident beam. If  there are

q of these scatterers per unit  area, a n d  u  i s  s o  s m a l l  t h a t  n o  t w o  c i r c l e s

o,verlap,  the total area covered by the circles in one square meter of target would

be just equal to tea. Then, according to Equation (13.2),  the number of particles
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Figure 13.4. Target consisting of randomly placed circular scatterers of area u.

incident on the circles per square meter per second is

N,  = N,va (13.3)

The area u in this expression is  cal led the fatal scattering cross-section. We may

suppose that, whatever the scattering process actually is,  one may represent the

probabil i ty of the process in terms of an effective cross-sectional area u,  in

such a way that the number of particles scattered is given by Equation (13.3).

A part icle in the incident beam fal l ing inside a then is scattered, a particle

fall ing outside is not scattered. In actuality, the scattering probabil ity may be

a rather complicated function of the distance of the incident particle from the

target part icle. Equation (13.3) nevertheless serves as a definit ion of cr.  If a i s

not known, Equation (13.3) may Ibe  used to measure (r experimentally, provided

that 1 is known and N,  and N; can be measured.

5  D I F F E R E N T I A L  C R O S S - S E C T I O N

In practice, when an incident particle is scattered, it  may be deflected through

any angle 0 from zero up to 180”. The scattering angle 19  i s  def ined in F igure

13.5. A great deal more information about the scattering forces can be gained

by studying the number of scattered particles as a function of angle, than from

an experiment in which only u is found.

Incident beam
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We can think of the area u as being composed of nonoverlapping infinitesimal

a r e a s ,  da(O),  w i t h  (T =  -/da da is  that part of the total cross-section which

corresponds to the scattering of particles into some small range of angles about

0. It is convenient here to consider the number of particles scattered per unit solid

angle, into some small range of scattering angles near 0. The sol id angle d:Q

subtended by a section of a spherical surface of radius R, between the angles 0

a n d  0 +  d0, i s  d e f i n e d ,  as i n  F i g u r e  1 3 . 6 ,  b y  dO := dA/R’,  w h e r e  dA i s  t h e

Figure 13.6. Solid angle corresponding to an increment in polar scattering angle 0.

area cut off  on the sphere’s surface between the two cones of central angles

6 and 0 + do.  In terms of do, the differential solid angle, da is

dR =  _27rR  s i n  0 * RdB

R2
=  27r s in  19  d0 (13..4)

Thus, du(0)  is the cross-section for scattering into dC!.

The rat io da/d0  is  called the dif ferential cross-section. I f  dN,/dD  is the

number of part icles scattered per unit  sol id angle, per unit  area of targset

material, then by analogy with Equation (13.3),  the differential cross-section is

(13..5)

or the fraction of part icles scattered into angles near 8, per unit  sol id angle,

divided by the number of scatterers per unit area. The total cross-section is then
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Suppose, for example, that the scatterers were hard spheres, and that point

masses in the incident beam were scattered elastically upon striking the spheres.

Then the areas da would be the projections of thin, r ing-shaped areas on the

surfaces of the spheres, concentric about lines through the center  of the spheres,

parallel to the incoming beam, as in Figure 13.7. Since the various r ing-shaped

9
Incoming
particles

Figure 13.7. Different101 scattering orea,  dg,  for a hard sphere.

areas ore inclined at different angles to the beam, they scatter the part icles

through dif ferent angles.

rmp~e If the areal density of scatterers  i s  v =  10z4  per square meter, and the differen-

t i a l  c r o s s - s e c t i o n  f o r  s c a t t e r i n g  a t  8 9 . 5 ”  i s  da/d62 =  10e3’  m’, w h a t  i s  t h e

fraction of the particles  scattered into angles between 89” and 90”?

ution  One degree is about l/57.3  radians. The solid angle between 89” and 90” is

then about 2sr s in  (89.5”)Ao  2~  7,s. Then AC = du/dD AQ E 10 -32m2.

The effective scattering area per !square  meter of target material is then ~Acr =

(1 O*“)(  1 Om3’) = 10-s. This is the fraction of particles scattered.

,mpIe  Suppose a dif ferential cross-section is given by da/dQ  = u2 cos’  0. F ind the

total cross-section. T 4m2UfiOll u= s “d”df]=  r
o dfi s a2 cos2  c9 (27r sin 6’  d0) = F (-cos3@  = -.

0 0 3
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13.6 NUMBER OF SCATTERERS PER UNIT AREA

Consider a target made of some solid material which has a known number of

scattering centers  per uniq,  volume, n. I f  the target is a thin slab of thickness

t, the total number of scattering center:;  per unit area will be

?) = nt (13.:7)

Thus, the fraction of particles scattered when the total cross-section is r~,  will be

N
-2  = nta
N

Usually, the number of scatterers pet’ unit  volume, n, is  not given directly in

tables, but the density p, In grams per cubic meter, is known. Also, the atomic

weight W is given. The number of moles per cubic meter is then p/W. The number

of particles in one mole is Avogadro’r.  number, No  ==  6.022 x 10z3 p e r  gram-

mole. Hence, the number of particles or scatterers per unit volume is

NOP“F-
W

example For gold, the atomic weight is W = 197.2 grams per g-mole, and the density

i s  p =  1 . 9 3  x  1 0 ’  g/m3. S i n c e  A v o g a d r o ’ s  n u m b e r  i s  No  =  6 . 0 2  x  lo’“, t h e

number of particles per unit volume is

n = Plop _ (6.02
x  1023)(1.93  x  107)

W 197.2

=  5 . 8 9  x  102s/m3

Suppose the gold is a foi l  of thickness t = 6 x 1V5 cm. If the cross-section

for scattering into angles greater than 1” is au = 9.0 x 10-24m2,  then the

fraction of the incident particles that are scattered into angles greater than lo is,

from Equation (13.8),

A!-
N,  -

ntAa  =  ( 5 . 8 9  x  102’)(6  x  lo-‘)(9.05  x  10-24)

=  0 . 3 2

13.7 BARN AS A UNIT OF CROSS-SECTION

In nuclear scattering problems, many cross-sections are found to be typically on

the order of 1Om32  to 10m2* m2.  The quantity 10e2*  m2 is a large cross-section,

ancl in nuclear problems It i s  sometirrles  taken as a unit of cross-section (area)

called the burn.
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Thus a cross-section of 4.2 x lo-“’  m2 would be 0.042 barns.

rip/e  I f  a nucleus is a sphere of 2.5 fermis in radius, then what is the cross-sectional

area in barns?

,tion  The cross-sectional area of a sphere of radius r  i s  zr’.  Here r  is 2.5 fermis, or

2.5 x lo-l5  meters.  Then the cross-sectional area is

A  =  a ( 2 . 5  x  10-‘5)2  =  1 . 9 6  x  1O-29 m2

=  0 . 1 9 6  b a r n s

This cross-sectional area will not necessarily be the same as the scattering cross-

section because the forces causing scattering may extend over a larger area.

3.8 a AND fl PARTICLES

With the definit ions of scattering cross-section given above, we can now study

one of the earliest experiments giving direct evidence about the nuclear size. This

involved the scattering of alpha particles by thin metal foi ls.  After the discovery

of radioactivity by Becquerel,  Rutherford and his co-workers studied the radi-

ations given off by uranium and found there were two types: one type which was

easily absorbed by thin sheets of material,  and another type which was very

penetrating. The first type was called alpha radiation and the second was called

beta radiation. Both alpha and beta rays were deflected by a magnetic field, but

in opposite directions. Also, they both left visible tracks when they passed through

a cloud chamber. Hence, one could conclude that both radiations must consist of

charged particles. I t  has since been established that beta rays are high speed

electrons, and alpha rays are the rluclei  of helium atoms. We are interested here

particularly in alpha particles.

In Figure 13.8 is a reproduction  of a typical cloud chamber photograph of

the cu  radiation emitted by radioactive nuclei. The (Y  rays leave tracks consist ing

of t iny droplets of l iquid condensing on ions caused by the passage of the

particles. By studying the length of a track (called the range), the init ial kinetic

energy of the CY  particle may be determined. From a study of the characteristics

of the vapor molecules, it has been determined that on the average it takes about

32 eV of energy to form an ion pair.  Since a small  droplet condenses around

each ion, by counting droplets ol?e  may measure the total energy lost by the

(Y  particle. It  has been found that the number of ions formed per unit of track

length is nearly constant, except near the end of the path, so the init ial kinetic

energy of the part icle is a well-defined function of the range. I f  al l  LY  part icles

coming off have the same range, then one could infer that all the particles have
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Figure 13.8. Cloud chamber photograph of alpha rays, showing two distinct ranges
corresponding to two different energies of the emitted alpha particles.

equal kinetic energies. In Figure 13.8 we see that there are c~  part icles of two
different init ial kinetic energies. In general, the a part icles emitted by nuclei al l
have discrete energies. These kinetic energies have been determined to be of the

order of magnitude of a few mil l ion electron volts.  For example, one a part icle
emitted by polonium has an average range of 3.84 cm in air at 15”C,  and has a
kinetic energy of 5.30 MeV.

L.et  us denote the charge of the cr particle by Q and its mass by M. The charge-
to-mass rat io, Q/M, may be determined by observing the deflection of the

particles in both electric and magnetic fields. The charge Q may be determined in
another type of experiment in which a known number of part icles,  N, are
captured in a chamber arid the total charge NQ is measured. The results of these
experiments are:

so

Q =  +3.2  x  10--‘9coulombs

Q / M  =  4 . 8 4  x  lo7 coul/kg

M  =  6 . 6 2  x  1O-27 k g

The mass of the proton is M,  = 1.67 x 10mz7  kg, so the (Y part icle mass is  very

closely four t imes that of the hydrogen nucleus. Also, the charge Q is two t imes
the magnitude of the electronic chal*ge. This suggests that an cr par t ic le  i s  a
hel ium nucleus. Rutherford establ ished that this is  the case by col lecting cr
part icles in a tube, where they attracted electrons to form atoms. Then he

observed the emission spectrum of these atoms, and found it identical to that of

heliium.
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3.9 RUTHERFORD MODEL OF THE ATOM

Until 191 1, the structure of the atoln  and the size of the nucleus were completely

unknown.  Many physic is ts  fe l t  that  the  nuclear  mater ia l  occupied most  of  the

region in the interior of the atom, i.e. was spread over a region of approximately

one Angstrom in diameter. In 1911, Rutherford proposed that the nucleus occu-

pied only  a  smal l  region compared to  atomic d imensions.  In  1913,  Geiger  and

Marsden  repor ted  exper iments  which  comple te ly  conf i rmed the  pred ic t ions  o f

Ruther ford ’s  model  o f  the  a tom.  In  these  exper iments ,  a lpha  par t ic les  were

scat tered  f rom th in  fo i ls  o f  varioL1s meta ls .  Whi le  quantum mechanics  was un-

known at that time, we can calcul~ate  the wavelength of the (Y  particles used, to

see with hindsight that these particles  were suitable to use in the experiments.

The  (1 par t ic les  had an energy 0.f  about 8 MeV.  S ince  the  res t  energy  MC’  is

about 3750 MeV,  the  res t  energy  is  much la rger  than  the  k ine t ic  energy;  so  a

nonre la t iv is t ic  t reatment  o f  the  mot ion  may be  made.  Then p = 2//2M,  w h e r e

T i s  t h e  k i n e t i c  e n e r g y ,  8  MeV.  T h e n ,  n u m e r i c a l l y ,  p  =  [2(6.6  x  10-27)(8  x

1 . 6  x  lo-l3  i/MeV)]“’  = 1 . 3  x  lo-l9  kg-m/set.  T h e  d e  B r o g l i e  w a v e l e n g t h

corresponding to this momentum is X, =  h / p  =  5  x  10-15m  =  5  f e r m i s ,  a b o u t

the  s ize  o f  a  nuc leus  as  we know i t  today .  In  the  exper iment  o f  Ge iger  and

Marsden,  a  source  emi t t ing  the  8  MeV  (Y  par t ic les  wos p laced behind s l i ts ,  as

shown in Figure 13.9. These slits gave a collimated beam of particles of a single

Figure 13.9. Collimation of a bean1  by a slit-system, to produce a beam going in a
well-defined direction.

energy, all traveling along essentiolly parallel paths. Because of the small wave-

length of the particles, diffraction by the slits had negligible effect.

When (Y’S  o f  k ine t ic  energ ies  o f  a  few MeV  col l ide  wi th  an  a tom having a

nuclear charge Ze and Z electrons, the mass of the electrons is around Z/7000

times the mass of the cr. Hence the 1%  particle simply smashes right on through the

electrons without any appreciable ILoss  of energy, somewhat like an ortillery shell

pass ing  through a  wad o f  newspapers .  Thus  the  presence  o f  a tomic  e lec t rons

may be  neg lected  when d iscuss ing  scat ter ing  o f  cr par t ic les .  We may then

calculate  the d istance of  c losest  approach between a  nucleus and an 8  MeV  (Y

particle, assuming that the force of interaction all the way in is a purely electro-

stat ic  Coulomb force.  The Coulomb potent ia l  energy for  an a lpha part ic le  of

charge 2e  and a  nucleus of  charge Ze is  2Ze2/4rt,r,  w h e r e  r  is  the distance

between centers.  If all the kinetic energy were converted into potential energy,

the two particles would be as close together as they can get. This can occur only

if the particles collide headon,  and even then only in the frame of reference in

which  the  center  o f  mass  is  a t  res t .  In  any  o ther  f rame o f  re fe rence ,  there  is
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motion of the center of mass and thus some kinetic energy which cannot be con-
verted into potential energy. However, if the nucleus is very heavy, as is the case

for gold-which was often used in the early experiments-the nuclear mass is
around f i fty t imes that of the alpha part icle, and only a few percent error is

made using the laboratory rather than the center of mass frame. For gold, Z is
79; also, 1/(47rt,)  is  9 x lo9 numerically. Therefore, i f  we set the init ial LY par-
ticle kinetic energy equal to the poten,tial  energy at closest approach, we have:

(8MeV)(  1.6 x 113-‘3i/MeV)  = 9 x 109(2)(79)(  1.6 x 10-19)‘/r

or r  = 28 fermis. With o target made of s i lver, the smallest possible distan,ce
between part icles is  17 fermis. S ince these distances are greater than the s izes
of the nuclei  (as we now know), i t  i s  quite reasonable that the Geiger-Marsden

experiments confirmed Rutherford’s predictions, which were based on the as-
sumption that the nucleus is  very small ;  so the forces are Coulombic down to
very smal l  distances. I f  the nucleus had been greater in s ize than around 20

fermis, i f ,  in particular, it  were around an Angstrom or lo5 fermis in size, then
the scatter ing experiments would hove given quite different results .  Thus the

agreement of the experimental results with Rutherford’s predictions indicated thIat
the nuclear radii were less than 17 fermis. Actually, we know today that the radii
are a l i tt le smaller than this.  The results of many experiments on measuring
nuclear s izes by electron scattering, a scatter ing, etc., may be summarized in
the approximate formula:

R z: R.  W’j3 (13.10)

where RO = 1.1 fermis ond W is the atomic weight of the nucleus. We shal l

discuss the physical significance of this equation later.

13.10 RU’THERFORD THEORY; EQUATION OF ORBIT

We shal l  now give an example of a .iheoretical  calculation of a cross-section by
discussing the Rutherford Coulomb scattering theory in more detail. In this discus-
sion, we will assume that the scattering nucleus is a point charge, Ze, fixed at the
origin. The results obtained wi l l  be only approximate in the laboratory system,
because the nucleus rebounds to some extent, but will be exact in the center of
mass system if the a particle mass is replaced with the reduced mass of the alpha

nucleus system.
In Figure 13.10 the dashed l ine II represents the path that an incoming (Y

part icle would fol low if  i t  were not deflected by the nucleus at 0,  whereas the
actual path of the particle along the heavy curved line IS. The angle of scatter-

ing, which is the angle between the incident and scattered directions, is labeled

in the diagram by the symbol 0. The shortest  distance between the l ine I I  and
the origin 0 is cal led the impact partrmeter.  I t  i s  labeled  b on the diagram. At
any point on the trajectory of the cy particle, the position may be labeled  by the
radial  distance r  and the angle @ shown in Figure 13.8. As the particle ap-

pro’aches  the nucleus and then recedes to inf inity,  ip decreases from 7r  to 8, the

final scattering angle.
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Figure 13.10. Path of an alpha particle scattering from an infinitely massive nucleus of
charge Ze.

Since the de Brogl ie wavelength of the alpha part icle is  smal ler than the
distance of closest approach, we may use class ical mechanics rather than
quantum mechanics to analyze the motion. Also, the speeds involved are much
less than c, so nonrelat iv ist ic mechanics may be used. The equation of the
LY particle path may be obtained from two conservation equations, conservation
of energy and conservation of anslular  momentum. The latter conservat ion law
holds because the Coulomb force is a central force, so there is no torque about
the origin. The result ing expression for the scattering angle in terms of impact

parameter and energy is  given in Equation (13.23);  we shal l  now der ive this
equation.

Init ial ly, before the coll is ion, al l  the energy is kinetic, T,,  =  ?6  MY;,  where
v,,  is the initial speed of the alpha particle. Setting the sum of the kinetic energy
and potential  energy, V = 2Ze2/4,xt,r,  equal to the init ial  k inetic energy, we
find that

(13.11)

Here dr/dt  and rd@/dt  are the radial  and tangential  components of velocity.
The init ial  angular momentum about the or igin is  Mv,b.  Then at al l  t imes the

angular momentum is the same:

M r ”  $ =  Mv,b (13.12)

We can solve Equation (13.12) for d @/dt,  and express dr/dt  in the energy equa-
t ion, Equation (13.1 l),  as dr/dt  =  (dr/d@)(d@/dt).  The result is:

+ 2Ze’-= 1 Mvj:
4irtor  2

(13.13)
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We may simplify the notation by defirling a constant y as follows:

iy =. v2Mv:
(2Ze2/47rco)

Thus,  y is twice the ratio of init ial k inetic energy, to the potential energy the
alpha part ic le would have at  a d is tance b from the nucleus. Then Equation
(13.13) can be written:

- _ _  -

Solving for d @,

d@  = -
bdr/r’

1

(13.‘14)

(‘13.‘15)

The integral of this function of r may loe  found in most integral tables. The result

is:

(13.‘16)

The constant of integration +0 may be evaluated by not ing that at  the in i t ia l
posit ion, @  =  a  and r = cc,  so

Hence,

1
cPo  =  7r  +  sin-‘~-

Gyz
( I 3. . I 7)

a= r 3-  sin’ sin-l  V-v/r)  + 11

VT+ [ 1tYTy (13.‘18)

Solving for the reciprocal of the radius r, we obtain:

1-=-p-+ y sin * - sin’
r

(I 3.‘19)

L i
&L) - 1x

VC+  y2 1
1 3 . 1 1  R U T H E R F O R D  S C A T T E R I N G  A N G L E

The outgoing particle, long after the c.ollision,  is at a distance r = 0~1,  or l/r = 0.

We see that this will occur in Equation (13.19),  when

o r

sin 1- s i n - ’  -~
)

1-
v’i+r”‘ t/l + r’

(13.:20)

@ = 2 sin’ (13.:21)
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This value of @  corresponds to the scattering angle 19. Thus,

Also.

1
sini8= _ _ _

dT+  y2
(13.22)

1c o t  - B =  -
2

=y=Jo4xc,b. (13.23)
sin %  0 Ze2

Equation (13.23) impl ies that for a given Jo, the smaller b is, the larger is the
angle of scattering. If  b approaches zero, corresponding to a headon  coll is ion,
the angle of scattering B approachles  180”; the alpha particle is scattered straight

backwards.  I f  b approaches inf in i ty,  0 approaches zero, corresponding to no
collision and no deflection.

1 2  R U T H E R F O R D  D I F F E R E N T I A L  C R O S S - S E C T I O N

Now that a relat ionship between the scatter ing angle 0 and the impact param-
eter b has been obtained, we may proceed to derive the differential cross-section
du/dfi.  Imagine drawing a circle of radius b around the nucleus, as seen by an
incoming cy particle. This is depicted in Figure 13.1 1. Al l  a’s  which h i t  inside the

Figure 13.1 1. Circle of radius b; particles  striking inside the circle will be deflected
through angles greater than that given by Equation (13.23).

circle of radius b wil l  be scattered through angles greater than the angle given
by Equation (13.23),

4rt,
co+  = J,,-

Ze2
b (13.24)

Hence, the cross-section for scattering through angles greater than or equal to 0,
which will be denoted by a(> 0), will be just the area of the circle. In terms of b,
this is

a;> 0) = rb2 (13.25)

Using Equation (13.23) to express b in terms of 8, we f ind the cross-section for
scattering through angles 20 to be

(13.26)

Consider particles which hit inside the ring bounded by circles of radius b and

b $ db, shown in Figure 13.12. Such part icles wi l l  be scattered into angles
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FiglJre  13.12. Differential area between b and b + db, corresponding to scattering
within the range of angles d$.

b e t w e e n  19  a n d  19  +  de. T h e  a r e a  o f  t h i s  r i n g  i s  d a  =  27rbdb.  A l s o ,  w e  m a y
differentiate Equation (13.23) to f ind db in terms of the corresponding range
of scattering angles d0.  S ince d(cot r9)  =  -dH/sin’  0,.

(13.:27)

Therefore, with dR  = 2n s in 19  d0,  in terms of 19  and dll the differential scatter ing
cross-section is

da / 27rbdb  ( 1 Ze’  ’ cos(%  0)-=
dQ dL’ ( )

1 Ze’ ’ 1-  .~
=  2  4?rtoT,

-~- - -
sin3  (% r9)  s in 0 = 4  4~coT,  sin4  (I/i  1 9 )i )

(1 3.‘28)

sinmce sin 19  = 2 s in (5 0) cos (‘15 0). For large b, cos 19/2  = 1 and s in 19/2  z=  O/2,
so for large impact parameters, the differential cross-section do/d0  approaches
infilnity. In fact i f  we tr ied to integrate da to f ind the total cross-section (T,  w e
would f ind that e is inf inite. This ref lects the fact that the Coulomb force de-

creases relatively slowly as distance increases. We say it is a long-range force. In
practice, the electrostatic force between nucleus and alpha particle is not really

long-range, because if  the alpha nuclear distance is greater than a few Ang-
stroms, the nuclear charge is screenecl  out by its bound electrons. Thus, for impact
parameters which are too big our assumptions break down, and Equation
(13.23) no longer holds; there will be no scattering.

13.13 MEASUREMENT OF THE DIFFERENTIAL CROSS-SECTION

Figure 13.13 shows how the differential  cross-section might be measured by a
movable detector of f ixed area. The scattered cr part icles are counted by a de-
tec:tor at some fixed distance L from the target, which is arranged so that it may

be placed at various angles 19  relative to the incident direction. The detector lhas
an area AA. Hence, if 0 is small, the detector may detect all of the particles going

into d0,  but i f  0 is large. the detector may detect only a small  fraction of the
particles going into d0.  This is simply because the detector area is fixed, and the
scattering is azimuthal ly symmetric; that is,  i t  is  symmetric about the directiorl of

the incoming beam. The r,olid  angle subtended  by a small area A at a distance I
from the target is AA/L’. The integr’ol  of Equation (13.28) over this sol id angle

would be proport ional to the number of U’S counted in the experiment. This
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Detector of fixed
OEO AA

Figure 13.13. A detector of fixed oreo AA subtends on ongle of AA/l’.

fractional cross-section t imes the number of part icles incident per unit area per

second should give the number of part icles hitt ing the detector per second per
target nucleus.

The result ,  Equation (13.28),  is  cal led the Rutherford scattering formula. It  says
that the effective differential scattering cross-section is proportional to l/sin4  8/2.
If  this result is  combined with tile express ion, Equation (13.8),  relating the

scattering cross-section and the numbers of particles scattered, then if the incident
f lux density is  N;,  the number AN scattered into the detector per second from a

target of area 1 square meter, thickness t, and n scatterers per unit  volume,
wi l l  be:

A N ,  ( i n t o  d e t e c t o r )  A A  d a~~  = -nj’.-
N, 1’ dQ

for AA/L2  small, or

nr\r,- 1- - -
N , sin41(1/2

(13.29)

(13.30)

T h e  m o s t  i m p o r t a n t  r e s u l t  h e r e  i s  t h e  sin? (O/2) dependence. The factors
(AA/12)nt  express the choice of detector size, geometrical setup in the lab, choice

of scatterer, and thickness of scatterer. The quantity du/dQ  depends on the
incident (Y part icle energy, and on the nature of the interaction between (Y and
nucleus. Surpr is ingly, quantum mechanical calculations of da/da  give the same
result for the cross-section as we have obtained here using classical mechanics.

Let us summarize our der ivation. We have obtained a specif ic formula for the
number of (Y particles detected if the force between nucleus and (Y is a Coulomb

force. The problem was treated by using classical mechanics. For an (Y of incident
energy T,  and impact parameter tl, the angle of scattering is given by:

1
COS j /I =

47rtoT,
- b

Ze2
(13.31)
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All  part icles fal l ing within a circle of radius b, drawn centered  on the nucleus,
wi l l  be scattered through an angle greater than 8. Part icles fal l ing in the area

between b and b + db will be scattered into the angles d/I where drY  is obtained
from db by differentiating the above equation:

The differential cross-section for scattering into d0  is then

du 2rb 1 db- =:
dR dQ -=

(13.32)

(13.33)

Since the detector area AA, L meters from the target, is fixed, the detector always

subtends a sol id angle AA/I’. So the fractional cross-section for scattering into
the detector of area AA is

For an incident flux of N, part icles per unit area per set, the number of part icles
scattered into the detector at 0, from a target of thickness t and n scatterers per
m3, will be given by:

A N-2 AA nt Ze2  2 1= -.
N, L2 ()-89t0  Jo ‘sin4  O/2 (13.35)

13.14 EXPERIMENTAL VERIFKATION  OIF  THE RUTHERFORD
SCATTERING FORMULA

The above predict ion car1  be used in several ways. The number of a’s detected

per set are proport ional lo:

(1) the reciprocal of sin4  (O/2);
(2) the reciprocal of kinetic energy squared;
(3) the square of the nuclear charge Z.

There are other dependences,  but these are the most important. Let’s consider
them in order. In Table 13.1 are given some experimental results for scatter ing
from gold foi l  as a function of scattering angle. According to the theory, the
product of AN,  and sin4(fY/2)  should be constant. The agreement between theory
and experiment shown in the last column is reasonably good; that is ,  AN, is  pro-
port ional to l/sin4(B/2).

In another set of experiments, a part icles of varying velocity were scattered
into a detector held at a f ixed angle. According to the scattering formula, AN,
is inversely proport ional to Jz,  and Ji  = (Ij2 Mvg)2.  So AN, is inversely propor-
t ional to vi.  In Table 13.2 are given the experimental results in dimensionless

form. The results agree well with the formula.
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TABLE 13.1 Scattering of Alpha Particles From Gold Foil

Scintillations
in Unit Time

150”
135”
120”
105”

75”
60”
45”

37.5”
30”

22.5”
15”

Range of Relative Values
Alpha Particles of 1 /vi

5.5 1.0 24.7
4.76 1.21 29.0
4.05 1.50 33.4
3.32 1.91 44
2.51 2.84 81
1.84 4.32 101
1.04 9.22 255

33.1
43.0
51.9
69.5

211
477

1435
3300
7800

27,300
132,000

--.-

1- -
sin4  0/‘2

1.15 28.8
1.38 31.2
1.7’9 29.0
2.53 27.5
7.25 29.1

16.0 29.8
46.6 30.8
93.7 35.3

223 35.0
690 39.6

3445 38.4
L

AN, x sin4  0/2

TABLE 1 3.2 Vclriation  of Scattering with Velocity

L

Number of
Scintillations
in Unit Time

AN,

AN, x vi

25
24
22
23
28
23
28

In another set of experiments, performed by Chadlwick  in 1920, copper, silver

and platinum foils were used with a’s  of fixed energy and at fixed scattering

angles 0, with carefully measured geometrical factors AA/L’,  in an attempt to

determine the values of Z for these elements. The results are given in Table 13.3.

TABLE 13.3 Nuclear Charges Determined by

u-Particle  Scattering
- I ---I

Element
Nuclear Charge

I

Atomic Number
Ze Z

cu 29.3e 29

Ag 46.3e 47
Pt 77.4e 78

These results agree, within the experimental error, with the Rutherford scattering

formula, and are additional evidence for the extremely small size of the nucleus.
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1 3 . 1 5  P A R T I C L E  ACCELERATCIRS

The experiments discussed in this chapter employed cr part icles from natural ly
occurr ing radioactive elements. W h i l e  t h e s e  w e r e  u s e f u l  f o r  t h e  p i o n e e r i n g
scatter ing experiments in nuclear physics,  for a detai led invest igation of nuclear

forces it  is  desirable to have a wide range of different types of part icles avai l-

able, with var iable energies which go much higher than the 8 MeV  avai lable in
natural  a part icles.  Therefore, a number of methods have been developed for

accelerating part icles in the laboratory. The earl ier efforts were aimed at
obtaining a high difference of potential between two points, and letting charged

part icles accelerate between the two points.  The Van de Graaff generator was
the most successful of these accelerators. It utilizes electrostatic induction methods
to obtain the high voltages. However, i t  is  l imited to energies only s l ightly higher
than the 8 MeV  cr particles, due to difficulties in insulating between even widely-
spaced points, at several million volts potential difference.

An accelerator called the cyclotron, which overcame these dif f icult ies,  was
developed by E.  0.  Lawrence around 1932. In th is  machine, lower potent ial

differences are used, but the part icles move through the potential differences
many t imes, eventual ly picking up a large energy. This is  accomplished by in-

jecting the charged particles into a magnetic f ield with l ines of force oriented
perpendicular to the particle velocities. The result ing force causes the particles to
move in circular orbits.  The part icles move as shown by the dashed l ine in F ig-

ure 13.14, inside hollow semicircular conductors called dees. An alternating
voltage is  appl ied between the dees, with a f requency equal to that of the
circular motion and synchronized  with the passage of the part icles across the
gap between the dees, in such a way that every time a particle crosses the gap, it
is accelerated by the electric field in the gap and gains an energy corresponding

to the maximum value of the alternat ing voltage. One may easi ly calculate the
necessary frequency. I f  the part icle has charge q,  speed v and mass  m, and
moves in a magnetic field 8 with a radius r and angular frequency w = v/r, then
the magnitude of the magnetic force is:

F =  qd  =  qrd

This equals the mass times the centripetal acceleration, w’r.  So

(‘I 3.36)

o r
mw’r  = qrwB ( 13.37)

w  =  qB/m (I 3.38)

The frequency is  then u =  w/2~. This result  is  independent of radius i f  relat ivist ic

changes of mass with speed can be neglected. This is very desirable, since as the
part icles pick up energy, their  radius increases unti l  they eventual ly get to the
edge of the dees, where they are extracted to give the part icle beam. The

l imitation on the energy of part icles accelerated by a f ixed-frequency cyclotron
occurs primari ly because of the relativist ic increase of mass as energy increases.
Since the frequency w is inversely proportional to mass, the particles tend to get
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Hollow dees made of metal

Figure 13.14.
of the figure.

Diagram of a  cyclotron. The magnetic field is perpendicular to the plane

out of phase with the applied alternating potential at higher energy, and cease
to be accelerated.

One way to overcome the relat ivist ic effect is  to make the magnetic f ield in-
crease with radius,  so that B/m is  constant.  However,  this  tends to make the

particle motion along the magnetic f ield l ines unstable, so that part icles are lost
by hitting the dees. This may be cured for energies up to a few hundred MeV, if

the part icles are nuclei,  by making the magnetic f ield vary periodical ly around
the circular path.

One way of overcoming the relativistic increase of mass effect is to accelerate

the particles in bunches, with the frequency of the applied potential decreasing
as the bunch of part icles gains energy. Such machines are cal led synchro-

cyclofrons.  When one bunch gains Imaximum  energy and leaves the machine, a
new bunch is introduced.

In modern high-energy machines in the bi l l ion electron volt energy region or
higher,  the charged part ic les t ravel  in evacuated ci rcular tubes which may be

comparable to a mile in diameter. Careful ly designed magnetic f ields keep the
particles in the proper path.

Electrons are more diff icult to acc:elerate  for high energies than more massive
particles, because for a given kinetic energy, they tend to lose more energy in the

form of radiation when they undergo centr ipetal acceleration. Therefore, elec-
trons are ordinari ly accelerated to very high energies in a l inear accelerator.
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The electron beam moves down the center  of a straight l ine of cyl indrical metal
segments. The length of each segment is such that an electron spends the same
time ins ide each segment. Thus, i f  an alternating potential  with period equal to
twice that t ime is  appl ied between segments,  the part icle can go through the
maximum potential  change every t ime it  crosses a gap between segments.  To
obtain electron energies in excess of 10 bi l l ion electron volts, the l inear acceler-

ator has to be several miles long.

a PARTICLES

Some radioactive heavy elements emit a part icles with energies of the order of
4 to 8 MeV.  They  have ~a  charge Q = 2 1 e 1 and a mass nearly four t imes the
proton mass. They have Ibeen  identified as helium nuclei.

SCATTERING CROSS-SECTION

An infinitesimal scattering cross-section dc  fo; scatter ing into a given range of

angles dR  is the number of part icles scattered into df2  per scattering part icle,
div ided by the number of part icles incident per unit  area. Hence do i s  the

effective area of the scatterer for scattering into dQ.  The quant i ty ,  da,/dQ,  is
cal led the differenfiol  cross-section. I f  the scatterer is a thin foi l  of thickness t
containing n scatter ing centers  per unit  volume, then the fraction of incident
part icles scattered into dD  is nfdc.  The totol cross-section is Ida,  and is  the
total number of particles scattered per scattering particle, divided by the number

incident per unit  area. It i s  the total effective area of the scatterer.  The unit of
scattering cross-section is the barn:  1 barn = 10m2*m2.

DENSITY OF SCATTElilERS

The density of scatterers n per m3  is given by n = pN,,/W  where p is the density,
N,  i s  A v o g o d r o ’ s  numloer,  6 . 0 2  x 10z3  p e r / g m - m o l e ,  a n d  W  i s  t h e  g r a m
molecular weight.

RUTHERFORD SCATTERING

The differential cross-section da/d12  for u  particle scattering from nuclei of

charge Z is given by:

da-=
da

2 1

sin’ e/2
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NUCLEAR SIZES

Experiments with high-energy electron scatter ing show that nuclei are roughly

spherical,  and have radii  given by R = R,W”3,  where R,  = 1 .l  fermis and W

is the atomic weight of the element.

1.

5.

6.

7.

8.

9.

10.

11.

The cross-section for interaction of neutrinos with nuclei is approximately lo-”  barns,
What thickness of iron could cause 1 *?N  of the neutrinos in o neutrino  beam to inter-
act? For iron, p  = 7.9 g/cm3.
Answer: 1.2 x 1015 meters, or around 10.7 million miles or about 0.1 light years.
Using the value of the nuclear radius IX given in Eclucttion  (13.10),  calculate the
average density of nuclear matter.
Answer : 3  x  1 0 ”  kg/m3.
Calculate the rest energy of one cubic Angstrom of pure nuclear matter.
Answer : 2.7 x lo4 joules.
Scattering of particles with the wavelength h/p by on obstacle is essentially a dif-
fraction effect. If the obstacle is a  hard sphere of radius a  and p >>  h/a, argue
that the total cross-section should be greater than ~a’.  As p - z the cross-section
approaches 2aa’. The cross-section increases as p decreases. Explain why this
might be. As p + 0 the cross-sedion  approaches 47~1 2,  four times the geometrical
cross-section.
A beam of electrons with 102’ electrons per second per square meter is incident on
a gcs. The scattering cross-section due to a gas atom is 10~‘9mZ.  How many elec-
trons ore scattered per second by CI  gets  atom?
Answer : 100.
A solid has n atoms per unit volume. A beam of gamma rays incident on the solid
sees a  scattering cross-section of r~.  In going the infinitesimal length dx out of N

photons, how many are scattered? What fraction of the gamma rays are unscattered
after going the distance x?
Answer:  Nnadx,  e-00X.
An alpha particle with a speed of lO*m/sec  moves in CI  circle perpendicular to a
magnetic field of 2 weber/m2.  Find the frequency of rotation and the radius of the
circle.
Answer : 1.5 x 1 O7  rototions/sec;  1.03 cm.
Calculate the distance of closest approach to a silver nucleus (Z = 47) of 12 MeV
deutrons with charge ) e ) and mctss  about twice that of ct  proton.
Answer : 5.6 fermis.
An alpha particle of speed 1.55 x lo7 m/set  is scattered through an angle of 25”
from a  silver nucleus. What was the impact parameter?
Answer:  61 fermis.
What is the distance of closest approach of o 6 MeV CY  particle to a uranium
(Z = 92) nucleus?
Answer : 44 fermis.
A beam of 8.3 MeV cy  particles is incident on aluminum foil, and significant devi-



4 0 6 Probing the nucleus

otions from the Rutherford scattering formula are observed for scattering angles

greater than 60”. Assume the cy  particle has ct radius 1.1 x fifermis,  and estimate

the radius of the oluminum  nucleus.
Answer : 4.6 fermis.

12. Suppose cr beam of spherical particles of radius r is incident on a material consisting
of fixed spherical particles of radius R. If the scattering is the same OS that of elastic

collisions of hard spherical particles following classical mechanics, show that the
infinitesimal cross-section for scattering angle 0 is

du = n(r + R)’  sin !/z 0 cos % 0 = % x(r t R)'  sin 0 dR

What is the differential cross-section? Integrate to show that the total cross-section

i s  n(r +  R)‘.
13. A plane wave e rkr  representing ct beam of particles with momentum p = Ak in the

x direction, can be expressed OS a sum of wovefunctions, each  with definite angular
momentum:

where Al is a constant depending on the angular momentum quantum number, t ,

and  0 is the angle relative to the x axis with r the radial distance (x = r cos 0).
The scattering can then be found for the individual $x’s,  and the combination gives
the total scattering. If a scattering center gives scattering out to radius R and none

for greater radii, argue that there will be negligible scattering for a $4  when

& >>  kR.  As the momentum goes to zero, argue that we need to consider only $~c.

14. Compute the differerltial  scattering cross-section da/dQ  for scattering of protons
off gold nuclei into ihe angles near 45 ,’ if the incident proton energy is 4 MeV.

Assume Coulomb forces.

Answer: 94 bornsjstereradians.
15. A silver foil of thickness 10e5 mm and area 4 mm2 is used as a target in on (Y par-

ticle scattering experiment with cy’s  of 6.5 MeV kinetic energy. The incident flux of

particles is 25 per mm2 per minute. How many a’s per minute should be scattered

into the detector of area 1 cm2, placed at 45” relative to the incident beam a dis-

tance 5 cm away  from the target? For silver, p = 10.5 g/cm3.

Answer: 3 x 10m6 per minute.

16. For a certain type of scattering process, particles are scattered uniformly in all
directions. Then how should do depend on angle?

17. Alpha particles from polonium (Velocity = 1.6 x 10’ m/set)  are directed normally
against a gold foil of thickness 4 x lo-’ cm. The density of gold is 19.32 g/cm3.
What fraction of the olpha particles are scattered through angles greater than 135”?

Answer: 5 . 9  x  10-6.
18. What fraction of 5.7 MeV (Y particles incident on copper foil, p = 8.929 g/cm3, of

thickness lo-’  mm, will be scattered through angles greater than 90”?

Answer: 1 . 4  x  lo-‘.

19. For the series in Problem 13, take ic/c(r,  0) = (sin kr)/kr,  and assume that Ac  2 1
with the other At  negligible. If ct hard sphere of radius R were placed in the path

of the plane wcrve,  the wavefunction would then be ~S~+~(r,  0) with the con-
sin (kr + 6)

stant Bc the only one of appreciable size. For the t = 0 case, It/h  = -~.
kr

Show that to satisfy the boundary condition at r = R, --6  = kR.  Now sin (kr) =
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y2 ;(e’k’ _ e-“’ ) and sin (kr -t 6) = !/2  i(eikr+i6  - e-i’r--‘a).  Since the time dependence
is e -jut,  the terms in parentheses correspond to oultgoing and incoming waves  re-
spectively. Thus, for the incoming waves  to be the same with and without the sphere,

-lr- e ,Q; = -By ly2  ; e-“‘-‘* . Find 6,. If we say that the number of incident particles
per unit  orea  per unit t ime is proport ional to 1 eikx  ) ‘,  argue that the number
scattered per unit area per unit time is proportional to 1/(2kr)’ 1 ezi6 - 1 / 2 for

k - 0, and thus the differential cross-section is L(2 -- 2 cos 2kR) = sin2 kR

4k2
- + R2

k2 ’k=O
Show that for k + 0, the total cross-section is 47rR2.



14 nuclear structure

The experiments on (Y part icle scatter ing give direct evidence that the force
between a nucleus and ton cv part icle is a Coulomb force, proportional to

llr2, down to distances of the order of several fermis. Hence the s ize of the
nucleus has to be of this order of magnitude (1 fermi = lo-”  meters). Later
experiments with other types of incident part icles f rom accelerators have estab-
lished that the matter in the nucleus is distributed throughout the nuclear volume
with near ly constant density,  and that the radius R of a nucleus of an element
of atomic mass W (in amu)  may be expressed by: R = r,W”3,  where r,, E 1.1

fermis. Nuclei are thus seen to be extremely small,  compared to the size of the
atom. In fact,  in an ordin,Dry  piece of lead, 99.978% of the mass is contained
i n  a b o u t  0 . 0 0 0  0 0 0  0 0 0  0 0 0  0 0 0  0 4 %  o f  t h e  v o l u m e .

It  is  the aim of nuclear physics to understand the internal structure of these
t iny objects-how they are held together,  what they are made of,  and how they
interact with each other.  Th is  s tudy i s  very act ive at present,  and there are a
great many unsolved problems. In contrast to atomic physics,  where the basic
pr inciples of wave mechanics are wel l  understood and where these pr inciples
have almost invar iably led to o quant i tat ively precise explanat ion of atomic
phenomena, in nuclear physics the basic pr inciples are only qual i tat ively under-

stood and accurate numerical calculations are extremely difficult. We shall begin
by looking at some of the s implest experimental data. Then we shal l  discuss the

propert ies of stable nuclei  and some models by which we can understand
qualitatively the gross features of nuclear structure.

1 4 . 1  N U C L E A R  M A S S E S

Over a thousand different k inds of nuclei  are now known to exist .  Two nuclei
are different in kind if their charges or masses are different. The charge Ze
on a nucleus can be determined in a number of ways-by part icle scatter ing, by

x-ray production, or s imply by chemical or spectral identif ication of the element
whose atoms are formed by electrons surrounding the given nucleus. Nuclei with
about 100 different valu’es  of Z are found in nature. Al l  nuclei  having equal

values of Z are cal led isotopes. For example, the element calcium (Z = 20) is
found in nature with 6 clifferent nuclear masses which are stable, and others
which are not stable. Therefore, calcium has six different stable isotopes.

4 0 8
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Some nuclei  are stable, whi le others are unstable and emit radiat ions in the
form of cy part icles, high-speed electrons or positron!s,  photons, or other part icles.
In this chapter we shall be primarily concerned with the stable nuclei, those which

do not emit radiat ions.  In Appendix 3 are given the measured values of the
atomic masses of the stable nuclei and a few of the more interest ing unstable
ones. These masses are based on the assignment of exactly 12 units of mass to

the most common carbon isotope, which is  then used as the standard of mass.
(NOTE: These are not nuclear masses, but masses of the entire electrically neutral
atom.) The reason atomic masses are given, rather than nuclear masses, is  that
it is atomic masses which are usually measured directly. For example, the mass of
22.4 liters of helium, containing IV0 particles, could be directly measured and the
atomic mass, or mass of one atcsm, could be derived from the measurement.

Another way atomic masses are measured is by ioniz ing an atom (removing one
or more electrons) and then accelerating the atom through an electric field, thus
giv ing i t  a known energy. The charged ion is  then al lowed to pass through a
magnetic f ield. By measuring the deflection of the ion in the magnetic f ield, the

ion’s momentum can be determined. I f  both momelntum  and kinetic energy are
known, the ion mass and then the atomic mass may be determined. The art of
using electr ic and magnetic f ields for determining atomic masses has been
developed to a high degree.

If  the atomic mass is known, then to f ind the mass of the nucleus by itself ,
one should subtract the masses of the electrons in amu  from the atomic mass:

me =  9 . 1 0 8  x 10m3’ k g  =  0.000549amu

Strictly speaking, the mass of an  electron bound to a nucleus is  effectively

slightly less than the electron’s rest mass, because the electron has more negative
potential  energy than it  has kinetic energy. However, these binding energies are

only a small  f raction of the electron’s rest energy and can be neglected when
using atomic mass tables. A common notation is  to denote the value of Z as a
subscript to the left of the symbol of the element. Thus, i ron (Z = 26) is denoted
by 26Fe. Oxygen,  with Z  = 8,  would be denoted by 80.  I f  zM,,+  is the atomic
mass of a nucleus having charge Z,  and i f  m,  is the electron’s rest mass, then
the nuclear mass zM  is given to sufficient accuracy by:

,NI =  zMot  - Z m , (14.1)

From the table of atomic masse!,,  i t  is  seen that the atomic masses are nearly
integers, when the masses are measured in atomic mass units (amu).  The integer

nearest to the atomic mass W is cal led the mass number and is denoted by A.
Thus the mass number of the isotope of z i rconium (Z = 40),  with an atomic

mass W = 91.9046 amu,  is  A = 92. For a nucleus of a given Z and A, in addi-
t ion to writ ing Z as a subscr ipt to the left ,  the valule of A is written as a super-
script to the r ight: ZMA. Thus the Z i rconium nucleus mentioned above would

be denoted by .,0Zr92.

From the table in Appendix 3, the atomic mass of 531’27  is 126.90435 amu.  The

mass of one electron is the mass of a proton, 1.0078 amu,  d iv ided by the rat io
Imp/e
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of proton to electron mass, 1836, or m,  = .000549  amu;  so the mass of the

electrons in 5sl’27 is (0.00055)(53)  = 0.0292 amu.  Therefore, the nuclear mass

of 531 lz7 i s  1 2 6 . 9 0 4 4  - 0 . 0 2 9 2  =  1 2 6 . 8 7 5 2  amu.

14.2 NEUTRONS IN THE NUCLEUS

The fact that the nuclear masses are so nearly integral mult iples of a basic unit
suggests that a nucleus of mass number A is built out of A smaller particles of
equal or nearly equal masses. It is now known that nuclei are basically composed
of protons and neutrons. Neutrons are electrically neutral particles having a mass
nearly equal to the protc’n mass.  However,  for  a t ime i t  was thought that a
nucleus of mass number A might be composed of A protons plus a number of
electrons which resided in the nucleus, thus canceling  out a part  of the protonic
charge. We shall consider two of the most important reasons why this cannot be
an accurate picture of the nucleus, and shal l  then discuss the propert ies of
nuclei based on a proton-neutron composition.

A nucleus has a very small  s ize, several fermis in diameter. I f  an electron
exists inside the nucleus, then the magnitude of the uncertainty in position of the
electron will be roughly A:( - lo-l5 m. For such a small  uncertainty in posit ion,

the momentum uncertainty wi l l  be very large; the average momentum wi l l  be of
the order of magnitude of the uncertainty in momentum, and from this the
average kinetic energy of the electron in the nucleus can be est imated. For an
uncertainty Ax, the uncertainty in momentum wil l  be Ap E h/(4aAx).  The
average momentum woulcl  then be roughly

h, 6 . 6  x  1O-34
- =  5  x  10e2’  kg-m/set =  1 0 0  *

’ = (12.6)(10m15) C

For an electron with rest energy of about 0.5 MeV,  this  is  an extreme relat iv ist ic
momentum, so the energy is

E =  z/(pc)’  +  (moc2)2  E p c  =  1OOMeV

Thus, from the uncertainty principle, if an electron is confined to a region around
a fermi in s ize, i t  wi l l  have a very large kinetic energy. In order for the electron
to remain in the nucleus, it must be bound by an even greater negative potential
energy. Since the negative potential energy due to Coulomb attraction is at best
a few MeV,  that  would mean that there would have to ex i s t  a very strong
attractive force between proton and electron of some entirely new type. There is
no other independent evidsence  in nature for such a strong force between electron

and proton.
Also, the proton-electron model of the nucleus does not give good values for

nuclear magnetic moments. An electron has an intr insic magnetic moment,

eIi/2m = 1 Bohr magneton. I f  there were an odd number of electrons inside the
nucleus,  then the unpairecl  electron should give r ise to a nuclear moment of 1

Bohr magneton. Instead, nuclear moments are more nearly of the order of
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eW2M  pI w h e r e  M, i s  t h e  p r o t o n  m a s s . I n  B o h r  m a g n e t o n s ,  e%/2M,  =
0 . 0 0 0 5 4  eh/2m.

When the neutron was discovered by Chadwick in 1932, Heisenberg immedi-

ately suggested that nuclei must be composed of neutrons and protons. Chadwick
had found that when (Y particles are incident on nuclei of 4Be9,  a very penetrating
radiat ion is  given off .  S ince this  radiat ion leaves nlo v is ible tracks in a cloud
chamber, it is uncharged. Also, the radiation has the property that when passing
through any material containing a large proport ion of hydrogen, protons are
knocked out with about 5 MeV  of kinetic energy. Clhadwick  showed that these
and other s imi lar experiments could be understood by assuming that the radia-
tion consisted of uncharged particles called neutrons, having a mass nearly equal
to the mass of the proton. The neutron’s mass has been determined to be
1.0086652 amu.  The neutron is  denoted by the symbol on’,  which means the
mass number:of the neutron is one. Neutrons have been found to take part in a

number of nuclear reactions.

A nucleus of mass number A ccln  then be considered to be composed of N
neutrons and Z protons, with

N + Z = A (14.2)

The number of neutrons in a nucleus, N, is called the neutron number.

The different kinds of stable nuclei may be characterized  by giv ing them the
numbers N, Z and A. Since, from Equation (14.2),  there is one equation connect-
ing N, Z and A, i t  is  necessary to give only two (any two) of these three
numbers.  Knowing the two numbers Z and A corresponds to knowing the charge
and mass of the nucleus in questioll. The N and Z values of all the stable nuclei
are given in F igure 14.1. In this  table the neutron number is  plotted vert ical ly

and the proton number horizontaliiy. A dot at a certain point with coordinates
(Z,  N) represents a stable nucleus, which exists  with .Z protons and N neutrons.
We see from Figure 14.1 that the stable nucleus 2OCa’46  exists, but that the stable

nucleus 92U23* does not exist.
We also see, for example, that there are ten stable isotopes of soSn.  Nuclei

having equal numbers of neutrons in the nucleus are called isotones. One way to
remember which is which:

isotopes: equal numbers of protons
isotones: equal numbers of neutrons

As an example, Figure 14.1 shows that there are three stable N = 14 isotones.
Since nuclei are constituted of protons and neutrons, ,these fundamental part icles

are also called nucleons.

.3  PROPERTIES OF THE NEUTRON AND PROTON

In attempting to understand the propert ies of large Inuclei containing up to 240

nucleons, we need to know first what the fundamental properties of the nucleons
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Figure 14.1. Neutron number versus proton number for the stable nuclides.
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themselves are.  So far,  we have discussed charge and mass.  In addit ion, i t  has
been found that neutrons and protons both have intrinsic spin angular momenta

characterized  by spin quantum numbers of %  . Nucllear  spin quantum numbers
are denoted by I ,  and for  both neutron and proton, I  = % .  These spin angular
momenta obey the same rules we have discussed several t imes for electron spin
and orbital  angular momenta. For example, the eigenvalue of the square of the
spin angular momentum of a nucleus would be given, in terms of I, by

I2 = A2 /(/ + 1)

Since a nucleus may contain several nucleons, I may in general be different from
% . Specifically for nucleons, however, since I = %  ,

(14.4)

Nuclear spin angular momenta are associated with the presence of magnetic
moments. There is a s imple relation between magnetic moment p and sp in  I ,
which is customarily written:

,G&l
P

(14.5)

where M,  is  the proton mass.  The quantity eh/2M,  i s  a unit  cal led the nuclear

magneton. I t  i s  ‘/,,,, of a Bohr magneton. Most nuclear magnetic moments are
of the order of a few nuclear magnetons. When writ ing the magnetic moment

as in Equat ion (14.~7, the factor !g--simply  cal led the “g  factor”- is a pure
number of the order of magnitude -5 to +5, which must be determined experi-
mental ly.  In Equat ion (14.5),  the (convent ion is  adolpted  that the mass of the
proton, rather than the neutron or some other particle, is used in the unit eh/2M,.

Then g has some value that cannot be predicted accurately; at present, there is

no acceptable theory of nuclear moments.
The relation between p and I is such that, if the nuclear spin can have 21 + 1

different L components along some chosen z direction, then the number of differ-
ent values of  pL,  is also 21 + 1. Thus, i f  a nuclear spin is  placed in a magnetic
field, the energy E =  -p  * B, has 121  +  1 different vaolues.  Hence, in a magnetic

f ield, isolated protons and neutrons have two different energy states. The g
factors of various nuclei can be measured by observing the frequencies of the
photons which are absorbed as the nuclei make transit ions between different
states in a magnetic field. For exarnple, in a magnetic field of 0.5 w/m2,  protons
absorb electromagnetic radiation of frequency 2.13 x lo7 cps in making a
transit ion from the spin-down to the spin-up state. Here, AE = hv = 2~8.

W i t h  eh/2M,  =  5 . 0 5 1  x  10ez7  ioule/(weber/m’) a n d  I =  % ,  t h e  p r o t o n ’ s  g

factor is

hu ( 6 . 6 2  x  10-34)(2.13  x  107)  =  5 58

” = !h  [2(eh/2M,)  61  = - ( 5 . 0 5  x  l0-‘~~)(0.5) ’
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In the case of the sLi’  nucleus, I = “/,  and the measured value of g is 2.1688.

Therefore, the maximum component in any direction of the nuclear magnetic

moment of sLi’  is “/z  (2.1688) = 3.25 nuclear magnetons. Table 14.1 is a brief

summary of the numerical values of the constants characterizing nucleons.

TABLEi  1 4 . 1 Properties of Neutron and Proton

on’ 1P’

Charge
Mass (amu)
Spin
g factor
Magnetic moment

(nuclear magnetons)

0 lel
1.008665 1.007276

H M
- 3 . 8 2 5 6 +5.5856

- 1 . 9 1 2 8 +2.7928

14.4 THE DEUTERON ( ,H’:I

The simplest nucleus which contains more than one particle consists of one proton

and one neutron, and is called a deuteron. The Z of a deuteron is one. Since

the deuteron has a charge + 1 e  ) and a mass number A = 2, it is an isotope

of hydrogen. Since the nuclear mass is different from that of ordinary hydrogen,

the hydrogen-like atomic energy levels will be shifted slightly away from the

values they have in hydrogen. These energy shifts can be used to measure the

deuteron’s mass AId in terms of the proton mass M,.  The experimental values

of the Rydberg constants in cm-’ for ,H’ and ,H2 are:

RH  =  109,677.581  c m - ‘ ,  f o r  ,H’

RI,  =  109,707.419cm-‘,  f o r  ,H2

The ratio of these two numbers is just the ratio of the reduced masses, so:

2 = (1 + ;)/(I  + $) = (I + : - :)/(I  + $) (14.6)

o r

Md

M, =
1 (14.7)

From this we can calculate the ratio of mass of the deuteron to mass of the

proton. With m,/M,  = ‘/,836,  we obtain:

&
- = 1.9985
4

Then, in amu,  the deuteron mass is 2.013. This illustrates how information about

nuclei can be obtained by studying the interaction of nuclei with electrons.

More accurate mass values for the deuteron may be obtained by observing the
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deflections of deuterons in electr ic and magnetic f ields, or by observing the

behavior of deuterons in nuclear reactions. The value of the deuteron’s mass,

from Appendix 3, is:

,Mz, - m, =  2.01410:2  - 0 . 0 0 0 5 4 9  =  2.013553amu

The deuteron’s mass is not equal to the sum of the neutron and proton masses,

which is:

M ,  =  1 . 0 0 7 2 7 6  amu

+  MN  =  1 . 0 0 8 6 6 5-___
=  2 . 0 1 5 9 4 1  amu

Thus, the total rest mass of the deuteron is less than the sum of the rest masses

of its constituent particles. This means that the system is bound. This is due to an

attractive force between neutron and proton, and a negative potential energy of

interaction. If the system is bouncl,  then it  is necessary to add energy to the

system to separate it into its component parts. The amount of energy needed to

separate the system into its constitlJents  and place them at rest inf initely distant

from each other is called the binding energy, Eb. The binding energy of a bound

system is always positive.

The binding energy of the deuteron may be computed as follows: The rest mass

after separating the nucleus into parts = M,  +  M, = 2.015941 amu; the rest

m a s s  b e f o r e  s e p a r a t i n g  t h e  n u c l e u s  i n t o  p a r t s  =  Md =  2 . 0 1 3 5 5 3  amu; t h e

difference between these masses is (due  to the addition of energy, in this case an

amount equal to the binding energy; therefore, the binding energy wil l  be given

b y  WC’ =  M ,  +  M ,  - Md =  0 . 0 0 2 3 8 8  amu; s i n c e  1  amu i s  e q u i v a l e n t  t o

931.48 MeV,  we f ind that the bincling  energy in MeV  is  Eb  = 2.224 MeV.  Th is

is extremely large compared to atomic binding energies.

The existence of a large value, Z!.224 MeV,  for the deuteron’s binding energy

indicates the presence of a strong, attractive force between neutron and proton.

The deuteron can be made to disintegrate by irradiating it with a beam of high

energy y-ray photons. I f  the energy of a photon is greater than the binding

energy, the deuteron can absorb the photon and be dissociated into a proton

and a neutron with some kinetic energy. This process is called photodisintegration

and is observed experimentally to occur, providecl  the incident y energy is

greater than the minimum 2.224 MceV,  called the threshold energy.

The spin and magnetic moment of the deuteron are also of interest. The

nuclear force between nucleons  i s  (Found  to depend very strongly on the relative

orientation of the spins; for a neutron and a proton,, the state of lowest energy

is one in which the nuclear spins are lined up. The spin quantum numbers of both

n and p are % If  the spins are parallel,  then assuming there is no orbital

angular momentum, the spin quantum number of the deuteron should be ID = 1.

It is found experimentally that this is the spin quantum number of the deuteron.

In contrast to the hydrogen atom, which has inf initely many bound states, the

deuteron has only this one bound slate with spins parallel.

let us next consider the magnetic moment of the deuteron. From Table 14.1,
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the magnetic moment of the neutron is antiparallel to its spin. The magnetic

moment of the proton is,  on the other hand, parallel to i ts spin. So i f  the spins

of n and p are parallel, the two magnetic moments should therefore be in

opposite directions, or antiparallel.  I f  this is the case, then we might expect

that the magnetic moment of the deuteron would be equal to the difference

between the magnetic moments of proton and neutron. This difference is

62  - ~1.  =  2 . 7 9 2 8  - 1 . 9 1 2 8  =  0 . 8 8 0 0  n u c l e a r  m a g n e t o n s

The actually measured value of the moment of the deuteron is +0.8574  nuclear

magnetons. This agrees quite well with the above result, but there is a difference

of 0.0226 nuclear magnetons, which has not yet been explained.

14.5 NUCLEAR FORCES

In order for a neutron and  a proton to form a bound state, i t  has been said

that a strong attractive force must exist between the two particles, and that the

force wil l  be spin-dependent. Although from experimental studies of the scatter-

ing of nucleons off nucleons, semi-quantitative statements can be made about

such strong interactions, the basic force law is not completely known. One way

to study the interaction i s  by scattering neutrons off proton targets. A way to

interpret the data is to assume the potential energy of interaction between the

particles is a certain motlhemotical  function, then solve the SchrSdinger  equation

to find what the scattering cross-section should be for that potential. If the predic-

tions agree with experimlent,  this would be evidence that the assumed potential is

correct. Thus we do not deal directly with a force, but rather with a potential

energy in nuclear physics. In Figure 14.2 is given a potential energy as a function

of distance r between neutron and proton, which explains the scattering data for

incident neutron energies up to 10 MeV  or so. The potential varies somewhat,

depending on the relative spins of the two part icles. The interaction potential is

Figure 14.2. Neutron-proton interaction potential.
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essential ly zero unti l  the part icles come to within ” :2 fermis of each other, and

then drops down to a very low value, about -22 Me’V. Such a function is  cal led

a pofential we//. The exact shape of the well  is not itoo important; in fact, one

could draw several other curves which have the same general shape as that in

the f igure, and which explain the data equally well .  They might dif fer in details,

such as in the sharpness of the bend upwards at r  = 2 fermis,  in whether the

bottom of the well slants a l i tt le, and so forth. One of the most important

features of this potential is that i t  is of very short range and goes to zero at

a range of about 2 fermis.

In proton-proton scattering experiments, as contrasted with neutron-proton

scattering, it is to be expected that if the distance of closest approach is greater

than the proton diameter,  the potential  energy of interaction should be just a

Coulomb potential. It is found that #If the incident proton’s kinetic energy is large

enough for the protons to penetraie the repulsive Coulomb potential and come

within a few fermis of each other, then the potential energy of interaction be-

comes large and negative. This conclusion is reached by interpreting the scatter-

ing data in a fashion similar to that used for neutron-proton scattering. The

potential of interaction is plotted in Figure 14.3. Apart from the Coulomb

0

Figure 14.3. Proton-proton interoctiorl  potential.

repulsion of protons, the interaction between two protons is essential ly the same

as that between a neutron and proton. That is, the “nulclear”  part of the potential

is the same in both cases. Experimerlts on neutron-neutron scattering also indicate

that the neutron-neutron potential is the same as the neutron-proton potential.

Thus, the nuclear part  of  the interaction between two nucleons is  charge-

independent; that is,  the nuclear potential between two nucleons does not

depend appreciably on the charge:; of the nucleons. The internuclear potential

between any two nucleons is of the’  form of a potential well .  The range of the

potential is approximately 2 fermis, and the well depth is about 22 MeV.

While the description of low-energy interactions of two nucleons may be ex-

plained by a simple potential moclel, when many nucleons interact the theory

becomes much more diff icult. One relight  expect that with the two-body potential

discussed above, each of the nucleons in a nucleus would be attracted by every



418

14.6

other nucleon, and al l  would be within about 2 fermis of each other.  This

contradicts the fact that the observed radii  of nuclei increase as W”3,  so that

the nuclear density is approximately constant.  Thus, the nucleons in a nucleus

actually tend to stay a distance apart about equal to the range-2 fermis-of

the interaction. If all nucleons in the nucleus stay an average distance from their

nearest  neighbors which is  e 2 fermis, and the range of the force is 2 fermis, a

given nucleon can interacct with only a few other nucleons at any given instant.

This is part ial ly, but not completely,.  accounted for by the exclusion principle,

which tends to prevent identical spin k’s  particles from being at the same position

with the same spin. Also, nucleon-nucleon scattering data at higher incident

kinetic energies reveals .that  at even shorter distances, less than N 1 fermi,

the nucleon-nucleon potential becomes repulsive rather than attractive; this also

tends to keep nucleons in a nucleus fr’om  staying too close together.

YUKAWA FORCES

In 1935, H. Yukawa proposed that tlhe nuclear force was produced by emission

and absorption of particles. The following mechanical analogy might make this

seem reasonable: Imagine two people standing on carts and throwing bricks at

each other,  as in Figure 14.4.  When one throws a brick,

-a
,I’

.’

he acquires a net

-

Figure 14.4. A repulsive force between two objects is generated by a mass thrust back
and forth.

momentum in the backward direction. When the other catches the brick, he also

acquires a momentum in the backward direction. If they throw and catch many

bricks, there wil l  tend to be a net Irepulsive  force between them. In order for

there to be an attractive force, rather than a repulsive one, they must not throw

bricks away, but they must pull  bricks awoy from each other; in other words,

the force between a man on a cart and a brick must be attractive.

Similar ly,  i f  nucleons interact by exchanging part icles,  as indicated in Figure

14.5, an attractive force could be produced. We can make some rough order-of-

magnitude estimates, based on the uncertainty principle, for the mass of the

exchanged particle. Suppose we have two nucleons, about 2 fermis apart,

interacting by emitt ing and absorbing part icles. There wil l  be an uncertainty

in posit ion of an emitted particle i\x - 2f, so the uncertainty in momentum
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Figure 14.5. Nucleons are attracted by exchange of particles pulled back and forth.

wi l l  be given by the uncertainty pr inciple,  ApAx -. ft. We may assume that

the order of magnitude of the momentum is roughly the same as the uncertainty
in momentum, so p - h/Ax.  We can use this  estimlate  for the momentum to
estimate the mass, if we make some reasonable assumption about the speed. The
speed can approach % c or so without the part icle’s mass changing much from
its rest mass. So assume the particle’s momentum is just p - M C ,  where M is
the rest mass. Then, combining p - fi/Ax and p - MC, we obtain for the mass:

(14.8)

This estimate should only be good tct within a factor of ten or so. Let us calculate
the rest mass in terms of the rest moss of the electron:

M 6 1o-34---= __-_ z 1 6 0
me CAxm,  ( 3  x  10’)(2 x  IO-‘~)(,IO-~~)

By making s l ightly different assumptions about the speed or about Ax, this

estimate can be made to vary by a factor of 2 or so. That is, the theory predicts
a rest mass of the order of magnitude h/cAx,  where Ax is the range of the
force. Thus, a new part icle is  preclicted  that has a rest mass a few hundred
times that of the electron.

A particle of mass about 206m,, ‘called a  p meson, was later discovered, and

it  was thought at f i r s t  that the p meson was the palrticle  whose existence was
predicted by Yukawa. However,  there were dif f icult ies with this  interpretat ion,
because the p was not attracted strongly’to nuclei; it could spend a great deal
of t ime inside a nucleus, as in a p-mesic  atom, without being absorbed. I t  was
not unti l  some t ime later that the part icle responsible for the strong nuclear
interaction was discovered. In fact, three different types of these so-cal led

P  mesons have been found: two charged and one neutral .  Some of their
propert ies are l isted in Table 14.2.

T A B L E  1 4 . 2 Ziome  Properties of r Mesons



F igure 14.6. Success i ve  decay  o f  the  K meson,  a + fi  -+ e .  ( C o u r t e s y  P .  H .  F o w l e r . )

F i g u r e  1 4 . 7 . Photographs  of  the d i s in tegrat ion of  l ight  e lements  carbon,  n i t rogen or

oxygen by  the  nuc lear  captu re  o f  T- p a r t i c l e s .  ( C o u r t e s y  P .  H .  F o w l e r . )
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The fact that these * mesons have zero spin allows them to be emitted and

absorbed readily by nucleons without any dif f icult ies involving conservation of

angular momentum. The p meson on the other hand lhas  spin ‘/2  and could not

be emitted alone from a nucleon without causing the nucleon to change its spin

to an integral value. However, all nucleons have spin 5.

A x+ meson tends to be repellecl  by a nucleus due to i ts charge, so a free

7r+ of low kinetic energy does not come near the nucleus, but decays into a

p meson and a neutr ino in around 10e8 seconds; the ~.r,  in turn, decays into

an electron and two kinds of neutr inos in around 10e6  seconds. A typical

K- /J + e decay is shown in Figure 14.6. A ?r”  meson ordinari ly decays into

2 y rays. If a rr- meson does not enter a nucleus, then it  decays into a /.- and

a neutrino. However, a r-  meson is attracted to a nucleus and can be absorbed

by it ,  giving up all  i ts rest energy to the nucleus and causing it  to disintegrate.

Such an event is  shown in F igure 14.7.  We shal l  discuss such decays in more

detai l  later.

The discovery of the new particle predicted by Yukawa was a great tr iumph

of theory. With this theory, Yukawa was also able to write an approximate

expression for the internucleon potential energy of the form -Ce-“O/r,  where

C and a are constants and r  i s  the internuclear distamce.  This potential can be

used to explain the low energy scattering data, just aIs well  as the potential of

Figure 14.2. This potential is thus an approximation to the true nuclear potential,

and is called a Yukawa potential. If the range of the nuclear interaction is about

2 fermis, then one would expect that in the Yukawa potential,

a  E 2  f e r m i s

7 MODELS OF THE NUCLEUS

Because our present knowledge of the internal structure of the nucleus and of the

forces between nucleons is incomplete, many models of the nucleus have been

constructed to explain particular nuclear properties. A model is a mathematical

construct which supposedly contains al l  the features essential to explain some

physical phenomenon. Each of the models of the nucleus which has been con-

sidered is useful in explaining a certain port ion of the exist ing experimental

data on nuclei, but no one of them can be used to explain all of the data. In

this section we shall  consider some of the nuclear mlodels  which have been at

least partially successful.

1 L i q u i d  D r o p  M o d e l

The facts that nuclei have constant densit ies and moderately well-defined sur-

faces, and interact with short range forces, suggest that nuclei might be similar

in structure to sol ids or l iquids. I f  one considers a nucleus to be a crystal l ine

aggregate of nucleons, then i t  turns out that the zero-point vibrations of the

nucleons about their  equil ibr ium posit ions are much too large for the nucleus to
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example For iron 26Fe 56,  Z = 26, A = 56, N = 30. So we use

remain bound together. So a nucleus cannot resemble a crystal l ine sol id. How-

ever, we can think of the nucleus as s imilar to a drop of l iquid in which the

particles are able to move about inside the drop, but are prevented from leaving

the nucleus by an effective surface tension. This model can be used to explain

quali tat ively the observed binding energies of the stable nuclei.  let us first see

how the binding energies are calculated. The binding energy of a bound system

is the energy required to break the r#ystem  into its constituents and place them at

rest infinitely distant from each other. For a nucleus of N neutrons and Z protons,

of rest masses M, and M, respectively, the rest mass of the nucleus after i t

is broken into i ts consti tuent parts wil l  be NM. + ZM,. I f  the rest mass of the

or iginal  nucleus is  zM “, t h e n  A  =: N  +  Z ,  a n d  t h e  d i f f e r e n c e  i n  r e s t  m a s s

between the const i tuents and the nucleus wi l l  be proport ional to the binding

energy Eb. Therefore,

6,- =  NMn  +  Z M ,  - zMA
C2

(14.9)

This formula is not very convenient for calculation, because the binding energy

is expressed in terms of nuclear masses, whereas tables such as that in Appendix

3 contain atomic masses. To a suff icient approximation, neglecting electronic

binding energies, and using m,  for the electron’s rest mass,

ZMA  := zM$  - Z m , (14.10)

Similarly, in terms of the  rest mass of a hydrogen atom,

M,  .= ,MA,  - m, (14.11)

and therefore,

Z M ,  =z  Z,ML, - Z m , (14.12)

Subst i tut ing for ZMA  and A M ,  and simplifying, we get

6,
- =  N M ,  +  Z  ,M;,  - zM$,
C2

(14.13)

Thus, due to the cancellation of all the electron rest masses, the atomic masses of

the given element and of hydrogen can be used in calculating the binding

energy.

30M,, =  3 0  x  ( 1 . 1 3 0 8 6 6 5 )  amu =  3 0 . 2 5 9 9 5  amu

26(,MA,)  =  2 6  x  ( 1 . 0 0 7 8 2 5 )  amu =  2 6 . 2 0 3 4 5  amu

s u m  =  5 6 . 4 6 3 4 0  amu

24:: = 5 5 . 9 3 4 9 3 amu

T h u s ,  N M ,  +  Z  ,M:,  - - zMt,  =  0 . 5 2 8 4 7  amu.  S i n c e  1  amu =  9 3 1 . 4 8  MeV,

the binding energy of the 26Fe 56  nuc:leus  is 492.3 MeV.
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The b inding energy per  par t ic le  of  a  nucleus is  tlhe  average b inding energy

of  one par t ic le  and is  just  def ined as  Eb/A.  So  f rom the  example  for  26Fe56,

the  b inding energy per  par t ic le  is  492.3/56  = 8.79 MeV.  L ikewise  the  b ind ing

energy per particle for sOI6 is 7.97 MeV.

The binding energy per particle can be computed in a like manner for all the

stable nuclei. The results are shown in Figure 14.8. A fairly smooth curve is found,

0 20 40 60 80 100 150 200 250

Mass Number (Al

Figure 14.8. The average binding energy per nucleon as a function of mass.

which  has  a  maximum at  about  the  posi t ion  of  i ron ,  but  there  are  a  number

of peaks at lower values of A. From around A = 20 on up to A = 200, the curve

is nearly  a  constant  at  a  value of  Eb/A equal  to about 8 MeV  per  par t ic le .

This  constancy of  the  b inding energy per  par t ic le  is  very  s imi lar  to  that  o f  a

l iquid .  For  example ,  to  boi l  water  requires  80  kilocal/kg,  a  constant  value.

However, nuclei do not contain 10z3 particles, but more like 250 particles at most.

Hence there  wi l l  be  important  sur face  e f fects .  I f  a  nucleus he ld  a  very  large

number of particles, then because of the short range of nuclear forces and be-

cause of the constant density of nuclei, one nucleon in the interior would interact

wi th  only  a  few others  and would  have about  8  Me’V  binding energy.  Nucleons

near  the  sur face  would ,  however ,  not  in terac t  w i th  so  many o thers  and  would

have less binding energy. The amount by which the binding energy will be less

than 8 MeV  should be proportional to the number of lnucleons “near” the surface.

S ince  nuclear  densi t ies  are  constant ,  the  number  of  nucleons  near  the  sur face

should be proport ional  to  the  sur face area.  Because nuclear  radi i  are  propor-

t ional  to W”3 or  (A”3),  the  correct ion  to  the  total1  b inding energy f rom the

presence  of  the  sur face  should  be  propor t iona l  to  A2’3.  Then the  correct ion  to

the  b inding energy per  par t ic le  shrould  b e  proportional  to  A-“3.  The correct ion

to the binding energy will be negative.
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For smaller values of A, where the surface-to-volume ratio is larger, this effect

should be more important. In fact, as A + m, this correction approaches zero,

whi le as A + 0, i t  becomes very large. This explains why the binding energy

per particle becomes small at low A. At large A, the binding energy per particle

again gets small, principally due to Coulomb repulsion of protons in the nucleus.

Since a nucleus has Z protons, which are on the average distr ibuted uniformly

throughout the nucleus, these protons tend to repel each other and make the

nucleus f ly apart .  This is  an “unbinding” effect. Thus, there wil l  be a negative

correction to the binding energy per part icle, which is proport ional to the

electrostatic self-energy of a spherical charge of magnitude Ze. This energy is

“/s (Ze)‘/R.  S i n c e  R  i s  p r o p o r t i o n a l  t o  A”3,  t h e  c o r r e c t i o n  t o  t h e  b i n d i n g

energy per part icle wil l  be proport ional to Z2/A4’3.  This Coulomb repulsion does

not occur for neutrons. This means that heavy nuclei can consistently contain more

neutrons than protons without the unbinding Coulomb repulsion which tends to

make the nucleus unstable. For example, 82Pb20* has a Z of 82 and an N of 126.

For small nuclei,  the Coulomb conltribution  is small ,  but for large nuclei,  i t  is

large. In fact, as Z + co, this term becomes larger in magnitude than 8 MeV/

part icle. Hence i t  is  not Ipossible  to have bound nuclei for Z too large, because

of the Coulomb repulsion between the protons in the nucleus. The binding energy

per particle should then be given by the sum of three terms:

(14.14)

where C,  and C2 are constants.  The curve in Figure 14.8 con be f i t  reasonably

well  by these three terms. The three separate contr ibutions, and their sum, are

shown in F igure 14.9.
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F igure  14 .9 . B i n d i n g  e n e r g y  p e r  n u c l e o n  i n  o n  a t o m i c  n u c l e u s  CIS  a  f u n c t i o n  of a t o m i c

number.
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7.2 Alpha Particle Mode/

Inspection of the binding energy curve, Figure 14.8, shows sharp relative peaks

at the positions of sHe4,  ,Bes, 6C’2, s 016,  and ,oNe2o. This, and the fact that some

heavy nuclei emit c~  particles, suggests that pairs of neutrons and protons become

associated together inside the nuc:leus, as (Y  part icles. The binding energy per

particle of 2He4  is about 7 MeV.  Thus,  i f  nuclei  con!sisted  of cc  part icles, about

87% of the binding energy would be accounted for. Presumably, then, the

remaining energy should be due to relatively weak bsinding between a part icles.

However, this model has not been very successful.  For example, in scattering of

LY part icles off  (Y  particles, the data cannot be satisfactori ly explained in terms

of an interaction between two LY particles. Rather, i t  seems necessary to assume

that the two LY part icles combine into a larger nucleus, and then break up into

two new cr’s.  Thus, the cy particle model has a very limited range of application.

7.3 She//  Model

In describing the electronic structure of atoms, i t  was seen how a great deal

of data could be explained on the basis of a set of electronic shells and sub-

shells. The electrons had spin % and obeyed the Paulii exclusion principle, so that

into any state such as a 1 S, only two electrons could go with their  spins anti-

paral lel .  There is  considerable evidence that a shel l  st ructure exists in nuclei .

For example, the numbers 2, 8, 210,  50, 82 and 126 appear to have special

s igni f icance in nuclear st ructure.  We only mention part of the evidence here.

Calcium (Z = 20) has six stable isotopes (see Figure 14.1), an unusual ly large

number. Sn (Z = 50) has ten stable isotopes, more than any other element. The

largest group of stable isotones clccurs  at N = 82. The heaviest stable nuclei

are:

and

Pb2’s  ( Z  =  8 2 ,  N  =  1 2 6 )

Bi’lo9  ( N  =  1 2 6 )

The numbers 2, 8, 20, 50, 82, 126 are called magic  numbers, because to earl ier

investigators their significance was so puzzling.

In the shell model, this and similar data may be ulnderstood  by assuming that

each nucleon moves, nearly independently of  other individual nuclei ,  inside a

spherically symmetric potential well  which is due to al l  the other nucleons.

Then a nucleon moving in this potential will have states described by a principal

quantum number n, orbital angular momentum (S, P, D, F, .  .  .) and total angular

momentum i. This is  very similar to the si tuation in atoms. In nuclei the spin-orbit

interaction is very large, and when the spin-orbit interaction is included, this leads

to the sequence of single-particle states of increasing energy shown in Table 14.3,

which are grouped into shells and subshells matching the experimental magic

numbers.
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T A B L E  1 4 . 3 An (Ordering of Subshell  States Which leads to the Observed
Magic Numbers

Spectroscopic Configuration

us1,2)2 2

(2P3,d4(2P1,2)
2

6
.l

(3ds,2)6(3d,,,)4(2s,,2! 12

(4f7,z)  *(4f5,2)6(3P3,2)4(3P,,2)2(5g~,2)  ‘O 3 0

(5g7/2)*(4ds,2)6(4d2,2)4(3s,,2)2(6’h,,,2)12 3 2

(6h~,~)‘0(~f7,~)8(5fs,2l6(4p~,2)4(~1p,,2)2(7~,~,2)‘4  4 4

2

8

2 0

5 0

8 2

1 2 6

When using the information in Table 14.3, one should remember that both pro-
tons and neutrons have spin %.  Hence they are both fermions and obey the
exclusion pr inciple. However, protons are dist inguishable from neutrons. Thus,
two protons could go into the ls,,*  s,tate. Likewise, two neutrons could go into
that state.  When the ls,,? state contains 2 protons and 2 neutrons, the shel l  i s
f i l led up. This corresponds to an LY part icle.  When the l~,,~, 2p,,,,  and 2p,,,

levels  are al l  f i l led up with both neultrons  and protons, the result ing nucleus is
8016.  Notice the peak of the binding energy curve, F igure 14.8, at the posit ions
of 2He4  and *O16.

In applying these ideas to the explanation of the propert ies of stable nuclei ,

i t  would at f i r s t  appear that,  on the average, the number of  neutrons in a
nucleus should be about equal to the number of protons in a nucleus. However,
from Figure 14.1 i t  i s  seen that there are more neutrons than protons in heavy
nuclei. As mentioned previously, this is because of the Coulomb repulsion between

protons: s ince protons clre  charged whereas neutrons are not,  the potent ial
energy of an extra proton added to a nucleus would be greater than that of an
added neutron, other things being equal. Therefore, in the shel l  model, the
potential  wel l  used to calculate the neutron energy states wi l l  be deeper than
that used for the protons. Hence the neutron energy levels wi l l  general ly l ie
lower than those of the protons.

The shel l  model can also be used to explain many features of the spin and
magnetic moments of stable nuclei. If a nucleus had two protons in a Is,,?  state,
the total  angular momen,tum  should be zero.  I f  a nucleus had any even number

of protons, i t  i s  not unreasonable to suppose that these would be paired off,
two in each state, so that the total  spin should be zero. Then the contr ibut ion
to the total magnetic moment from these paired protons, provided their  net

orbital angular momentum is zero, should be zero. This is  found to be the case.
Simi lar ly for a nucleus with even N, the spin and magnetic moment are zero,
because the neutrons are paired off with opposite spins in each pair.

A nucleus with even Z and even N is called an even-even nucleus. In Table 14.4
are given the numbers of stable nuclides (nuclei) as a function of whether Z and

N are even or odd.
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T A B L E 1 4 . 4 Effect of Evenness and Oddness of Z and N on Stability of Nuclides
- - -

Z N Number of Stable Nuclides
--_

even even 1 6 0
even odd 5 6
odd even 5 2
odd odd 4

It appears that nuclei have greater stabil i ty when bath protons and neutrons

are paired, then i f  there is  an unpaired neutron 01’  proton or both.  The only

examples of stable odd-odd nuclides are the l ightest possible odd-odd ones,

w h i c h  a r e  ,H2, 3Li6,  sB lo and ,N 14.  A nucleus with even Z,  odd N or odd Z,

even N, has an odd number of mcleons, and therefore should have values of

net angular momentum of % )I, % tl, s/s  )I, r/z ti, . . . . Usually, only the lower values

of the net angular momentum quantum numbers actually occur in nature; this is

evidence for the pairing of like nucleons  within the nucleus.

The l ightest  odd Z,  even N, nucleus is ,H3. One would expect the neutrons

to be paired with opposite spins in an s state, and the proton in the s state then

gives the nucleus spin % . The magnetic moment should be about that of the

proton, 2.79 nuclear magnetons. Experimentally, i t  ils  2.98 nuclear magnetons.

Likewise, an estimate of the magnetic moment of the even Z, odd N, 2He3

nucleus would be that of the neutron, p, =  - 1.91 nuclear magnetons. The

experimental value is -2.13. An odd-odd nucleus Ihas  one unpaired neutron,

one unpaired proton. The l ightest example of this is the deuteron, where the

nuclear forces are such that the :spins of the n and p l ine up, the net spin

being 1. In general, for an odd-ocld nucleus the net angular momentum should

be integral.  The actually observed ,ralues  of spin quantum numbers for odd-odd

nuclei are:

,H2  - 1 ; 3Li6  + 1 ; sB”  --*  3 ; TN14  --)  1 .

We shall not pursue the discussion of nuclear modlels  any further. So far, we

have just scratched the surface in discussing the types of experimental data

which are observed. Some of this will be discussed in the next chapter. We have

not mentioned all  the different models which are used to explain different types

of data such as scattering and absorption of incident particles, and excited

states due to overall rotation of the nucleus.

NUCLEAR MASSES AND BINDING ENERGIES

The nuclear mass of a given nucleus, L MA,  is obtained by subtracting from the

atomic mass the rest mass of Z electrons. The nucleus consists of Z protons and
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N = A --  Z  neutrons.  Nuclei  having equal Z are cal led isotopes;  those having
equal N are cal led isotones. The mass number, A, is the integer nearest to
the atomic mass. The bincling  energy Iof  a nucleus is defined as the energy which
must be added to the nuc:leus in order to separate it into its constituent neutrons
and protons, and place them at rest inf initely distant f rom each other.  The

binding energy Eb  is given by

- =  N M ,  +  Z,M:, - +I:,
C

2

w h e r e  M,  i s  t h e  n e u t r o n  m a s s ,  ,MA, i s  t h e  a t o m i c  m a s s  o f  h y d r o g e n ,  a n d
,Mt,  is the atomic mass of the nucleus in question.

MAGNETIC MOMENTS

The magnetic moments of nuclei are measured in nuclear mognetons. 1 nuclear
magneton  =  eii/2M,  =  5 . 0 5 1  x 1Cl~27  j o u l e  (weber/m2)-‘,  w h e r e  M,  i s  t h e
proton mass. Nuclear moments are written in the form p = g eti/2M,  I ,  where  I
is the spin (total angular Imomentum)  of the nucleus. The magnetic moments vary
from about -5 to +5 nuc:lear magnetons, and must be measured experimental ly.

NUCLEAR FORCES

The forces between nucleons are short range and strongly attractive. A nucleon
in a nucleus interacts with only a few others at a t ime and stays about 2 fermis
away from the other nucleons. For many purposes, the interaction potential
between two nucleons mcly be treatecl  as a potential well of range about 2f and
depth of 22 MeV.  Yukawa proposed that nuclear forces were due to the ex-

change of part icles cal led ?r  mesons,  and predicted that the x rest mass should
be a few hundred times the electron r’est mass.

LIQUID DROP MODEL

The l iquid drop model can be usecl to explain qual i tat ively the behavior  of

binding energy as o function of A. Due to nuclear saturation, a nucleon in the
interior of a nucleus inter’zcts  with only o few others and has a constant binding

energy per nucleon, due to the nuclear forces. Nucleons  near the surface do not
interact with OS  many other nucleons, and hence there is a surface correction
which decreases the binding energy. The resulting binding energy formula is:

for the binding energy per particle, where C,,, C, and C,  are constants.
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SHELL MODEL

In the shell model the nucleons  are treated as througlh they move in a spherically
symmetric potential well, which is cleeper  for neutrons than for protons. This gives

rise to a set of energy levels described by quantum Inumbers  n, C,  and the total
angular momentum j. Neutrons and protons are both fermions, and satisfy the
exclus ion pr inciple; hence only two neutrons and twmo  protons can go into each

orbital state. Filled levels are more stable configurations and this leads to excep-
tional preference in nature for nuclei with N or Z equal to 2, 8, 20, 50, 82, 126.
Nuclei  with even Z have their  protons paired off  with opposite spins,  and there
is no net contr ibution to spin or magnetic moment from these particles. Similarly

for nuclei  with even N. There are more stable even-even nuclei  in nature than
any other type.  Nuclei  with both odd N and odd Z are rare,  and have spins

1 or 3. Even-odd and odd-even nuclei have at least one unpaired particle and
have spins ‘/*  , % , %  , %  , . . .

In nuclear magnetic resonance experiments, nuclear magnetic moments in a strong
magnetic field, with energy -/.L *B,  are caused to go from a state with one spin
orientation to a state with a different spin orientation (and  energy, by absorption of
rodio frequency photons. The following three problems are based on this.

1. In a field of 0.2 webers/m*, what photon frequency will cause a proton to go from
a state with spin component % irl the direction of the field to one of spin component
- % ?
Answer: 8.5 1 x 1 O6  cycles/set.

2. If hydrogen fluoride has an 18-megacycle  electromagnetic field applied to it, by how
much must the strong appliecl static magnetic f ield be changed to go from
absorption of photons by fluorine to the absorption b,y  hydrogen? Use Appendix 3.
Answer: 0.0266 webers/m’.

3. In a f ield of 0.35 webers/m’, at what frequency ‘is there photon absorption by
the s B”  nucleus, corresponding io the s, = % to ‘/2  transition? Use Appendix 3 and
note that the maximum magnetic moment listed correr,ponds  to s, = ‘/?
Answer: 4.78 x 1 O6  cycles/s,ec.

4 . What is the g factor of the ssBr 79  nucleus? Use Appendix 3.
A n s w e r :  1 . 4 0 3 9 .

5 . Find the nuclear mass of 27C059 from Appendix 3.
Answer: 58.9184 amu.

6. Treat the deuteron as if it were a particle in a cubic box of side t and mass equal
to the reduced mass M,M,/(M,  + MP). According to the data in this chapter,
how for is the deuteron energy above the potential energy of interaction? Let this
be equal to the ground state energy of the particle in the three dimensional box
to get &, and thus a rough estimate of the nuclear diameter.
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7 .

8 .

9 .

10.

11.

12.

13.

14.

15.

16.

17.

18.

A  A”  meson decays in to two gamma rays.  I f  the KO  i s  a t  res t ,  what  i s  the energy of

each gamma ray?

Answer: 6 7 . 5  MeV.

I f  t h e  m a s s  o f  t h e  pt  m e s o n  i s  mr a n d  t h a t  o f  a  r’  i s  m , ,  f i n d  t h e  k i n e t i c

energy of  the /.L+, and the neutr ina energy for  a K+  decaying at  res t .  The neut r ina

has zero rest mass.

A n s w e r :  ( m ,  - m,12c2/2m,;  (mz  - mi)c2/2m,.

Find the binding energy per nucleon of  chlor ine 35 f rom Appendix 3.

Answer: 8.5  MeV.

Find the binding energies per nucleon for  F”, F19  and F2’  f rom Appendix  3 .  Which

is likely to be the more stable?

Answer: 7 . 6 3  MeV; 7 . 7 8  MeV;  7 . 7 1  MeV.

From the data in  Appendix 3,  decide which of  the fo l lowing should be the more

s tab le :  7N’7 ; 80’7;  9F’7.

A n s w e r :  80”.

From Appendix 3 ,  calculate the energy necessary to  remove one proton f rom 7N14.

Compare th is  wi th the energy to rlemove  one neutron and also wi th the average

binding energy per  nucleon.  Why are these di f ferent?

Answer: 7 . 5 4  MeV; 1 0 . 5 5  MeV;  7 . 4 7  MeV.

Find the energy necessary to remove the least  t ight ly  bound nucleon f rom the fo l low-

ing s toble nuclei :  loNe “O;  9F19; 80”; 8017;  8016;  ,N15.  Compare this energy for even

A wi th  that  for  neighbor ing nuclei  of  odd A,  and explain in  terms of  f i l l ing proton

and neutron levels .

Answer: 6 . 9  MeV; 8 . 0  MeV; 8 . 1  MeV;  4 . 1  MeV;  1 2 . 1  MeV; 1 0 . 2  MeV.

By consider ing bringirlg  in infinitesimal  spher ical  shel ls  of  charge f rom inf in i ty  to

bui ld  up a tota l  sphere of  charge e and radius R,  show that  the work necessary is

3/S  e2/4atoR.  T h u s ,  s h o w  t h a t  t o  b r i n g  i n t o  s u p e r p o s i t i o n  Z  u n i f o r m l y  c h a r g e d

spheres  of  radius  R ,  the work i s ’/ ,  Z(Z - 1) e2/4atoR.  Use the re lat ionsh ip between

the nuclear  radius and A to show that  th is  energy is  0 .79 Z(Z  - 1) A”3  MeV. Cam-

pare this 0.79 with the constant C2 in the discussion of the liquid drop model.

In  te rms o f  the alpha.~particle  model ,  explain why there are no s table nuclei  of

A = 5 or A = 8.

On the bas is  o f  the stlell model  levels  in  Table 14.3,  explain why 6C’2  and ~0’~

should both have spin zero.

On the basis  of  the shel l  model  levels  in  Table 14.3,  explain why i t  i s  reasonable that

7N l4 should have a nuclear spin of 1.

On the basis  of  the shel l  model ,  explain why you might  expect 3Li7 to have a nuclear

spin of  ‘/z  and a nuclear magnet ic moment near 3 nuclear magnetons.
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of the nucleus

Of the approximately 1200 different nucl ides knowrl  to exist ,  only about 270 are

stable; the remainder decay sportaneously into l ighter fragments. Further, some
nuclei may be induced to undergo such decomposit ion by i r radiat ing them with
beams of particles of various types. Under certain cmonditions, two or more nuclei
may combine to form a heavier nucleus. The study of such processes is of great

importance in attempting to understand the structure of nuclei  and of the ele-
mentary particles, and has led to a wide variety of applications in other scientific
fields.

W e  s h a l l  s t u d y  h e r e  o n l y  s o m e  o f  t h e  m o r e  Iimportant  f e a t u r e s  o f  t h e s e
processes and their applications.

5.1 LAW OF RADIOACTIVE DECAY

The spontaneous decay of a nucleus into lighter particles is called natural radio-

activity. An example of this process is  the emiss ion of alpha part icles by the
uranium nucleus, 92Uz38. A given (unstable nucleus may decay in more than one
way; for example, 83Bi212 may emit either an alpha part icle or an electron; this

latter process is  cal led beta decay. Nuclei may also emit gamma rays (photons)
of discrete energies. All of these pi’ocesses  are fundamentally statistical in nature.
That is ,  i t  i s  imposs ible to predict when any one given nucleus wi l l  decay, and
the process must be described in terms of a probabil i ty of decay per unit t ime,
or a transit ion rate.

Consider a sample of N nuclei of a given type, where N is suff iciently large

that stat is t ical  var iat ions in the decay rate wi l l  average out.  Suppose we count
the number of decays in a small time interval df,  starting with N nuclei, and study

the number of decays as dt and N are var ied. Let us descr ibe the number of
decays in terms of the change in the number of nluclei during dt.  I f  dN  is the
increase in N in the t ime dt,  then the number of decays is  -dN. The number dN

i s  negative because N is  decreasing due to the decays. When --dN  i s  observed
experimental ly,  then over short t ime intervals the sample is  observed to decay
at a constant rate. That is, if in dt a certain number of decays are observed, then,

431



4 3 2 T r a n s f o r m a t i o n  o f  t h e  nuclew

on the average, in 2dt twice as many decays will be observed, and so we may
conclude that -dN is  proport ional to ‘dt.

Another observed fact is  that nuclei  in atoms decay independently of each
other; the proximity of one atom to crnother  does not affect the nuclear decay

rate. Thus, i f  start ing with N nuclei, -dN decays were observed in df,  then
with  5N nuclei,  the number of decays in dt should be increased by a factor of
five. Thus, on the average, -dN is  proport ional to both dt and to N. These facts
may be expressed in the elquation,

- d N  =  XNdt (15.1)

where X is  a proport ional i ty constant, cal led the decay constant or dis integration

constant.  The quant iy X is  independent of t and N, and depends only on the
particular type of decay.

e x a m p l e  I f ,  in a sample of 2.52 X 10” atoms, of 92U238  (one mil l igram), 740 a part icles

are produced per minute, what is the decay constant in set-‘?

SO/~~;O~  X =  -AN/NAt =  740/1,2.52 x  lO’s)(60  set)

=  4 . 9  x  lo-‘s  sec.’

Equation (15.1) is  a differential  equation which expresses the rate of change
of N with t ime. We can solve the differential  equation to f ind N as a function of
time as follows: divide by N to obtain

dN-= - Xdt
N

(15.2)

In this form, we can integrate each side separately and equate the results. Apart

from a constant of integration,

= InN (15.3)

Also,
j-Xdt  =  -At +  C ’

where C’ is some constant of integration. Therefore,

(15.4)

In N ==  ~ Xt  + C ’ (15.5)

We take exponentials of both s ides of this  equation to obtain the number of
part icles:

N =  ce-“’ (15.6)

w h e r e  C  =  ec’I S  a constant.  Last ly,  we may express the constant C in terms
of the number of nuclei N, which are present at the in i t ia l  instant t =  0 .  I f
N = N, at t = 0, then N, = Ce” or C =  N,.  Hence, in terms of N,3  and
Xt,  the number of particles remaining undecayed at time t will be given by:

N :z No emAt (15.7)
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This  i s  the fundamental equation descr ibing the average way in which samples
of radioactive nuclei decay.

5 . 2  H A L F - L I F E

Decay rates are usual ly given in ierms of the decay constant A, or else in terms

of a closely related number cal led the ha/f- l i fe and denoted by T,:,  The half- l i fe
is defined as the t ime it  takes for half the nuclei in a sample to decay. Thus, i f

we set t =  J , , , in  Equat ion (15.7),  this would correspond to sett ing N = ‘/2 N,.
We then find a relation between half-life and decay constant:

% N, = N, Ed  ““/’  or e iTI, = 2 (15.8)

We can solve Equation (15.8) for r,,, in terms of X by taking logarithms of both

sides of the equation. Using the identities

we get
I n  2  =  3 . 6 9 3 , In e”  :=  x

7
0 . 6 9 3

‘i2  :=  ~h
(15.9)

rip/e  If X = 4.90 x lo-‘*  sect’, as in the previous example, and if 1 year =
3.15 x lo7 sec., then measured in yeurs,

J
0 . 6 9 3 0 . 6 9 3

I,2 = x [(4.9 x 10m’*)(3.15  X lO’sec/yr)]

=  4 . 4 9 x lo9 y e a r s

This is  the number of years i t  would take unti l  only half the or iginal nuclei were

left.  The decay of the remainder of the nuclei is  st i l l  described by the same
statist ical law. Hence, i t  takes an addit ional half- l i fe, or a total of 8.98 x 10’
years, to reduce the number of nuclei to Y4 the original number.

5 . 3  L A W  O F  D E C A Y  F O R  U N S T A B L E  D A U G H T E R  N U C L E I

When a nucleus such as 92U 238  emits an a part icle, a resultant nucleus of thor ium
is left , 90Th234. In this  case, the uranium is  cal led the parent nucleus and the
thor ium is  cal led the daughter.  For every U nucleus which decays, one daughter

is formed. So if at t ime t, N = N, Ed*’  uranium nuclei remain, N, - N uranium
nuclei have decayed, and so N 0 - N new daughter nuclei  have formed. In terms

of the time, from Equation (15.7) tile number N, of new daughters is

Nd  = NO(l - e--“) (15.10)

Figure 15.1 shows a graph of number of remaining parents as a function of t ime,

and Figure 15.2 is a s imi lar graph of the total number of daughters formed as a

function of time.
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Figure 15.1. Radioactive decoy low; decoy of the parent nucleus.

Figure 15.2. Rcldiooctive  decoy low; growth of o stable daughter.

I f  the daughter is  stable, then the actual number of daughter nuclei  i s  equal
to the number formed by the parent’s decay. However, i f  the daughter is  i tself

unstable, the actual number of daughter nuclei  wi l l  be less than that given by
Equation (15.10).  In this  c:ase,  we have to reconsider the rate of change of the
number N,, of  daughter nuclei .  Suppose the daughter i s  unstable and has a
decay constant Xd. Then f N,, i s  the number of daughter nuclei  at a part icular
time, in a time dt the number which decay will be X,, N,,  dt. This will contribute to
the rate of decrease of N,.  But daughters are continually being formed by decay

of the parent; the number formed in t ime dt is X, N, dt.  Therefore, the total
increase in number dN,,  of daughter atoms WIII be

dNd =  A, N, d t  - iid  Nd  d t (15.11)

T h e  n u m b e r  o f  p a r e n t  a t o m s  i s  N, =  N, em~AP’,  s o  w e  o b t a i n  t h e  f o l l o w i n g

differential equation for the rate of change of daughter atoms:

dN,  =  (--N,  )\, +  X, No emhp’)dt (15.12)

This differential  equation can be soked  after some manipulation. It  is  easi ly
verified that the solution is:

-hd’ -Apt
Nd = A&-:-%-)

A, -- x,j
(15.13)

To give some feeling for the behavior  of this solution, the ratio N,/N,  is
p l o t t e d  i n  F i g u r e  1 5 . 3  f o r  t h e  partilcular  c h o i c e s ,  X, =  2 . 0  set-‘,  X, =  1  . O

set -‘.  From the plot, i t  may be seen that after a long t ime has elapsed, N,,  ap-

proaches zero. This is bec.ause al l  of  the parent wi l l  have decayed, and al l  the

previously formed daughter nuclei will also decay.
The form of the above result depends on both X, and X,.  One interesting case,

which occurs often in nature, is  that in which the parent decays much more
s lowly than the daughter.  Then X, is much smaller than hd,  and X, - X,, is

-A  f
approximately equal to --A,.  Also, e?mhp’  is  much larger than e d for large t.
Thus,  under these assumpiions, Equation (15.13) s implif ies to:
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Figure 15.3. Radioactive decay law, growth and decay of an unstable daughter, for
decay constants given by Xp = 2.0 set ‘, /\d  = 1 .O set-‘.

Since the number of parent nuclei is  N, e
-A(+

= N,,  the equotion states that

after a long time,

h,N, = X,N, (15.14)

Physical ly,  this  means that the rate  of production of daughter nuclei is  equal to
their rate of decay. Hence, the net increase dN,  will be zero. Thus, if the decay
constant of the daughter nuclei  is  much larger than the decay constant of the

parent nuclei,  at f i rst  the number of daughter nuclei wi l l  increase, because
init ial ly no daughter nuclei are present; the formation process dominates. After
a long time has elapsed, the number of daughter nuclei will have increased to the
point where they decay as fast  as they are formed. The result  could also have

been obtained from Equation (15.1 1) by sett ing dN,  = 0.  When this  s i tuat ion
applies, the daughter is said to be in equilibrium with its parent.

One application of this result is  to the determination of extremely long half-
lives. Equation (15.14) can also be written in terms of half-lives:

Nd _ N,

(Jw  b (Jvzh
(15.15)

Thus the relat ive numbers of atoms of the two types wi l l  be directly proport ional
to their respective half-lives.

#p/e  A  n u c l e u s  o f  92UXJ*  d e c a y s  i n t o  90Th234 by emitt ing an alpha part ic le,  and

wTh ‘s4 is  also unstable, emitt ing an electron with a half- l i fe of 24.1 days. I f

PoTh2”4 is found in rocks containing uranium, with the number of thorium atoms

equal to only 1.47 x 10~9%  of the number of uranium atoms, what is  the half-
life of p2U238  in years?

= 4.47 x  lo9 years.
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15.4 RADIOACTIVE SERIES

The natural ly occurr ing radioactive elements with Z > 82 have been found to
fal l  into three series. Within a given series, the nucl ides decay into each other

and eventual ly end as some isotope (of lead. There is a fourth series, whic:h  has
been produced in the laboratory. In al l  of these ser ies, the decay part icles are

either alphas (helium nuclei) or betas (electrons). On emission of an alpha,

Z declreases  by 2
N decreases by 2
A decreases by 4

By conservation of charge, the change in Z of a nucleus on emission of an elec-
tron in beta decay by the nucleus,  i s  + 1. The change in A is zero. Thus, in al l
decays within a single series, A either decreases by 4 or else does not change.

Hence, if  n is some integer, al l  members of a series have mass numbers given
by:

A=4n,4n+1,4n+2, o r  4nf3

These series are namec,,  respectively, the thorium series, neptunium series,
uranium ser ies and actirium series. The properties of the series are given in
Tables 15.1, 15.2, 15.3and  15.4.

Consider f i rst the 4n i- 2, or uranium series. p2U238  decays by a emission to
90Th234, cal led uranium X,.  The Th nrJcleus  decays,  in turn,  by beta decay into

either uranium X2 or uranium Z;  each of these has the same Z and A, and is  a
nucleus of the element 9,Pa234. U r a n i u m  Z  m a y  b e  f o r m e d  w h e n  u r a n i u m  X2

emits a gamma ray. Hence, uranium Z and uranium X2 are two different states

of the same nucleus, called isomers. From the last column of Table 15.3 one may
predict the energy of the gamma ray emitted. It is

I ---l =  2 . 3 1  ~-  0 . 5  =  1 . 8 1  MeV (15.16)

If the earth was formed in some process which took place a long time ago, and
if the naturally radioactive elements were formed at the same time, then the fact

that not all of these elements have decayed yet should give some indication of the
age of the earth. The neptunium series, for example, is  not found in nature.

Since the longest half- l i fe of any member of the neptunium series is 2.2 x lo6
years,  this means the earth must be rmany t imes as old as 2.2 x lo6 years.  On

the other hand, the other three ser ies are found in nature. The longest half- l ives
found in these other ser ies are between about 10’  and 10”  years roughly. This
indicates roughly that the age of the earth may be a few bi l l ion years.  In
addit ion to these series, there are 01  few other natural ly occurr ing radioact ive
nucl ides which have been found, with Z < 82.  There are poss ibly others whose
decay rates are so small that they have not yet been detected. Table 15.5 gives
a l ist  of these known unstable elements. Decay by electron capture from an

atomic level by the nucleus is indicated by EC.



TABLE 15.1 Thorium (4n) Series

Nuclide Common Name
Particle

Emi t ted Tl/Z E* (MeV)

PoTh232 Thorium CY 1 . 3 9  x  1O’“yr. 3.99,3.93

i
r,8Ra228 M e s o t h o r i u m , P 6 . 7  yr. < 0 . 0 2

i
g9AC2*8 Mesothorium, P 6.13 hr . 1.11,0.45  - 2 . 1 8

1
9oTh22* Radiothorium a 1.90 yr. 5.42, 5.34

1

ss  Ra**’ Thorium X (Y 3.64 days 5.68,5.44

i
WJEm  220\ Thoron (Y 5 4 . 5  set 6.28, 5.75

84 Po216 a, ? 0 . 1 6  set a 6 . 7 7

82  Pb*‘* P 10.64 hr. 0.34, 0.58

85At216 a 0 . 3  x 10m3  set 7 . 7 9

.21283 Bl a, P 60.5 min p2.25;  ~16.05, 6 . 0 9

*‘$Poz’2 ir 3 x lo-‘see 8 . 7 8

a1  Tl*‘* B 3.1 min 1.79, 1.28

82  Pb*” Thorium D Stable

*The energies given ore those of the most important alpha-particle groups, or those of the most energetic beta particles.



TABLE 15.2 Neptunium (4n +  1)  Ser ies

Nuclide Common Name
Particle

Emi t ted Tl/Z E* (MeV)

93N~
237

91  Paz33

92u
233

9oTh229

88 fk?

s9ACZZ5

8, Fr
2 2 1

s5At2”

ssBi2’3

2 %  +\

*, Tlzo9 I 9 8 %

/P 2’384 0

\
i

s2Pbzo9

83  Bi209

2 . 2  x  lo6  yr.

27.4 days

1 . 6 2  x  105yr.

7 3 0 0  yr.

i 4.8 days

10 days

4.8 min.

1 . 8  x  lo-‘set

47 min.

4 . 7 9 , 4 . 5 2 - 4 . 8 7

0.26, 0 . 1 4 , 0 . 5 7

4.82, 4 . 7 8 , 4 . 7 3

4 . 8 5 , 4 . 9 4 , 5 . 0 2
^ ,.A
“.JL

5 . 8 0

6.30, 6 . 0 7

7 . 0 2
8 1 . 3 9 ;  a 5 . 9 0

P

a

P
Stable

2.2 min. 1.8, 2.3

4 . 0  x  10m6  s e c . 8 . 3 4

3.3 hr. 0 . 6 2

*The energies given ore those of the most important alpha-particle groups or those of the most energetic beta particles.



Nuclide Common Name
Particle
Emitted

T l/2 E* (MeV)

92u
238

qoTh234

9,Pa
234

Uranium I
Uranium X1
Uranium X2

$ 0.15%

\

99.85%

Uranium Z

p”
P

4 .51  x  1O’yr. 4.18
24.1 days 0.19,O.lO
1.18 min. 2.31

9lPa
234 P 6.66 hr. 0.5

I J
2.50 x lo5  yr. 4.76
8.0 x lo4  yr. 4.68, 4.61
1620 yr. 4.78,4.59
3.825 days 5.48

3.05 min. ~~6.00

92 u 234

qoTh230

ss Ra 226

oeEmZ22

84 PO 218

Uranium II

lonium
Radium
Radon

Radium A
1 9 9 . 9 7 %  0 . 0 3 %

e

adium 6
Astatine

)

1

e

adium C
0 . 0 4 %  1 99 .96%

Radium C’
Radium C”
Radium D

1

Radium E
v 5 x 1om5%

82  Pb214

85  At
218

B
a

26.8 min. 0.7
1.3 sec. 6.63

83 Bi214 19.7 min. cY5.5-10.5
pl.6, 3.17

7.68
1.9
0.02
81 .17; cu4.94

84 PO 214

8, T12”
s2Pbz”

s3 Bi”’

1.6 x 10 4 sec.
1.32 min.
20 yr.
5.0 days

*,  T1206

84 PO
210

P 4.2 min
a 138 days

1.51
5.30

I
*

Radium G/s2Pb206 Stable

*The energies given ore those of the most important alpha-particle groups or those of the most energetic beto  particles.



TABLE 15.4 Actinium (4n + 3) Series

Nuclide Common Name
Particle
Emitted

E* (MeV)

92u 235

9,,Th23’
91Pa 231

89Q27

s,Fr223
9c,Th227

Act inouranium 7 . 1  x  10ayr. 4.40,4.58

Uranium Y 25.6 hr . 0.09,0.30,0.22

Protoactinium a 3 . 4  x  lo4 yr . 5.0, 4.64-5.05
Act in ium

1 1 . 2 %  \
a, 6 22 yr. 0 . 0 4 6

\

9 8 . 8 %

Actinium K P 22 min. 1.0,1.3

( Radioactinium a 1 a.2 days 5.97, 5.65-6.03

.ssRa  223 ‘Actinium : a 11.6 days 5 . 7 0 - 5 . 6 8

n,Em  219 Actinon a 3.97 sec. 6.82, 6.56

84 PO
215

Act in ium A a, 13 1 . 8  x IO-~S~C. 7 . 3 6
1 5

/ 1

x 1om4%
82Pb2” Act in ium B P 36.1 min. 1.4,0.5

8sAt2i5 Astatine J a 1 x lo-’  sec. a . 0 0

+
S3Bl .211

i
Act in ium C a, P 2.15 min. po.35;

4 9 9 . 6 8 % 0 . 3 2 % ~6.62,  6 . 2 7

*, Tlzo7
J

ctinium  C”
r Actinium C’

B 4.78 min. 1.45

84 PO
2 1 1 a 0.52 sec. 7 . 4 3

1
82Pb207 Act in ium D Stable , , <:L ^

*The energies given ore those of the most important alpha-particle groups or those of the most energetic beta particles.
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T A B L E  1 5 . 5 Naturally Occurring Unstable Nuclides  Not Found in Series
- -

Element Abundance % Type of Activity Half - l i fe  Years
-~

19K  40 0 . 0 1 1 9 S-, EC 1.2 x 10”

23V  50 0 . 2 5 E C 4 x lOI

37Rb a7 2 7 . 8 5 P- 6 . 2 x 10”

49ln  115 9 5 . 7 7 AC 6 x 10’14

5710  138 0 . 0 8 9 1.0 x 10”

5&e  142 1 1 . 0 7 a 5 x lOI

60Nd ‘44 2 3 . 8 7 a 3 x 10”

62Sm  147 1 5 . 0 7 1.2 x 10”

7lLU  176 2 . 6 0 p”- 4 x 1o’O

75  Re
1 8 7

6 2 . 9 3 P- 4 x lOI
7apt  192 0 . 7 8 a .- 10’5

- - -~ ___-. -_____

There are, in addit ion, a few radioactive elements continual ly being formed
near the earth’s surface due to cosmic ray bombardment. These will be discussed
later.

5 . 5  A L P H A - P A R T I C L E  D E C A Y

In order for a nucleus to decay spontaneously, the process must be energetically
feasible. Since the decay products come off with kinetic energy, the necessary
energy must be supplied at the expense of energy of some other form. This can
be descr ibed quant i tat ively in terms of a net loss of rest mass of the result ing
part icles.  I f  the parent nucleus is, in i t ial ly at rest,  when the alpha is  emitted
the remaining daughter nucleus wi l l  have to carry off some kinetic energy in

order to conserve momentum. So to account for all energy, we must consider the
motion of both alpha and daughter. Let us call zMt  the rest mass of the parent,
zm2Mim4  t h e  m a s s  o f  t h e  d a u g h t e r ,  a n d  2M& t h e  r e s t  m a s s  o f  t h e  a l p h a .

The net decrease in rest energy in the process, which is also the total k inetic

energy of the a particle and the daughter nucleus, is called the Q of the decay,

and will be given by

Q A- = zAAp  - 4

C2
z-zM,A-~  - 2M~e (15.17)

Suppose we wish to compute Z using a table of atomic masses. In terms of the
atomic mass ,Mt,,,,,  we have

(115.18)

and s imi lar ly for the masses of the alpha and the daughter.  However,  s ince
-Zm,  +  ( Z  - 2)m,  +  2m,  i s  z e r o , t h e  Q o f  t h e  d e c a y  m a y  b e  w r i t t e n  i n
terms of atomic masses:
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Using the table in Appendix 3, we shall compute Q for the case where the parent

nucleus is 92U238  and the daughter is 9,,Th234  From the table,

zm~zM$,,rf =  2 3 4 . 0 4 3 5 8 3

2,4,j;,,,,,  =  _  4 . 0 0 2 6 0 3

s u m  =  2 3 8 . 0 4 6 1 8 6

zM,A,,,,  = 2 3 8 . 0 5 0 7 7 0

Sum of f inal
=  2 3 8 . 0 4 6 1 8 6

rest masses

Q/c' =  differen’ce  = 0 . 0 0 4 5 8  amu

1  amu  =: 9 3 1 . 4 8  MeV
so

Q  =  4 . 2 7  MeV (15.>!0)

T h i s  Q i s  g r e a t e r  thal  t h e  o b s e r v e d  a l p h a - p a r t i c l e  e n e r g y  o f  4 . 1 8  MeV,
because the daughter also carries off ‘some  kinetic energy. The final kinetic energy
of the decay products are in the nonrelat ivist ic region, so Newtonian mechanics
may be used to calculate the fraction of energy carried off by the alpha. Let v,
be the final speed of the alpha, and vd  be the final speed of the daughter. We
assume that the parent nucleus is  in t ial ly at rest,  and take the masses of the
N part icle and residual nucleus to be proport ional to their  rest masses, approxi-

mately 4 and A - 4 amu  respectively. Then, from conservation of momentum,
4v,  = ( A  - 4)vd, o r

v 0 (A - 4)-zz ~-
vd 4

(15.2!1)

Then the ratio of the kinetic energies of the alpha and the daughter nucleus is

T, [ fi (4)(v%  )I
Td  =  j% ( A  - 4)(v;)]

(A - 4)=--
4

Then

Q = T,  +- Td  = 7, $ & =
A

A - 4
T,

(15.212)

(15L!3)

For the pzU 238  -  90Th234  d e c a y , we saw that Q = 4.27 MeV.  Then J, =
[ ( A  - 4)/A]Q  =  (234)(4.28)/‘238  =  4 . 1 9  MeV.  Thi!s  a g r e e s  w e l l  w i t h  t h e  o b -
served a-particle energy] 4.18 MeV.

example The nucleus of lo (or 90Th230) emits an o(  particle of kinetic energy 4.73 MeV.
What i s  Q?

dhOll Q = AJ,,/(A - 4) = 230(4.73)/225  = 4.81 MeV.
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pie p0Th2’2 emits an CY  particle of 4.05 MeV.  What is the Q of the decoly?

ti~n Q =  232(4.05)/228  =  4 . 1 2  MeV.

i.6 THEORY OF ALPHA DECAY

The potential energy of interactilon  of the alpha part ic le and the daughter
nucleus, of charge (Z - 2)e and mass number A -.  4, is  f requently approxi-
mated by a constant nuclear interaction potent ial  energy out to the nuclear
radius r,,, and by a coulomb potential  energy for radi i  greater than rO. The ex-
pression for this coulomb potential energy in terms of r and  Z  - 2 is

v =  2(Z - 2)e2

47rc,r
(I 5.24)

This potential energy is shown in Figure 15.4. The actual energy, Q, is  indicated
by a dashed horizontal line on the diagram. If the alpha particle is initially at a

Energy

-Potent ia l  Energy

Figure 15.4. Potential energy curve f,Pr  on alpha particle emitted by on unstable nucleus;
alphas initially inside the well, at radii r < rO,  have o finite probability of tunneling
out of the well and escaping.

posit ion ins ide the wel l ,  then it  is  seen that in class ical mechanics the alpha
particle could not escape with this model for the potential. However, in quantum
mechanics i t  may escape by tunnel ing. In MeV,  the potential coulomb energy
may be expressed as 2.88(2  - 2)/ r, w i th  r  in  fermis .  I t  has been found that a
g o o d  c h o i c e  f o r  r0 f o r  a e m i s s i o n  i s  1.4(A - 4)“3  f e r m i s  ( a s  c o m p o r e d  w i t h
1 .1A”3  mentioned in Chapter 13). Then, in terms of A and Z, the coulomb energy
in MeV  at  r  =  r.  is

V, =  2.06(2  - 2)(A  - -  4))“3  MeV (15.25)

For A = 230 and Z = 90 (PoTh230)  this peak coulomb energy is 29.8 MeV.  Note
that this is large compared to Q, which is usually several MeV.

Because Q is less than the maximum of the potential barr ier,  classical ly the
alpha particle could not get out. However, the quantum mechanical  wave func-

tion is not quite zero outside the barrier, so there is a small  probabil i ty of

finding the alpha particle outside. To find the relative sizes of the wavefunctions

on the two sides of the potential barrier, we will deviate from our main discussion

to develop an approximate method of solv ing a one dimensional Schrodinger
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equation. The approximcte  result  is  given in Equation (15.31).  The reader rray
skip directly there if he is not interested in the mathematical details.

We shal l  suppose that the alpha part icles are emitted symmetr ical ly in al l
directions; this corresponds tlz assuming that the wavefunct ion is  a funct ion only
of the radial distance r, and that there is  no angular dependence. Then the
SchrSdinger  equation for the alpha-daughter system is:

$ P’ it(r) + VW(r)  = QW (15.:26)

Here, i f  the parent nucleus is  init ial ly 3t rest, the total energy of the system is Q,
the reaction energy, ano p, is  the radial component of momentum. p is ,the
reduced mass, given approximately by

m,,M,t
/L  =

m,(A - 4 )_ _ _  E .~~
m,, + Ni A

(1 5X27)

The operator corresponding to p, was discussed in Chapter 8,  and i t  was seen
there that the free particle eigenfunctions of pr,  corresponding to outgoing
waves, were of the form ( l/r)e”‘.  Herce,  i f  the potential varies suff iciently s lowly
wi th  r ,  we would expect t3 f ind solutis>ns  of this form with k =  42c((Q  - V),‘fi2--___
w h e n  Q > V ,  a n d  k =  ib’2p(V  - 13)/A2 when Q < V. In this  problem, how-

ever, V cannot be treated as a constallt.
I f  V changes very s lowly as r  changes, then the change in the phase of .the

wavefunction, as r varies from r to r + Ar,  should be just k(r)Ar =

V5,JQ  - V(rjjp  A r. A further change in r to r + 2Ar  should result  in an

a d d i t i o n a l  c h a n g e  o f  p h a s e  k(r + Ar)Ar  =  d2p[Q  - V(r +  Ar)]/h’  .Ir.

Hence, by adding a large number of such contr ibutions in passing over a f inite
distance up to r, , we might expect the phase of the wavefunction to change by
a finite amount given by

-Iphase  = l i m  C b (r,)ilr, =
A,,  -0  ,

/^ drk(r) =
J
/ d rv’F[Q  - V ( r ) ] , %

(15.28)

This  would, of course, be exact i f  V were constant.  ‘Thus we expect an approxi-
mate solution of the form:

(15.29)

That this  i s  an approximate solut ion may be checked by subst i tut ing Equation
(15.29) into (15.26). Then evaluating the first term, we have
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If  V(r)  i s  suff icient ly s lowly-varying that radial  der ivat ives of L’ Q ~  V can be
neglected, this becomes approximcltely:

Equation (15.26) is  then obviously sat isf ied. Hence (15.29) is  an approximate- - - - -~~
solution if dd/Q  - -  V/dr  is negligible in comparison to z/‘Q - V/r.

lo a p p l y  t h i s  t o  t h e  p r e s e n t  p r o b l e m ,  i n  t h e  r e g i o n  b e t w e e n  rO a n d  r,,

V :>  Q, so

i s ' dr fip(Q -3~= ~ ' dr L/2~(v - 67Ii Ii - (15.30)

The wavefunction $(r)  is then of the form:

(.15.31)

The factor of r -’  in Equation (15.31) gives r ise to a probabi l i ty density 1 $ 1 ‘,
which is  proport ional to l/r’, corresponding to the inverse squared radial  de-
pendence of intensity from a small radiating source.

We can now use this  wavefunction to est imate the number of alpha part icles
which penetrate the Coulomb barr ier  and are emitted. The speed of the alphas

hitt ing the inside of the barr ier is  not too different from the speed of the alphas
escaping from the other s ide of the barrier. Therefore, the fraction of particles
escaping wi l l  be approximately eciual  to the ratio of probabil i t ies of f inding (Y’S
in equal volumes at the points  rc, a n d  r, i n  F i g u r e  1 5 . 4 .  T h e  .total  n u m b e r  o f
a l p h a  p a r t i c l e s  i n  a  r a n g e  o f  r a d i i  d r  i s  p r o p o r t i o n a l  t o ( $(r)  / 2.4~r2dr,
because the volume element corresponding to dr is a spherical shell of area 47rr’

and thickness dr. Hence in terms of a(r) = r+(r),  the number of part icles in dr
is proport ional to 4x  1 a(r) i ‘dr. Th e ratio of the number of part icles in dr at r,,

to the number of part icles in an equal dr at  rO, should be just that fraction of

alpha part icles hitt ing the ins ide of the barr ier which get ovt.  Hence, from
Equation (15.34),  the fraction of particles  which get out should be

47r  1 @(r, ) 1 2dr

4x ) Q(rO)  1 ‘dr = exp
(15.32)

Let us call this ratio em’  with

‘1
/E2  ?f-2p(V  - Q)dr

‘0 Fl
(15.33)
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example

T r a n s f o r m a t i o n  o f  ihe  nucleus

Since the potential between r,, and r, in Figure 15.4 is given by

the integral which has ta be done is

Equation (15.:2  1 ),

This  i s  a standard integral that can be found in mast integral tables.  Let 7 =
Q/[2(Z  - 2)e2/4~t,r,],  the ratio of reaction energy ta barr ier peak energy.
The result is then

I(1 5.34)

wi th  Q in MeV.  The factor 2.53 arises from the factors 4e2  -\/iin,/(4rtc,A),
wi th  m,, the mass of the N part icle, and from the conversion of Q ta  MeV.  The
factor d(A  - 4)/A carries  from use of the reduced mass, given in Equation
(15.27).

Let us summarize what has been done. By salv ing the SchrGdinger  equat ion
approximately, an expression has been derived far the fraction of alpha particles
which actual ly penetrate and escape i f  they hit  the barr ier.  This  f ract ion is  ap-
proximately e-’ where I clepends  an the available energy Q, an the mass number
A, and an the nuclear charge Ze. Because of the exponential dependence, e-~’  is
an extremely sensitive function of Q and Z.

I t  was found in a previous example that Q far the alpha decay of P,,Th23” is
4.82 MeV.  Also, the peak of the pa.,ential  barr ier was found ta be 29.8 MeV.
T h u s ,  y =  4.82/29.8  =  0 . 1 6 1 7 ,  and f r o m  Equatiarl  (15.33),

__0.1617/0.8383)  - d(O.1617)(0.8383)--}

:= 1 0 0 . 6 ; - 0 . 4 1 4  .-

:= 7 9 . 4

Simi lar ly,  we found that far the alpha decay of 90Th232, Q = 4.12 MeV.  Also,
from the peak potential expression 0.1 Equation (15.25),  the peak of the barrier is
at 29.7 MeV.  Then y =  13.1387  and I  = 91.6.

These results  can be used ta predict quant i tat ively same half- l ives.  The expa-
nential e-’  is the ratio of the number of particles getting out per unit time ta the
number ins ide hitt ing the barr ier per unit t ime. I f  we think of the LY part ic le as
bouncing back and forth inside the nucleus, the number of times it hits the barrier
per unit  t ime is  comparable ta the N part ic le’s  speed div ided by the nuclear
radius. If we estimate its speed at about c/10 (the exact speed does not matter
much),  and the radius, ro,  as 1 .4 x 10.  15(A  -- 4)‘13 z 8 x lo-l5  far A

around 230, the number of times thi? alpha particle hits the barrier per second
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is comparable  to 10” per  second.  Then  the fraction of particles coming  out  per
second  is comparable  to 10z2e-’  = 1022-o.434’. This  would  be  the decay  constant.
The  half-life  in seconds  is then comparable  to 1 O”.434’  m22.

nple  In the last example  we  found  that  I := 79.4  for 90Th230. The  predicted  half-life
is then about

1 .-  1’0
I(0 434,p 4)  - 221  1

“’ --  TiiTx 10’  set/year

==  1 x lo5 years

Likewise  for 90Th232, with  I =  91.b,  the predicted  half-life  is about  2 x 10”
years. The  experimental  values  are  80,000  years  and 1.4 x 10” years,
respectively.

The  agreement  in this  exampI’s is somewhat  fortuitous,  since  we  dropped
various  factors  multiplying em’ whic.h were  comparable  to unity.  Also, one should
take  into  account  the fraction  of the time  the alpha  particle  exists  in the nucleus,
the width  of the energy levels,  a  more  accurate  solution for the wavefunction,
and so forth. This  theory  was  originally  given  by G. Gamow  and E. U. Condon,
and was  considered  a  great  triumph  for quantum  mechanics,  since  it was  the first
quantitative  prediction  for nuclear  theory.  Note  that  because  I appears  in the
exponent,  the small changes  in A and Q between  the elements  9oTh230  and 9oTh232
gave  an enormous  half-life  ratio.

The  most  important  part  of the dependence  of this estimated  decay  constant
is on l/v’%  in the exponent,  1.  Thus,  if we  computed1  log  X =  -log(T,,,/O.693),
we  would  find  that  as far as the energy is concerned,

A - B(Z - 2)
log  x =  --

z/Q
(15.35)

where  A and B are  slowly varying  functions  of A, Z and Q.  This  law,  called  the
Geiger-Nuttall  l a w ,  is well  verifiecl  experimentally  in its  dependence  on energy
for a  given  radioactive  series.

i.7 BETA  DECAY

Unstable  nuclei  which  have  an excess  of neutrons--that  is, whose  positions lie
generally above  the “stability line  ’ on a plot  of N versus  Z-tend  to decay  by

emitting  an  electron  and another  particle  called  an antineufrino, which  is
extremely  hard  to detect.  The  simplest such proces!s  is the beta decay  of the

neutron:  When  a neutron  is not irlside some  nucleus,  it is unstable  and decays
with  a half-life  of 12.8 min,  according  to the process:

(a)  ,n’+,p’  + e-  +F

The  symbol  F’  represents  the antineutrino, which  has zero  charge.  The  symbol

e- represents  the electron,  which  has a  charge - 1 e 1 . Similarly,  nuclei  lying
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well below the stability litle may decoy by emitting a positron (or, in other words,
a /-I’) and a neutrino. Arl example of this is the $’ decay of the ,N”  nucleus:

( b )  TN’2 m+6C’2  + e+ t v

The posit ron, designated by e+, has the  same rest mass and spin as the electron
but a charge of + 1 e 1 .  On the N --  Z  diagram ini Figure 15.5 the posit ions of

Figure 15.5. N-Z diagranl,  showing that under beta decay, nuclei lying generally above
the stability line tend to decay by /I- emission (A); nuclei lying below the stability line
tend to decay by /f’  emission (6).

two unstable nuclei  are shown at the points A, B. A undergoes fi- decay,
B undergoes /3’ decay. The crosses indicate the final positions of the nuclei.

In these processes, all the conservation laws we have discussed up to now are
satisf ied, as wel l  as some new ones. For example, angular momentum and
mass-energy are conserved. Conservation of charge is  expressed by equol ity
of the sum of subscripts, together with electron or positron charges on both
sides of reactions l ike (al  and (b).  In reaction (a),  the total  charge to start  with
is Z = 0, because the neutron is uncharged. The charge finally is that of a proton
plus that of an electron, or again zero. In reaction (b), the total charge finolly

i s  be  + l e  =  7e,  a g r e e i n g  w i t h  the  i n i t i a l  c h a r g e .  T h e  a n t i n e u t r i n o  a n d
neutrino both have charge zero. In beta decay, the mass number of the nucleus
does not change; this is  expressed by equality of the sum of superscripts on
both s ides of (a) and (b).  This  means physical ly that dur ing a beta decay, the
number of neutrons plus the  number (of protons, or N + Z,  does not change. Thus
in beta decay there is  a new conservat ion law: The total number of nucleons  is
conserved.

Now let us consider mass-energy cm3nservation in /Y  decay. Any mass decrease,
due to both the change of nuclear mass and the creation of a fi particle, goes
into kinetic energy of ttie  f inal pariicles.  Because of the small masses of the

electron and neutrino compared to nuclear masses, most of this kinetic energy
goes to them and l i tt le goes to the daughter nucleus. As in alpha decay dis-
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cussed above, we shal l  des ignate the  energy corresponding to loss of rest mass
by Q. We shal l  cal l  the electron rest mass me, the init ial  or parent atomic mass
M,, and the f inal or daughter atomic mass Md. We assume for the present that
the neutr ino rest mass is  zero. We shal l  see evidence for the val idity of this as-
sumption later. Recall that atomic, not nuclear, masses are given in the tables;
thus, i f  the parent atom has Z electrons, the nuclear mass is  close to M,  - Zm,.

Likewise, if an electron is emitted, the daughter nucleus has one more proton, so
its mass is Md  - (Z + l)m,.  Then mass energy conservation is  expressed by:

(M, - Zm,) :=  Md  --- (Z + l)m,  -t  m,  + 0
C2

(15.36)

The electron masses cancel, so the equation is

(15.37)

In order for 8 decay to be possible with an electron given off, Q must be positive,
so the parent nucleus must have greater mass than the daughter nucleus.  I t  i s
found that whenever this condition is satisfied, b-  decay does occur, although in
somecases the half-life is so large that other decay processes are more important.

lple  F o r  t h e  d e c a y  ,N16 -  a016  -1 ~8. +  V, f r o m  A p p e n d i x  3  t h e  r e s t  m a s s  o f

7N’6  i s  1 6 . 0 0 6 1 0 3  amu,  a n d  t h a t  o f  sOI6  i s  l e s s  a t  1 5 . 9 9 4 9 1 5  amu.  T h u s  Q i s
p o s i t i v e .  T h e  c h a n g e  i n  m a s s  i s  0 . 0 1  1 1 8  amu,  s o  Q ( l  amu  =:  9 3 1  MeV)  i s
10.4 MeV.

Two other conservat ion laws that should be sat is f ied in B- decay are conser-
vat ion of momentum and conservntion  of angular momentum. These two laws
lead to the necessity for a neutr ino or antineutr ino to be present among the /J’
decay products,  even though for Imany years i t  was impossible to detect these
particles directly. For example, consider conservation of angular momentum in

connection with the reaction:

The neutron and proton each have spin % The electron also has spin % .  There-
fore, if  there were no neutrino, arlgular  momentum could not be conserved, be-
cause the spin of the end product;  would be integral ,  and could not equal the
initial spin of % . Thus, if angular momentum is to be conserved, there must be at
least one more unobserved part icle. I f  there is  only one part icle, i t  must have
half- integral spin.  Exper iments show that the neutr ino indeed has spin Yz

Now let us consider the effects of momentum cons,ervation  along with energy-
mass conservation. I f  there were just two end product part icles,  ,  p’  and e-,  in
the center of mass system the two particles would have to have momenta of the
same magnitude but opposite in clirection, because in the center of mass system
the init ial momentum is zero. Also, the sum of the kinetic energies equals Q.

This gives suff icient information to determine the individual part icle energies.

Then the electron energies observed should be discrete, just as alpha decay re-
sults in discrete alpha-part icle ene*gies.  However,  exper imental ly i t  i s  found that
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the electrons have a continumous  enersly distr ibution from 0 to Q. This indicates
that there must be at least  one more part icle, in addit ion to the protoln  and
neutron, given off in the clecay.

15.8 PHASE SPACE AND THE THEORY OF BETA DECAY

Exper imental ly observed values of the  number of electrons, per unit energy
interval,  versus electron kinetic energy for the /j  decoy of qpln”4  are shown in
Figure 15.6. Similar results ore founcl  in other beta decays. Let us see i f  we can

make some simple arguments to expltlin the shape of the curve formed by these
points. We shal l  assume f rst that one part icle, an antineutr ino of zero rest mass,
is given off in addition to the daughter nucleus and the electron. Then the rela-
tionship between the energy E, and the momentum p,,  of the antineutrino is:

E”
F’”  = T (1 5.:38)

just as for a photon. Likewise, if the kinetic energy, momentum and rest mass of

the electron are T,,  p. and m,, respectively,  the relat iv ist ic equation relating
these three quantities is

(1 5.:39)

Now we make o probabil i ty argument. As in statist ical mechanics, we assume
thot the probabi l i ty of f inding the part icles in a given range of momenta in the
final state, is determined Drily  by the availability of final states. Hence we assume
their  probabi l i ty is  proport ional to the corresponding volume in momentum
space. Since two particles come off, momentum space here consists of three
coordinates for each particle. Therefore, the probability will be proportional to:

d I’ = (dpx  dp,  dpz)u  (dpx  dp,  dpz  1. (1 5.40)

Thirdly, we make the assumption that there is no correlation in direction between
the electron and antineutr ino. This al lows us to use spherical coordinates in

momentum space, and to ignore the angular dependence of the distr ibution of
decay products. Then the volume in momentum space becomes

d1’ = (47rp;dpU)(47rpfdpe) (15.41)

From Equations (15.38) and (15.39). in terms of energies E,, dE,, J, and dJ,,
the volume in momentum space is

@;  + 2 J,  m,  c2 lJe  + mc=c2)dJe (1 5.42)

The antineutr ino energy E,<cannot  be measured directly, so we would l ike to
sum this express ion over al l  allowecl  values for  E, for a given J,, to find the
probabil i ty of emitt ing an electron with kinetic energy J,. The conservation of

energy and momentum equations lead to an approximate relat ionship between
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Figure 15.6. Beta decay spectrum far ,,91n1’4, showing fit obtained by phase space
probability argument.



4 5 2 Transformation of the nuckas

E,,  and T,.  In order to ccnserve  momentum, the nucleus, in general, recoils with
a rnomentum comparable in magnitude to that of the electron and antineutrino.
But then, because the nljclear  mass is large compared to those of the other
part icles, i t  wi l l  have negl igible kinetic energy. Thus the electron and anti-
neutr ino kinetic energies must add to approximately Q. Hence by conservation
of energy,

E, = Q - T, (15.43)

For a given infinitesimal range of electron kinetic energies near T,,  the anti-
neutrino energies are closNely  groupeo  about the value given by Equation (‘15.43).

The factor dE,  may then be absorbed into a proport ional i ty constant multrplying
the factors in dI’  which depend on 7,.  The number of electrons emitted per unit
energy interval,  n, , i s  proport ional  to the probabi l i ty div ided by dre.  Then,
gathering together the results of Esquation  (15.42) and (15.43),  we see that
dropping multiplicative constants, we have:

n,a(Q - T$z/~j  + 2Jem,c2(1,  + m,c2) (15.44)

For the p decay of 49  ln’14, Q = 1.09 MeV.  The express ion in Equation (15.44)
is plotted as the sol id cur’te in Figure 15.6, using this value of Q and mult ip ly ing
by the proper constant to make the peak of the curve match the exper imental
peak. The excel lence of the f i t  indicates strongly that only one addit ional par-
t icle, the antineutr ino, is  emitted. The dependence on (Q - T,)2  arose from the

assumption that the ant:neutrino  re:,t mass is zero. The good fit near T,? =  Q
indicates that this  assumption is  correct.  Thus we conclude that the addit ional
part icle emitted in fi decay (antineutr ino or neutr ino) has zero charge, zero Irest
mass, and a spin of % . Ii also has no magnetic moment. Because of these proper-
t ies,  i t  interacts very little,  with matter and is  very dif f icult  to detect.  I t  was f i rst
detected direct ly by Reines and Cowan  in 1953. They used a large antineutr ino
f lux f rom a reactor and a very large l iquid detec:tor.  The react ion used was

i+,p’ +on’ + et, and the resulting positron was detected.
Whi le a good f i t  was obtained to the data of F igure 15.6, many B decays

give a curve of different slope. This has been explained in detail by the presence
of correlations in the mornenta of electron and antineutrino; in the above deriva-
tion we assumed no such correlations existed.

15.9 ENERGY IN B’ DECAY

Let us now consider the condit ion cn parent and daughter atomic masses im-
posed by energy-mass conservation for /j’ decay, where a posit ron is  emitted.
Again let the masses of parent and daughter atoms8  be M,  and Md,  wi th  m,  the
rest mass of the positron (the same as,  that of the electron). If the charge number
of the parent nucleus is  Z,  that of the daughter nucleus is  Z - 1. Then if  the

kinetic energy of the dec:ay  products is  Q, energy-mass balance is  given by the
equation:

(Me  - ilm,)  = [M,  - (Z - l)m,]  + m,  + Q
C2

(15.45)
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Cancellation of Zm, on both sides leads to:

M,  = M,  + 2m, + 0
C2

lp/e  Which of the fol lowing nuclei coLlld  dis integrate by ,$’  decay? F ind the Q of
each decay:

,pK.lO,  ,Be7,  s71a’38

lion  F r o m  A p p e n d i x  3 ,

M a s s  o f  I9 K4’  =  3 9 . 9 6 4 0 0 0  amu
M a s s  o f  18  A4’  =  3 9 . 9 6 2 3 8 4  amu

Difference = b.001616  amu
2m, = 0 . 0 0 1 0 9 8  amu--~__

D i f f e r e n c e  =  b.000518  amu  > 0

Thus the reaction may take place.

C ?  =  (931)(0.000516)  =  0 . 4 8  MeV

For,Be7 + 3Li7  + e+ + v,  t h e  m a s s  d i f f e r e n c e  i s  - 0 . 0 0 0 1 7 3  amu,  w h i c h  i s
less than zero, and so the reaction does not take place. For 57La’38  m+  56Ba’38  +
e+ + v, the mass difference is 0.00081 amu,  so the reaction takes place.

Q =  (931)1:0.00081)  =  0 . 7 5  MeV

The positron given off in /j’ dtzcay  eventual ly  alnnihilates  with an electron,
giving off two gamma rays. For a short t ime before the annihi lat ion, the electron

and positron may be bound together to form a systeln  called positronium, some-
what s imi lar to a hydrogen atom. Since the reduced mass, m,m,/(m,  + m.),  is
% me , the binding energies are one-half the hydrogen energies.

The neutrino given off in 0’  decay has the same properties as the antineutrino
except in one respect: the spin of the antineutrino always points in the direction
of i ts  motion, and that of the neutr ino is  always opposite to the direction of the
motion. This,  together with conservation of angular momentum, leads to the fact
that the spins of the electrons or positrons emitted can be l ined up, which can
be detected experimentally.

IO ELECTRON CAPTURE

A reaction somewhat similar to /Y  decay is  that in which an atomic orbital
electron is  absorbed by the nucleus, with a neutr ino being given off.  S ince the
electrons in the K  shell spend more .time near the nucleus than the other electrons,
it is generally a K electron that is captured. The general reaction can be written:

The energy-mass balance equation here is:

me + [M,  - Zm,] = [M,  ~ (Z -~  l)m.]  + 0
C2
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o r

M, = M,  - 0
C2

( 15.48)

In this case, there are cnly  two pal,titles coming out of the reaction, so their
energies should be discrete. Careful measurements, of the recoil energy of the
daughter nucleus show that this is the case and that the energy is of the corl-ect
mugnitude.

15.11 GAMMA DECAY AND INTERNAL CONVERSION

If a nucleus is bombarded by particles, it may be excited to higher energy levels,
just as electrons in atoms can be ex:ited  by coll is ions with particles. Also, if (Y
or /j  decay takes place, the daugh-er  nucleus may be left  in an excited state
rather than in the grouncl  state. Ther the nucleus can emit a photon to return to
the ground state. These excited state: are typically on the order of an MeV  above
the ground state.  The wavelength 0.1 a 1 MeV  photon emitted is  X =  he/E =

( 6 . 6 3  x  10-34)(3  x  10’)/(1.6  x  -10~13  ioules) =:  1 2  x  lo-l3  m ,  o r  a b o u t
a hundredth of an Angstrom. Such high-energy photons are cal led gamma rays.

The interact ion that leads to Y-ray  emission is electromagnetic in origin. Thus,
since the interaction potential energies are known, quantum mechanical transition
probabil i ty theory may be used to est imate the half- l i fe for the transit ion. The
result is that if  there are no selection rules prevenlting  the transit ion, i t  should
occur in about lo-l4 seconds. I f  there are selection rules preventing a  ready
transit ion, the half- l i fe mzy be quite large, possibly on the order of days. When
there is a long half- l i fe, say greater tlan  10m6 seconds, the various energy states
of the nucleus are cal led isomers. An alternate reaction that may take place to
reduce the nucleus to its ground state is interaction with external electrons. Again
the K-shel l  electrons are most important because they spend the most t ime near
the nucleus. In this process of internal convers ion, the external orbital electron
interacts with the nuclecls  and f l ies out of the atom, carrying an amount of
kinetic energy corresporlding to the energy difference between nuclear levels,
minus the electron’s original binding ‘energy.

Measurement of y-ray  energies and conversion electron energies, along with
the half- l ives,  gives information about the spacing and symmetr ies of nuclear
energy levels.

15.12 LOW-ENERGY NUCLEAR REACTIONS

Since there are well  over 1200 different known nucl ides, or types of nuclei,  there
are many different ways in which these particles can combine and react. We shall
consider here only the s implest type of nuclear reaction, involving two incoming
and two outgoing part icles of low kiletic  energies. By low energy here we mean
that the kinetic energies are smaller than about 50 MeV.  The l ightest nuclear

part icle (the proton) has a rest ener(Jy  of about 938 MeV.  Therefore, the kinetic
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energy is small compared to the rest energy, v/c  ~3:  1,  and so we can use non-
relat iv ist ic mechanics in describinca  the motion of such a part icle. A typical two-
particle reaction is as follows:

*He4  + ,N1”  + (pF’8)  + ,H’  + sO’7

In this reaction, a beam of alpha particles might be allowed to fall on a nitrogen
target at rest in the lab. An (Y part icle may combine temporari ly with a nitrogen
nucleus to form a compound nucleus, in this case a nucleus of f luorine, which is
highly unstable and which decays into two new part icles.  From a study of such

reactions, much information can be obtained about the energy levels of the com-
pound nucleus and about nuclear interact ions.  Thme  Q of a nuclear reaction is
defined as the negative of the change in rest energy, that is ,  Q is  the in it ial
particles’ rest energy minus the firial  particles’ rest energy. Let us express Q for a
two-part icle reaction in terms of atomic masses of the incoming and outgoing
particles. Assume there are two part icles init ial ly of nuclear masses m, M, with
M at rest.  Let m be incident witti  velocity v or k inetic energy T =  % mv2.  The
initial rest energy is (m + M)c2.  I f  the f inal part icles have masses m’,M’,  the
final rest energy is (m’ + M’)c2. lherefore the Q of the reaction is given by

Q = (rr + M - m’ - M’)c2 (15.49)

These are nuclear masses. However, atomic masses from the tables may be used
in this formula, because the electron masses cancel out. Since total energy is
conserved in the reaction, i f  T,,,  and T,..  are the f inal kinetic energies of the out-
coming masses, we have:

T + ( m  +  M)c2 = (m’ + M’)c’  + T,,, + T,,,

Therefore, in terms of kinetic energies,

(15.50)

Q = 7,, + J,.,  - T (15.51)

This gives another way to define Q: Q equals the increase in kinetic energy of

the particles during the reaction.

Jmple  Calculate in MeV,  the Q of the reaction, ,He4  + ,1\114  m* (,F18) l  ,  H’ +  sO’7,

using the atomic mass table of Appendix 3.

hJlron M a s s  o f  ,He4  =  4 . 0 0 2 6 0 1 3 1  amu
Mass of ,N14  = 14.00307.44  amu

S u m  =  1 8 . 0 0 5 6 7 ’ 7 5  amu

Mass oi: ,  l-l’  = 1 . 0 0 7 8 2 5  amu
Mass of *CI17  = 1 6 . 9 9 9 1 3 3  amu~-__

S u m  =  1 8 . 0 0 6 9 5 8  amu
1 8 . 0 0 5 6 7 7  amu---__

D i f f e r e n c e  =  0 . 0 0 1 2 8 1  amu

Q =  (931)(-0.001281)  =  -1.19MeV
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The fact that Q is negative in the above example means that excess rest mass is
created in the reaction, and that some kinetic energy disappears. Such reactions
are cal led endothermic. F!eac:tions  in which Q > 0, or in which excess kinetic
energy is produced, are called exothermic.

example C a l c u l a t e  t h e  Q o f  t h e  r e a c t i o n ,  3Li7  +  ,  H ’  -  (.,Bes) + ,He4  + ,He4

SOlUfiOll Mass of 3 Li7 = 7 . 0 1 6 0 0 4  amu
M a s s  o f  ,  H ’  =  1 . 0 0 7 8 2 5  amu~___-

S u m  =  8 . 0 2 3 8 2 9  amu
M a s s  *of  t w o  2He4  =  8 . 0 0 5 2 0 6  amu-

D i f f e r e n c e  =  0 . 0 1 8 6 2 3  amu

This is an exothermic reaction with

Q =: (931)(0.018623)  =  1 7 . 3  MeV.

15.13 THRESHOLD ENERGY

In an endothermic reaction, excess kiretic energy must be supplied in order f’or

the process to be al lowed by energy conservation; i f  the kinetic energy T of the
incident part icle fal ls  below / Q 1 ,  the reaction cannot take place. For the re-
action to take place, not only must the init ial  k inetic energy be greater than

1 Q / ,  but enough addit ional k inet ic @energy  must be suppl ied to conserve mo-
mentum because the final particles are not created at rest. In classical mechanics,
i t  is  shown that the total k inetic energy of a system of part icles may be written

BEFORE A F T E R

*---.-0 V 8 M’- - - - -
m’m

M
Figure 15.7. Thre!,hold  conditions for an endothermic nuclear reaction.

as u sum of two posit ive contr ibutions: kinetic energy of the center-of-mass
motion, plus kinetic energy of the motion relative to the center of mass. The con-
tr ibution from the center 0.: muss motion is %  (m’ + M’)V’,  where V is the speed
of the center of mass. This speed V i’s not zero, because for momentum to be
conserved,

mv =  (,n’ +  M ’ ) V (15.52)

Therefore, the kinetic energy due to the center-of-mass motion is

Tc.m.  = 7 (15.53)

The reaction wi l l  not take place unless the incident kinetic energy 7 suppl ies

t Q 1 + Tc.m  s at the very minimum. I f  ‘r =  1 Q 1 + T,,,,,  there can be no motion
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of the f inal part icles relat ive to the center  of mass,  and the f inal part icles t ravel
along together with speed V. The equation for an endothermic reaction,

T=  lQ/+T,,,  = -Q+--m7
m’ + M’

can be solved for T.  The solution is:

(15.54)

T = Tth  = ~~ m’+M’  Q
m’ + M’ -- m

(15.55)

Since this is  the minimum possible incident kinetic energy which al lows the reac-
t ion to take place, i t  is  cal led the threshold energy. Hence the subscript, th, is
placed on T.

Imp/e C a l c u l a t e  t h e  t h r e s h o l d  e n e r g y  f o r  t h e  r e a c t i o n  2He4  +  rN’4  + (9F’8) l

,  H’  +  80’7.

‘ution  T h e  m a s s e s  a n d  Q a r e  g i v e n  i n  t h e  n e x t  t o  l a s t  e x a m p l e ,  Q =  - 1 . 1 9  MeV.
m’ +  M ’  2 1 8  amu;  m’ + M’ m 2 1 4  amu,  a s s u m i n g  t h a t  t h e  t a r g e t  7N’4
nucleus is initially at rest. Then Tth = il8/14)(  1 .19) ==  1.53 MeV.

The threshold energies we have Ibeen  discussing are for endothermic reactions.

There is, of course, no threshold energy necessary for an exothermic reaction.

15.14 NUCLEAR FISSION AND FUSION

Another very important type of nuclear reaction occurs when a heavy nucleus,
far out on the binding energy curve, div ides into Tao  l ighter nuclei which them-
selves have larger binding energies per particle. A typical example of this is:

on’ + 92U
2 3 5 -+  (92UZ36)  + 56!3a’4’ -t  36Kr92  + 30n’ (15.56)

This is  cal led f iss ion. Since the overal l  binding energy per part icle increases,
kinetic energy is l iberated in this process. The Q of the U235  f ission reaction is
about 200 MeV.  Atomic bombs uti l ize this energy release when uranium or plu-
tonium isotopes undergo f iss ion. Again looking at the binding energy curve,
Figure 14.8, i t  may be seen that i f  a reaction could be made to occur start ing
with very light particles and ending with heavier particles near Fe56, the binding
energy per part icle would increase and therefore kinetic energy would be l iber-
ated. Such reactions are called fLlsion reactions, and are used in devices such as
the hydrogen bomb. Such reactions are also responsible for the energy output of
the sun. A typical sequence of fusion reactions which occur in the sun, is  the

proton-proton cycle: Start ing with pure hydrogen,

H’ + H’  --*  Hz  + 8’ + v

H’  + HZ - He3 + y

He3 + He3 m+ He4 + 2H’ (15.57)

Thus, the net result  i s  that 4 protons are “burned” to produce He4,  wi th  B’ and
neutr ino part icles also appearing. About 25 MeV  of energy is released. Such
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cycles of nuclear fusion reactions can be used to explain the genesis of heavier
elements from hydrogen land  the large energy output from the sun. Reactions
such as these burn up about 1% of the sun’s rest moss every  lo9 years.  They
also give rise to a large flux of neutrinos. From the sun, this flux is about 10” neu-

trinos/cm2  set measured at the earth’s surface.

RADIOACTIVE CARBON DATING

Some radioactive materials are continual ly being produced by col l is ions of
high-energy, cosmic ray part icles, with nuclei of the earth’s atmospheric con-
st i tuents.  An important example of this is  the production of radioactive aC’4,  by
collisions of cosmic ray nelltrons with nitrogen, in the reaction:

0n’ + 7N’4 + sC’4  + ,p’ (15.58)

The carbon nuclei formed in this reaction decay by $ emission with a half- l i fe
of 5568 years, according to the reaction:

(- 1 4
6 - - TN’4 + ir + i (15.59)

In a relatively short time, this radioactive carbon becomes thoroughly mixed with
the ordinary sC’2  atoms in the atmo:;phere  and near the earth’s crust ,  and is
ingested by l iv ing organislns.  Thus a certain fraction of the carbon in the struc-
ture of a l iv ing organism #consists  of  radioact ive aC’4;  the amount corresponds
to an activity of about 15 dis integrations per minute per gram of fresh carbon.
After the death of the organism, the exchange of carbon with the environment
ceases and the radioactive carbon atoms decay-the fract ion of 6C’4  atoms de-
creasing by half in one half- l i fe of 5568 years. By measurement of the carbon
activity of an ancient archeological object such as wood or bone, the fraction
of the remaining aC’4, and hence the age of the obiect,  can be determined.
This method of dating organic remains works well  i f  the age of the object is no
more than f ive or s ix half- l ives, or roughly 30,000 years.  Beyond that, the fraction

of 6C’4  atoms has decayed to an undetectable level.  This  method of dating is
called radiocarbon dating, and was invented by W. F. Libby in 1952.

LAW OF RADIOACTIVE DECAY

In general, the decay rate for nuclei with decay constant X is given by dN/dt  =
-XN.  Of a sample of N,, nuclei at iime t = 0 which undergoes spontaneous
radioact ive decay, at t ime f there wi l l  remain N = N,,emX’ nuclei.  The half-li,Fe
T,,,  is the time it takes for half the nuclei in a sample to decay, and is given by

1 ,,2 = 0.693/X
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If there are N, parent nuclei  having a decay constant X,,  in  rad ioact ive
equilibrium with N,  daughter nuclei of decay constant &,,  then the rate at which
parent atoms decay is equal to the rate at which daughter atoms decay, and

h,N, = X,N,

RADIOACTIVE SERIES

Radioact ive elements with Z  :>  82 fal l  into four series; within each series the
nucleon numbers A differ by 4. Tllese  series are normed the Thorium (A = 4n),
N e p t u n i u m  ( A  =  4 n  + l),  U r a n i u m  ( A  =  4 n  + 2 )  a n d  A c t i n i u m  ( A  =  4 n  + 3 )
series. The nuclei in these series decay by a or /I emiss ion, and ult imately end as
stable isotopes of lead or bismuth.

ALPHA-PARTICLE DECAY

Alpha-particle decay is a two-particle decay, in which the atomic number of the

parent nucleus decreases by 2 ancl the nucleon number decreases by 4. An alpha
particle is given off with discrete energy. The Q of the decay is the net decrease
in rest energy of the particles, and is given in terms of atomic masses by

Q/c2  = A-4,M,A - -  Zm2Md  .-  ?M:e

The discrete kinetic energy of the outcoming alpha particle in terms of the
nucleon number A of the parent is approximately:

J,,  =
A - 4

AQ

A relation between the half-life, Q and Z can be obtained approximately on the
basis of an alpha-part icle model of the nucleus, assuming the alpha part icle is
bound by a potential  energy V(r)  which is  the posit ive repuls ive Coulomb
p o t e n t i a l  e n e r g y  f o r  r >  rO, b u t  r e g a t i v e  f o r  r <  rO, w h e r e  rO =  1.4(A  - 4)“3
fermis.  The alpha-part icle wavefunction outs ide the potent ial  barr ier  i s  given
approximately by

’ dr  -\/2m(V(r) - Q )

Ii 1
The potential energy for r  > r,, is V = 2(Z - 2)e2/4xtor.  This  leads to a half-
life:

where

J,,, 2 10°.434’-22
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with y the ratio of Q to the barrier peak energy,

This result may also be expressed in the form (the Geiger-Nuttall law):

A - B(Z  - 2)
l o g  A =  ___-~

V’Q

where A and B are slowly varying functions of A, Z and Q.

BETA DECAY

In beta decay, electrons are given of: with a continuous range of energies, indi-
cating that in order to conserve energy, momentum and angular momentum, o
third part icle must also tie given off.  This third part icle has zero rest mass, zero
charge, and spin quantum number ‘/2 ;  i t  i s  cal led an ontineutrino. The Q o f  a

beta decay is given in terms of atomic masses by

Q
- :=  M,  - M,
c2

The number of electrons per unit energy interval which come off in a beta
decay process is  approximately proport ional to:

where 7, is the electron’s kinetic energy.
In  p’  decay, a posit ron and a neutr ino are given off ,  the Q of the reaction

being:

Q
- =z M,  .~  Md -~ pm,
C2

This occurs for nuclei ly ing general ly below the stabi l i ty l ine on an N -- Z
diagram.

In electron capture, an atomic orbital  electron is  captured and a neutr ino is
emitted with a discrete energy.

GAMMA DECAY

Transit ions between excitl:d  states of a nucleus may occur with the emission or
absorption of an energetic photon, cal led a gamma ray. Typical half- l ives for

such processes are -lo-l4 sec. Nuclear states with half-lives longer than - 1 Om6
set are called isomers.
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TWO-PARTICLE NUCLEAR REACTIONS

The Q of a nuclear reaction is defined as the negative of the change in rest

e n e r g y .  I n  t e r m s  o f  t h e  i n i t i a l  m a s s e s  m ,  M  a n d  f i n a l  m a s s e s  m ’ ,  M ’ :  Q =

(m + M - m’ - M’)c’. Q is also the increase in kinetic energy of the particles.

In an endothermic reaction, Q <  Cl;  for an exothermic reaction, Q > 0. If Q <  0

the reaction wil l  not take place unless the incident part icle has a minimum

kinetic energy:

J,, =  .--
m’ + M’

m’ + M’ - m
0

In a fission reaction, heavy nuclei increase their binding energy by dividing into

lighter nuclei which lie closer to the peak of the bindilng  energy curve. In a fusion

reaction, l ight part icles are “burrled” to produce heavier part icles nearer the

peak of the binding energy curve.

1. In the actinium series, the parent nucleus U235 has o half- l i fe of 8.8 x 10’  years,
much longer than the half-lives irl any of the succeeding generations. If 1 gram of
U 235  is in radioactive equilibrium with its decay products (14 generations), what
would be the total number of decay particles per second  (a’s and p’s) of the sample?
Answer: 8.96 x lO’/sec.

2. A parent nucleus decays into a daughter with decay constant X1;  the daughter
decays into a stable granddaughter with decay constant X2.  Find the numbers
N,  N,  and N3 of parent, daughter pnd  granddaughter nuclei if N,  = No,  N2  =

N3 = 0 in i t ial ly.  Show that i f  A2 >>  X1, N,h,  =  N2X2  after a long time has
elapsed.

-A,’ -h-j
Answer: N1  = Noe +‘,N2  =:  A, Note - e )

(A2  - A,) ’

A
-A,!

N, = No 2e
- )42’

XI  - A, 1
3 . Calculate the average lifetime of a radioactive substance in terms of its half-life T,,2.

Answer: 1.44T,,,.
4. One curie is defined as an activity of 3.7 x 10” disintegrations per second. Calcu-

late the activity in curies of 1 gram of radium, which has a half-life of J,,,  =
I 1622 years.
Answer: 0.98 curies.

5 .  ‘u233 has a half- l i fe of 1.62 x lo5 years. How long wil l  i t  take for 98% of the
original U233 atoms to decay?
Answer: 9 . 1  x  10’yeors.
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6 . Calcu late  the  k inet ic  energy  o f  the  ‘Y par t ic le  ar i s ing f rom (I  decay  o f  p2U234 us ing

atomic  mass  tab les .

Answer: 4.76 MeV.

7 . C a l c u l a t e  t h e  p o w e r  g e n e r a t e d  s o l e l y  b y  (Y  d e c a y  o f  1  k g  o f  r a d i u m  o f  h a l f - l i f e

1 6 2 2  y e a r s .

8 .

9..

1 0..

Answer: 0.028 watls.

F rom Table 15.3 ,  ca lcu late the Q fo r  N decay  o f  ssAt’!‘8.

Answer: 6 . 8 1  MeV.

Wh ich  o f  the  fo l low ing  cou ld  decay  lby  (Y  decay?  Use  the  a tomic  mass  tab le .

4 Be’,  22Ti48,  92  U235. .I
S u b s t i t u t e  t h e  WKB  cpproximatiorl,  G(x)  2 (const/V%)exp  (./o  K d x )  w i t h  K  =

-\/?m(V  - E)/ri, Into
h2 d2$  h2

t h e  SchrGdinger  e q u a t i o n ,  ~- 1 +  - K2  (x)4  =  0 ,
2m dx 2m

1 1 , ,

t o  s e e  w h a t  t h e  e r r o r  i s  i n  t h i s  a p p r o x i m a t i o n .  S h o w  t h a t  t h i s  e r r o r  i s  s m a l l  i f

(dK/dx)/K’and  (d2K/dx2)/K3 a r e  s m a l l  c o m p a r e d  t o  o n e .  N e a r  K  = 0  t h i s  i s  nc#t  a

good approx imat ion.

A  p a r t i c l e  i s  i n  a  o n e  d i m e n s i o n a l  boK  betwt”2n  x =  0  a n d  x  =  f,  I n s i d e  t h e  b o x ,  i t s

potent ia l  energy  i s  V  =  V,x/[  ,  w h e r e  V,, i s  sma l l  compared to  the  lowes t  ene rgy__--
o f  t h e  p a r t i c l e .  T h u s  K  ==  ifin(V  - E)/h  i s  p u r e l y  i m a g i n a r y .  U s e  a  l i n e a r

c o m b i n a t i o n  o f  t h e  WKB  approxirrations  f o r  p o s i t i v e  a n d  n e g a t i v e  K  t o  f i n d  t h e

e n e r g y  l e v e l s ,  E,  to  second order  in  V,,  (See Problem 10)

n27r2ii2
A n s w e r :  ___

2mt’

12. F r o m  T a b l e  1 5 . 1 ,  Po212 decays  w i th  the  emi s s ion  o f  an  a par t ic le ,  o f  energy  8 .78

MeV.  Es t imate i t s  ha l f - l i fe  us ing Equat ion  (I  5.13),  and compare  w i th  the  3  x 1 13--7

set  va lue g iven in  the table.

A n s w e r :  4  x  1O-7  s e c .

13.

14.

15.

F r o m  T a b l e  1 5 . 3 ,  t h e  h a l f - l i f e  o f  (,2U234 IS  2 . 5  x  lo5  y e a r s .  B y  t r i a l  a n d  error

u s i n g  E q u a t i o n  (15.13),  e s t i m a t e  t h e  a - p a r t i c l e  e n e r g y  t h a t  g i v e s  t h i s  h a l f - l i f e .

Compare  w i th  4 .76  MeV,  OS g iven  in  the  tab le .

Answer: 4 . 7 2  MeV.

F ind the Q for  8-  decay  o f  4,Ag’08, of  atomic  mass  lQ7.9059  amu.

A n s w e r : 1 . 6 4  MeV.

Suppose the ant ineut r ino had a smal l  res t  mass  m, .  Assuming no d i rect ional  cor re la-

t ion  between e lect ron  and ant ineut r ino  momenta ,  show that  the  b-  spectrum should

be propor t iona l  to :

t/iQ  - T,)(Q---T,--;-%;;?  l/T,(T,+2-m,c2)(Q  - T. + m,c’)(T,  + m,c2)

w h e r e  Q i s  t h e  maxinum  electror  k i n e t i c  e n e r g y .  S k e t c h  t h i s  s p e c t r u m  f o r  T,

near  Q ,  when  muc2  i s  small.

16. The c ross - sect ion  fo r  ttle  in te ract ion  between nuc le i  and neut r inos  i s  approximately

lo-‘*  b a r n s .  A s s u m e  tllat  a t o m s  a r e  a  f e w  A n g s t r o m s  a p a r t  i n  t h e  e a r t h ,  s o  t h a t

the re  are about  10”  aioms  per  cub ic  meter .  What  f ract ion  of  the neut r inos  f rom the

sun,  h i t t ing perpendicu lar  to  the su r face of  the ear th ,  a re  absorbed by  the ear th?

Answer: 1 . 3  x 10~”

Find the Q fo r  G’ decay  o f  47Ag lo*,  3f a t o m i c  m a s s  1 0 7 . 9 0 5 9  amu.17.
Answer: 0.90 MeV.

vi; n ==  1,2,3  ,....
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18. Find the Q for K capture in ,9K4’.
Answer: 1 Sl  MeV.

19. 43  Tc ” has on atomic mass of 97.9071 amu. Can it wIdergo  a fi- decay; o p+decay;
a K capture?
Answer: All are possible.

20. ,sP29 has an atomic moss of 28.9818. Can it underg’o  a  K capture; a /II’  decay?
Answer: Both are possible.

2 1 .  ShowthatforthereactionB+  zPA+Z..lDA  +  et,M,  =  Md  +  2m, + Q/c2.
Is it possible to have this reaction if Q  is negative?

2 2 .  6C14, the radioactive isotope of carbon, has Q half-life of 5568 years, decaying
by @-  emission. The ratio of gC14  to ,sC I2 in the earth’s atmosphere is nearly
a  constant in time, as gC I4 is produced at a constant rate by cosmic rays. If the
fraction of *C l4 in a  sample of wood from an archeological excavation only has
0.30 of the normal fraction of radioactive  carbon, what is the age of the sample?
Answer: 9,700 years.

2 3 .  83 Bi ‘I2 decays by n-particle emission, with LY particles of kinetic energies 5.60,
5.62, 5.76, 6.07, and 6.1 1 MeV.  Some y rays observed following the decay have
energies of 0.164, 0.452, 0.492, 0.144, 0.432, 0.472, 0.288, 0.328, 0.040 MeV.
Construct an energy level diagram showing the various LY and y transitions, and
calculate the difference in mass between the 83Bi2’2 nucleus and the 8,  TIzo8  nucleus.
Answer: 4.0081 amu.

24. Calculate the energy of the y ray produced by using thermal neutrons, of negligible
kinetic energy, in the n - 2 reactions:

on’ + ,H’ + ,H2  +  hu;29Cu65  +  ,,n’  -  29Cu”6 + hu.

Answer: 2.23 MeV;  7.06 Me’J.
2 5 . Calculate the y energy of the electron capture reaction:

,Be’  +  e- + (3Li7)  - 3Li7 + hv.

Answer: 0.870 MeV.
26. 5 MeV  a particles are absorbed in several centimeters of air; 5 MeV /?I  particles

are absorbed in several meters of air. The absorption coefficient of 5 MeV y rays in
air is 0.35 x 1 Om4/cm.  In what distance would 90% of these y rays be absorbed?
Answer: 658 meters.

27. In an internal conversion process, electrons of energies 30.95 keV and 46.10 keV
are ejected, followed by x rays of energies 16.3 keV and 1.0 keV,  respectively. The
nucleus also ccln emit a  y ray as  an alternate way of going from its excited to its
ground state. What is the energy of the y?
Answer: 47.2 keV.

28. Calculate the Q of the U234 fission reaction in which a neutron is absorbed, and

56 Ba
138 and 36Kr84 plus some nelJtrons are produced.

Answer: 1050 MeV.
29. Calculate the energy given off during o proton-proton cycle in which four protons

are burned to form helium.
Answer: 25.7 MeV.
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When the kinetic energies of two colliding particles are made sufficiently high, a

variety of part icles having new and in,teresting  properties can be created out of

the available kinetic energy. An enormous amount of effort has, in the past few

decades, been poured into construction of high-energy particle accelerator facili-

ties for the production and study of these so-called elementary particles, and into

attempts to classify them and understand their properties. We shall  in this

chapter present the results of some of these investigations: The successful particlle

classification schemes, newly discovered conservation laws and quantum numbelrs

wil l  be discussed. The broadest clas,;ification  schemes are the groupings of

part icles into dif ferent classes, s u c h  a s  t h e  b a r y o n s  a n d  l e p f o n s .  Quantuln

numbers are assigned to .the  baryons in such a way that the total number of

baryons involved in any reaction among elementary particles remains constant

in tirne. Similar conservaticn  laws hold for leptons.

1 6 . 1  LEPTONS

Let us f i rst  consider the class of part icles cal led leptons. This class includes th#e

eleciron,  posi t ron, neutr inos,  antineutrinos and the p mesons, or muons. All of

the leptons have spin % . In general, for each particle of a given rest mass,

charge, and spin within this group there also exists a part icle of equal rest

mass, opposite charge and the same spin, called an antiparticle. This terminologly

arises because of the annihilation process which can occur when a particle and

its antipart icle combine and disappear in a burst of energy-usually this energy

comses  out in the form of gamma ray photons. The positron is the antiparticle

of the electron. Some neu’bral particle:, may be their own antiparticles, as is the

case for the K’ meson to De  discussed in Section 16.2. However, in the case of

the neutral leptons, such CIS the neutrino, the antiparticles are dif ferent from the

pariicles.

It  has been found that there are two dist inct types of neutrinos; one type is

associated with the appeclrance  or disappearance of electrons in weak decays,

while the other type is associated with the appearance or disappearance of

muons. The latter type is c:alled a mu neutrino and is denoted by u,,.  The ant i-

part icle is f requently indicated  by putting a bar over the symbol for the particle.

The bar changes the sign of the charge; for example, Kf and Km  are the same.

AlsoN,  v,, cr refer to the mu neutrino and the mu antineutrino, respectively.

4 6 4
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Examples of the decay of T mesons into muons have been discussed in Chapter
14. A typical decay reaction is:

.F+  -* P+  + up (16.1)

Here uli i s  the mu neutr ino associated with the appearance of the muon. The
/I+  is  the antipart icle of the pm. The masses of /I+  and pL- correspond to a
rest energy of 105.66 MeV,  as compared to 0.51 IO MeV  for the electron and
positron. The ratio of muon mass to electron mass is 206.8.

I t  has been found exper imental ly  that when leptons are involved in interac-
t ions,  both the electronic lepton number and the muonic lepton number are

conserved. By electronic lepton number here we mean that the electron and neu-
tr ino are each counted as plus one electronic lepton, and the corresponding
antipart icles-the posit ron and the antineutr ino-are counted as minus one elec-

tronic lepton each. L ikewise, the /.-’ and mu neutrino each count as one muonic
lepton, and the p+ and the mu antineutr ino each count as minus one muonic
lepton. The total  lepton numbers are then found by adding algebraical ly the
lepton numbers of the individual part icles appearing on one s ide of a reaction
equation. For example, in the decay reaction (16.1),  the muonic lepton number
on the lefthand  side of the reaction is zero, because no leptons are present.
On the righthand side, the total muonic lepton number is - 1 for the CL+  and + 1
for the mu neutr ino; the total is  -  1 + (+ 1) = 0, the same value as on the left
s ide.

Thus, i f  in o reaction an electron is created, eitl-rer  another electronic lepton
must have been destroyed or an electronic antileptan must have been created at

the same time. Using this conservation law and conservation of charge, one may
deduce the reaction for the beta decay of the /.-  meson:

p-  + e- +u,+v (16.2)

The muonic lepton number on each side is + 1 and the total electronic lepton
number on each side is zero. The mean l i fe for thils  decay is 2.20 x 10m6 sec.

A similar decay involving the antiparticles occurs with the same mean life:

p+  + e + +v,+u (16.3)

The mu neutr ino and the neutr ino are dist inctly (different part icles.  In difficult

experiments with mu neutr inos f rom a meson decay, i t  has been shown that
mu neutr inos do not interact with nuclei to form electrons, whereas the creation
of electrons from similar nuclear interactions with neutrinos does occur. Charged

leptons interact with nuclei primari ly through electromagnetic forces, i .e.
Coulomb interactions. They do not interact through shortrange strong nuclear
forces. The uncharged, zero rer,t  mass leptons cannot interact by means of
electromagnetic potentials.  Their  interaction with thle  charged leptons is through
forces which are very smal l  and are cal led, appropriately,  weak interactions.

Because of the smallness of such interactions, neutrinos go through matter almost

as freely as through a vacuum.
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16.2 MESONS

As was discussed in Chapter 14, the cmxistence  of the x meson was predicted by

Yukowa to explain nuclear forces in tevms  of particle exchange. By an uncertainty

pr inc ip le  argument ,  the  7r mass  was  pred ic ted  to  be  severa l  hundred  e lec t ron

masses. Two charged x mesons exist, ‘denoted by x+ and r-,  with rest energies

of 139.58 MeV.  A lso ,  there  is  a  neutral  s m e s o n ,  ?y”,  wh ich  has  a  res t  energy

of 134.98 MeV.  The  corr,:sponding  masses  are  around 270  t imes the  e lect ron

rest mass. The H” is its own antiparticle. The antiparticle for the H+ is the r-.

The x mesons have spin zero and, th JS,  obey Bose-Einstein statistics. They and

the (other  mesons to be discussed are therefore often called bosons.

I f  two  nucleons  col l ide wi th  sufficient  in i t ia l  k inet ic  energy,  they can create  a

x meson. Thus, if two prot,Dns  collide, some possible reactions are:

IF”  + IP’  - 1P’ + ,p’  + a0

1p’  + IP’  - IP’ +  o n ’  +  7r+ (16.4)

S ince  the  res t  energy  o f  the  ?r + is 139.58 MeV,  th is  is  the  min imum in i t ia l

kinetic energy in the center  of momentum system needed to create a X’ meson.

Some reactions that might occur for a oroton, neutron collision are:

11" -t 0”’ -. ,p’ + on’ + 7r”

,p’ + 0”’ + 0”’ + on’ + 7r+

,p’  + on’  -  ,p’  + ,p’  + K (16.5)

The occurrence of processes such as (16.4) and (16 .5 )  shows that  there  is  no

conservation law for meson number.

C)ne decay mode of  a  charged ?r  meson is  the react ion g iven in  (16 .1) .  Tile

mean l i fe  for  such a decay is  2 .55 x  lOma  sec .  Another  decay  mode which

occurs only in a very small fraction of i.he decays is

ir+ -+e+  + v ( 16.6)

Thesse  involve neutral leptons and thus weak interactions. Note that both of these

decays have lepton numbers of zero on each side of the equation. Since electro-

magnetic interactions are much stronger than weak interactions, the most likely

declay  mode of the A’  meson is

7r”  -+  y + y (116.7)

- two  gomma rays .  The  mean l i fe  here  is  about  2  x  lo-l6  sec.  No leptons

are necessary in the decay of the ?y”, s ince  no charged par t ic les  are  needed to

con’serve charge.  Also,  the K” cannot  decay into  only  one photon because then

mornentum could  not  be  conserved.  In  fact ,  in  a l l  these  decays a t  least  two

particles must result in order to conserve momentum.

The meson exchange theory  o f  nuc lear  forces  is  thought  to  be  essent ia l ly

correct .  However ,  many other  mesons have  been found which  could  a f fect

nuc’lear  forces .  These  mesons a l l  have  in tegra l  sp in  and are  thus  bosons,.  For
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instance, the K+  and K”  mesons have spin zero and decay in around 1Om8 sec.
Their  antipart icles are designated K--,  or p, and K”.  [When  discussing the class

of particles called mesons, the muon (g meson) is  not included. The muon is  a
lepton and has spin % .] Table 16.1 summarizes the kinds of mesons that f it  into
the patterns which wi l l  be discussed later, along with their rest energies and

spins. All of these particles are uristable and decay. For instance, a K’ meson

can decay into p+  + u,, or into two or three s mesons,  etc. I t  cannot,  however,
decay into 4 P  mesons, because It does not have enough rest energy to form
f o u r  r’s.

T A B L E  1 6 .  1 Rest Masses and Spin Quantum Numbers of Some of the Mesons

x*
7r”
K*
K”,  K”

t
n ’

P+r PO
w

K’* _
K”*, K”*

K**’ , K  ,K’**o**

f
f ’

___- -
Rer,t Energy ( MeV)

__- - -
139.58

134.97
493.8

497.8
548.8
958.3

-. 765
783

891
-. 897

1019
- 1 3 1 5

- 1405

1264
1515

__-

Spin

0
0

0
0

0
0
1

1
1

1
1

2

2
2

2

1.3  BARYONS

There is another class of part icles whose number is  conserved, cal led baryons,
which includes the proton and neutron, and their  antipart icles.  These part icles

al l  have half -odd- integral  spin,  and al l  except the plpoton-the  baryon with the
least mass-are unstable. The baryons interact by electromagnetic and short-

range nuclear forces, as do mesons. The combined :;et  of mesons and baryons
that can interact with nuclear fcrces  is cal led hadrons.  The only th ing that
prevented ear ly discovery of the LDnger-lived  baryons was the lack of part icle
beams with energy suff icient to produce them. Soo~n  after  the bevatron,  with
enough energy to produce antiprotons, was completed, the antiproton and anti-
neutron were detected by several teams of experimenters. The short-lived baryons
are more difficult to detect.

Table 16.2 l ists some of the baryons that f i t  into the class i f ication patterns
to be discussed later, along with their rest energies and spins. The bars aver

symbols indicate antipart icles.  The antipart icle always has the opposite s ign of
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TABLE 16.:! Rest Energies and Spins of Some of the Baryons

Baryon Rest Einergy ( MeV)

Pf P
n. n

N f-C  l
, N++*

N+*,  N+*

No*, NV-

N-�,v

+* +
Yl ,y1*

0,  0
Yl ,r1*

r;*,v;*

-0,  T
z ,L

⌧-*,  s-�

n-,3=

Spin

938.26 l/2
939.55 l/2

1115.6 l/2
1189.4 l/2
1192.5 l/2
1197.3 l/2
1315 l/2
1321 l/2

3/2

_I 1236 312
3/2
3/2

1382 3/2
-1385 312

1388 312
1529 312
1534 312
1672 3/2

charge from the part icle. The two plusses  on the N++ * indicate a charge of
1 :2e  / .

In any react ion involv ing baryons,  the total  baryon number i s  a lways c.on-

selrved.  In calculat ing 6, the total baryon number, the antipart icles are ass igned
- 1 and the part icles are ass igned -t  1. Then the algebraic sum of the numbers
of the baryons or ontitbaryons  appearing on one s ide of a reaction equation
must be the same as the number appearing on the other side. Thus in the reac-
t i o n  2’ + A + y,  t h e  i n i t i a l  a n d  f i n a l  b a r y o n  n u m b e r s  a r e  E?  =  +l. I n  t h e
reloction  n  + -6 +  e + i- u,  the init ial  and f inal baryon numbers are 6 = -1.

In the reaction n + n + 27,  the init ial  and f inal baryon numbers are 6 = 0.

16.4 CONSERVATION LAWS

In discuss ing var ious qLlantities  that  are conserved in a part icle interaction, i t
is  useful to note what kinds of forccms  are predominant in causing the reaction.
For example, /3  decay processes go  by weak interact ions and the number,5  of
electronic leptons  and muonic leptons are conserved. It has been found that there
ex.ist  quant i t ies  that are conserved i? nuclear interactions, in which mesons are
produced, which might not be conserved for other forces. The four kinds of
forces that are known ore nuclear or strong, electromagnetic, weak, and gravi-

tational. For part icles with nucleon masses, on the order of one fermi apart, the
relative sizes of these forces are approximately:

Strong: E lectromagnetic: Weak: Gravitat ional:  = 1:  10m2:  10m7: 1Om39 (16.8)
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Clearly, in reactions where only a few particles are involved, gravitational effects
can be ignored. Also, weak forces, where leptons are involved, are important
only when a reaction by nuclear c’r electromagnetic interactions is very unlikely.
A conservation law that holds for CIII  these interactions is conservation of baryon
number 6.

I .  7 /sotopic  S p i n

Another quantity,  which is  conserved in strong or nuclear interactions but which
is not conserved in electromagnetic or weak interactions, is  isotopic spin. This
new quantum number is  closely arlalogous to ordinolry spin. It  arises from con-

s ider ing that the neutron and the proton are practical ly identical part icles.
Nuclear forces are charge independent; the neutron and the proton exhibit  the
same nuclear forces. They also hclve  nearly the same mass. The only essential
difference is that the proton has a charge. As a f i rst  approximation, then, one
can think of the proton and neutron as different states of the same part icle,
dist inguished only by an internal property (charge), which is  descr ibed by
assigning appropriate internal quantum numbers to the neutron and proton.
Since there are two part icles in this case, an internal  quantum number having
two poss ib le values i s  needed. I f  the value TX  =  % is assigned to the proton
a n d  T3  =  - % i s  a s s i g n e d  t o  t h e  n e u t r o n , these numbers are very closely
analogous to the z components of spin of a part icle of spin quantum number
T =  ‘/2,  wh ich would have 2T  + 1 = 2 possible states. There are found among
the elementary part icles numerous exomples of such groups of part icles, which

can be described as isotopic spin mulfiplefs,  different states described by 2 J + 1
different values of J3  for the isotc’pic  spin quantum number J .  In the case of
the proton and neutron, the s imi lar i ty to ordinary spin % is clear; thus the name,
isotopic spin. In general,  J3  i s  analogous to the azimuthal quantum number
m,, or the z component of spin, and J i s  analogous to the total  spin quantum
number j.

The general uti l i ty of the concept of isotopic spin Irests  on the fact that when
several part icles are present, the isotopic spin of the system may be obtained
by adding isotopic spins just l ike #ordinary spins, leading to the same possible
values for  the total  T  and T3, as for the analogous j and m. The number of

states is 2J + 1, similar to 2; + 1 for ordinary spin. The highest T3  is assigned
to the most positive particle in a group of the same J.

For example, from Table 16.2 there are 3 B part icles. I f  this number, 3, is
2 J  +  1,then

J =  1 (16.9)

Also, J3  for each of the three particles is

B+,  J3  = 1; X0,  T3  = 0; Z-,  ;r3  = -1

For the “cascade” particles E,

J=;

(16.10)

(16.1 1)
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and the values of Ts  ore:

T3  .:or  3 =  -~  1;
2

&for EC’  := +; (116.12)

For ‘2, which has zero charge,

T = 0; Ts  = 0 l(16.13)

In  011  cases, the antipart icles woulc  hove the some T and opposite s igns for
Ts.  T h e  t h r e e  7r  m e s o n s  h a v e  T  =  1  a n d  t h e  K m e s o n s  h o v e  T  =  %,  w i t h
K'., K”  having Ts  = + % , -l/z respectively.

Let us consider which of the fol lowing reactions do not violote any conservo-

tion lows discussed so fat,:
( 0 )  z”+ A  +  y
(b) Km  + p - 7’
( c )  K”  +  n -  ;+ rr”

(d) A -  p + c by strong interaction
(e) A + p + x- by weak interaction.

In  oli reactions, the charge conservation  low is satisfied. Also in 011  reactions,
totol  s p i n  % m a y  o c c u r  o n  e a c h  s i d e ,  s o  t h e r e  i s  n o  difftculty  w i t h  a n g u l a r
momentum conservation. Also, the boryon  number is + 1 on each side of the
equations. No leptons Ioccur  in the reactions, s o  c o n s e r v a t i o n  o f  lepton!;  i s
i r re levant.  In (a),  y indifcotes  on electromagnetic interaction where T need not
be conserved; so this  reclction  appears poss ible. In reaction (b),  the total  Ts  i s  0

on the left  but % on the r ight, S C  conservat ion of i sotopic spin is  v iolated.
In (c),  Ts  = 0 on both s ides; so this appears possible. L ikewise in (d), Ts  := 0
on the left  and -%  on the r ight.  Thus, this reaction cannot occur by strong
interaction. Equotion (e) is possible s ince T, Ts  are not conserved in wseok
interactions.

76.4.2 Hyperchorge

Another quantity that is conserved in strong and electromagnetic interactions, but
not necessari ly in weak interactions, is  strangeness, S. This number wos original ly

introduced to explain associated  production. For example, in the reaction,

p+r'-,K++Z+ l(16.14)

the K+ and Z+  occur together, or cre associated.  I t  was found that o react ion
such OS

n+r++Z+

in which the Z+  would occur not associated with a K+, and which does not
v io late previous ly  know11 conservat ion laws, does not occur in nature. Later i t
seemed more useful to introduce a number Y, col led hyperchorge, in place of S,
with

Y=S+B l(16.15)
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The law of conservation of strangeness is a combination of conservation of hyper-
charge and conservation of baryon number. We wi l l  use hypercharge, Y, in the
rest of this chapter, rather tharl  S. One of the reasons for introducing hyper-
charge is  to explain why two of the X’s,  the Z’:j  and the .I decay in a t ime
characterist ic of weak interactions, -- lo-”  set, rather than in a t ime character-
ist ic of strong interactions, - 10mz3  sec. (The decay time is, roughly, inversely pro-
portional to the square of the strength of the interaction.) We may then say that

the reaction

*+z -+p + 7r” (16.16)

does not occur by strong interactions, because the value of Y or hypercharge of
t h e  8’ i s  d i f f e r e n t  f r o m  t h a t  o f  p p l u s  t h a t  o f  x0.  T h e  v a l u e s  o f  Y f o r  a l l
of the elementary particles may be determined from considerations s imilar to
those we shall now discuss.

The zero for Y and the spacing between Y numbers may be chosen arbitrarily.
The reaction,

20  --, A + y (16.17)

takes place in less than lo-l4 seconds, and is an electromagnetic interaction
because a y ray is  produced. S ince y rays occur in a wide var iety of reactions
where hypercharge does not enter,  and Y is conserved in electromagnetic inter-
actions, we should take Y = 0 for photons. Then we see that Y for the Z”  particle
is equal to that of A. Therefore, we may take Y = 0 for the A and 2’.
Also, s ince the value of T3  i s  the quantum number that dif ferent iates between
different B part icles, Y is the same for the different Z’s.  Then Y = 0 for B * also.

To define the spacing of Y numbers, the hypercharge of the proton is taken
to be Y = 1.

The reaction,

p+p-+p+p+7r” (16.18)

takes place by strong interactiolls.  Therefore, Y for the 7~’  meson is zero. The
reaction,

K-+p+A+a’ (16.19)

takes place through strong interactions.  Thus we can say that the Y for K-  and
Y for the proton have the same magnitude but opposite s igns; or for the Km,

Y =  - 1. The Y for an antipart icle is  negative to that of the part icle. Therefore
we conclude that the hypercharge of the K+ is  + 1, as for the proton. The

reaction,

K- +  p-K+ +  ,“- (16.20)

takes place by strong interactions. The total hypercharge on the left is  zero,

whi le on the r ight the hyperchar’ge  of the K+ is + 1. Therefore, the ,” part icle
must have a hypercharge of -1.  Table 16.3 l i sts  the Y and isotopic spin T for

some of the particles in Tables 16.1 and 16.2.
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TABLE 16.3 Hypercharge  and  Isotopic Spins  of Some Hadrons

Particles

7r+, lr 0

K+, 5’
Km, K”

Y

0
1

- 1

1

- 1
0

0
- 1

1

1
0

- 1

- 2

1

1

l/2
l/2

l/2
l/2

0
1

l/2

l/2
3/2

1

l/2
0

Thle 62- part icle has Y =: - 2 and T = 0.  I t  does not decay by strong inter-
actions. In the reaction,

Q--K-  + p (16.21)

al l  quantit ies are conserved satisfactor i ly,  but the mass of the (2- is not great
enough to produce a K and a 3. This reaction is therefore impossible.

A relationship between .ihe charge 0 of a hadron  in units of 1 e / , its hypeI,-
charge Y, and its isotopic slain number T,, is

o=T,+;y (16.22)

Thus, for the proton, Q = 1, T3  = /2 and Y = 1. Hence, the equation is
sat isf ied.

There are other conservation propert ies associated with strong and electro-
magnetic interactions, related to t ime invers ion, space invers ion (parity) and
charge conjugation (change of part icles into antipart icles mathematical ly).  We
shall not discuss these in detail.

16.5 DETECTION OF PARTICLES

Thus,  we have the fol lowing part icles which are stable under st rong and elec-

tromagnetic interactions: p, n, A, Z’,  ,“-,  z”,  a-,  K+, K”,  7r+  and their  corre-
sponding antipart icles.  These part icles last long enough so that their  path length
is  of reasonable s ize in a bubble chamber,  and they can be detected by this

means. The 7r”, Z” and 77  decay rapidly by electromagnetic interaction. Al l  the

other part icles l i sted in Tables 16.1 and 16.2 decay by strong interactions in a

time comparable to 1Om23 seconds. In this time, the maximum distance a particle
could move is about 1O-23 c =: 3 x 1OY’5 m = 3 fermi, about the size of nuclei.
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This distance is not detectable on photographic plates. Thus, these particles must
be detected indirectly. In the discussion of @ decay, we used a phase space

argument to find the energy distribution of the electrons. The result was a smooth
curve of number of electrons versus energy. Any sharp peak on the curve would
indicate the presence of other part icles. Similar ly, in nuclear scattering experi-
ments one can look for peaks In phase space plots to f ind these short- l ived
part icles.  This is  the pr imary method used to discover them. Statist ical analyses
of this k ind necessitate detai led study of hundreds of thousands of photographs
of decay products.

16.6 HYPERCHARGE-ISOTOPIC SPIN PLOTS

Suppose we plot points on a graph of Y versus  T3, for hadrons of the same spin.

Then some interest ing symmetries become apparent. Two such plots for the

Y

r3

igure 16.1. Hypercharge-isotopic spin plot of the
aryon octet.

N' * $'
1

;*I- ;
I --, -L 0
2

. - 1
T I

- 2

1.

+-

4 .

t-

N” .
N *

!!

Figure 16.2. The baryon decuplet on a hyper-
charge-isotopic spin plot.

Figure 16.3. Hypercharge-isotopic spin plot of meson octet for spin zero.
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baryons  of Table 16.2 are shown in Figures 16.1 and 16.2. F igure 16.3 shows
a  s i m i l a r  p l o t  o f  m e s o n s  i n  T a b l e  1 6 . 1 .  T h e  f’ p a r t i c l e ,  w h i c h  h a s  Y =  0 ,
T3  =: 0, for reasons of symmetry which wil l  not be discussed here, should be in
a diagram by itself.  The spin 1 mesons form a similar set of diograms, with
K*'s, replacing K's, p’s replacing T’S,  @  replacing 1, and w replaciny  71’.
L ikewise for spin 2, K + K**,  x m+ A:,, 17  + f, 7’ -  f ‘.

These various symmetrical combinations  of quantum numbers can be shown to
occur notural ly in certain “groups” .In group theory. Group theory is  a branch
of mathematics which is useful for systematical ly f inding the physical conse-
quences of symmetries. An alternate simple way of getting these same combino-

tions  of quantum numbers is  by means of the fol lowing model. In atomic physics,
the regular it ies in the periodic table cre connected with the fact that combino-
tionss of electrons lead to chemical propert ies. In nuclei,  the various reguInriti,es
in isotopes, isotones, etc. are due to the fact that nuclei are composed of neutrons
and protons.  This  suggest:,  by analogy that the hadrons might be composed of
sti l l  more fundamental particles. Also, high-energy electron scattering experi-
ments show that there is  internal structure-shel ls  of charge-within the proton

and neutron, giving further evidence that they might be composed of other
part icles. Whi le the charge density is  posit ive in the proton, i t  var ies i r regular ly
with radius. The neutron aopears to have  a positive charge density at the center
and negative density further out.

1 6 . 7  Q U A R K S

All of the diagrams of Figures 16.1, 16.2 and 16.3 have at least threefold
symmetry about the origiri. This  suggests that we should consider that each (of
the hadrons is  composed aof  possibly three fundamental part icles. Let us denote
these three part icles by n’, p’,  A’.  They have been cal led q u a r k s .  Consider the

least symmetric of the diaclrams  exhibit ing threefold rather than s ixfold symmetry
- t h e  o n e  i n v o l v i n g  t h e  s p i n  “/,  N*‘s,  i n  F i g u r e  1 6 . 2 .  T h i s  c o n t a i n s  t h e  N*‘s,
Y*‘S ,  E*‘s,  and Q .  Further,  to f ind the values of Y and T3  to be associated
with the quarks,  we assume  that  N-* is made of three n’ quarks, N++ *  Iof

t h r e e  p’ q u a r k s ,  a n d  (I- o f  t h r e e  iL’  q u a r k s .  T h e n ,  f o r  t h e  N-*,  3Y,,  =  1
o r  Y,,  = %.  F o r  t h e  n ’  q u a r k ,  3T,  =  --“/,  o r  TX  =  - % .  S i m i l a r  a r g u m e n t s  f o r
N+‘~* and (I- give us:

J3,’ = 0
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Figure 16.4. y-7,  plot for the three quarks.

These three quarks are shown on a Y - Ts plot in Figure 16.4. Again, there is
t h r e e f o l d  s y m m e t r y  a b o u t  t h e  o r i g i n .  If Q =  Ts + Yz  Y,  f o r  t h e  q u a r k s ,  a s
i n  E q u a t i o n  (16.22),  t h e  c h a r g e s  o f  n ’ ,  p’,  1i’ i n  u n i t s  o f  1 e  1 a r e  - ‘13, V3,

- % , respectively.
S ince three quarks can give r ise to an ordinary intr ins ic spin quantum number

of “/,  I the spin of each quark should be %.  Also, since combinations of three
quarks should always give a baryon number of 1,  we take 6 =  % for each
quark. A careful search has been made for particles of fractional charge

- % ( e / , 2/3 / e / , but none have yet been definitely identified. The reason could
be that quark masses are so large that present machines cannot produce them.
(Another possibility is that quarks do not really exist.)

Now let us see if the other baryons can be explained as combinations of three

quarks.  Consider a baryon made up of two n’ quarks,  and a p’.  The result ing
part icle has Q =  0, Y = 1, T3  =  - ‘/?  .  These agree with the numbers for n and
No*.  T h e  t h r e e  b a r y o n s  c o n s i s t i n g  o f  a n  n ’ ,  a  p ’  a n d  a  ~1’  a r e  t h e  r\, 8’
and Y”*.  S imi lar ly,  i t  can be verif ied that al l  possible combinations of quarks

taken three at a time correspond to baryons.
This quark scheme was worked out before the 12- particle had been observed.

The theory predicted the charge, isotopic spin and hypercharge of the 12  -,  along
with an est imate of i ts  mass,  and showed that because of the associated con-
servat ion laws,  the f2 should decay by weak interact ions.  Hence i t  would leave
an observable t rack in a bubble (chamber.  An explerimental  search yielded the
fi rst  observation of the 12  -,  shown in Figure 16.5.

T A B L E  1 6 . 4 Quantum Numbers for then’, p’ and Ii’  Quarks

~~~~~~~~~

It is poss ible that more than one baryon can correspond to a given com-

bination of quarks.  We might, for example, take the wavefunction of N-  *  to



Figure 16.5. Discovery of the c2-  pariicle. Measurements on track 4 indicate thott  it
must be a K~.  The decay of the E” was previously well-established; analysis of the
track and decay of particle 3 indicates that it must be the a-  particle, predicted by the
theory leading to Figure 16.2. (Courtesy 13rookhaven  National Laboratories.)
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be a product of three quark wavefunctions (labeled  1, 2, 3),  as follows:

*N * = *” (1)  9”,(2)  q’,,(3)

Likewise, we might take for the wavefunction of Y-*  the combination:

(16.23)

*Y * =  2 [q,,(l)  *“a(2) \II.,,(3) +  *n,(1)  *Y(2) ‘C”,(3)

+ @.,,(‘I) q”,(2)  q”,(3)] (16.24)

Both of these wavefunctions are symmetric under exchange of any two quarks.

QYO.  would be a symmetric combination of the six products under interchange

of 1, 2, 3 in the products of the form:

*“,(‘I  1 3,,(2)  \lr,,(3)

Since there are three independent product functions making up qY +, there are

two other independent l inear combinations which could represent Y = 0, T3  =

-1 baryons. One of these is the 8.. The other belongs to another group of

eight part icles-an octet similar to that containing tile  n,  p and Z-.  Also,  there

are six l inear combinations that give Y = 0, T3  = 0 iparticles.  Three of  these are

the y”*, A and 8’.  Two belong to the second octet of particles just mentioned.

The sixth forms a singlet,  a group containing only one part icle. Part icles have

been found experimentally which f i t  into all  these various sets. Some of the

properties of the particles in the second octet are still not known experimentally.

The total number of these baryons is a group of 10 (containing N-*,  12-,  etc.),

one group of eight (containing p, n, etc.) and another group of eight plus one

of 1 = 27 baryons. This corresponds to three quarks making up each particle,

with three possibi l i t ies for each quark. The total number of possibi l i t ies is then

3  x  3  x  3  =  2 7 .  A l l  t h e s e  b a r y o n s  h a v e  a n t i b a r y o n s ,  p r e s u m a b l y  m a d e  o f

antiquarks.

.8  MESONS IN TERMS OF QUARKS

To form mesons with integral spin from spin % quarks, i t  is necessary to use an

even number of quarks. We shall assume that combinations of two quarks form

the mesons. Since the baryon num’ber  of a meson is zero, we need one quark

and one antiquark for each meson. The values of Y, TX  and Q for all the com-

binations of a quark with an antiquark are given in Table 16.5.

T A B L E  1 6 . 5 Formation of Mesons From Quarks
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For the spin zero mesons, combinations of n’n’, p’p’ ,  li’i2’  form 7r”, 77,  77’,  re-
spectively. Also, n’p’  forms C,  n’;i’  forms K”, p’li’  forms K’, etc. H i g h e r - s p i n

mesons can be considered to consist of s imilar combinations of quarks in excited

states, with some addit ional (orbital)  angular momentum. S ince one quark and
anI  ant iquark are needecl to create a  meson, whereas an odd number of quarks
are required to create a boryon, one can understand both baryon conservat ion
and non-conservation of mesons i I1 terms of conservation of quark baryon
numbers.

One can bel ieve either that the q(Jarks  correspond to actual part icles or are
simply a convenient way of seeing regular it ies in hadrons. In the former way

of looking at the elementary part icles, the only thing special about the proton
anid neutron is  that they have the lowest masses of al l  the baryons,  so that
nuclei  composed of other types of baryons would eventual ly decay into nuclei
composed of protons and neutrons.

LEPTONS

The leptons are the electron, posit ron, neutr ino, antineutr ino, posit ive and nega-

t i ve  p mesons, and the /.L meson neutr ino and antineutr ino. I f  the electronic
lepton number for the electron and neutr ino is  taken as + 1, and that for the
other electronic leptons is - 1, in reactions the sum of the electronic lepton num-
bers is conserved. A similar conserva+on  law holds for the muonic lepton number.
All the leptons have spin % . The neutrinos have zero rest mass. The p meson has
a mass of about 207 timces  the electron mass, and decays in 2.2 x 1O-6 sec. The
neutral leptons, the neutleinos,  can interact only through weak interactions.

MESONS

Thle mesons (not including the /.L)  have integral  spin,  and can interact through
strong or nuclear interactions. The most easi ly observed mesons are the 7r’,

n-  ,r,’ w i t h  m a s s  2 7 0  t i m e s  t h a t  o f  t h e  e l e c t r o n ,  a n d  t h e  K+,  Km,  K”,  z
Thle mesons typical ly decay in 10-s  - lo-”  set to other mesons or leptons, by
weak interactions, or in a shorter t ime to y rays by electromagnetic interacti’ons.
Some decay in a much :shorter  t ime by strong interactions. Exchange of mesons
by nuclei is thought to be the source of the interaction forces between the nuclei.

BARYONS

Particles of proton mass  and above, with half - integral  spin,  and with electro-

magnetic, nuclear and weak interactions, are called baryons. If a baryon numlber
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of + 1 is assigned to the particle,;  and - 1 to antipart icles,  i t  i s  found that the
sum of baryon numbers is  conserved in interactions. Thus baryons deccy  to other
baryons with var ious combinations of mesons and leptons.  The proton and
neutron are the most easily observed of these baryons.

CONSERVATION LAWS

Conservation of lepton and baryon numbers have already been mentioned. Also
always conserved in part icle interactions in which external forces are negl igible,
are mass energy, momentum, angular momentum and charge. A number used to
dist inguish different part icles with the same nuclear interactions is isotopic spin.

This is  conserved for strong part icle interactions. Isotopic spins add l ike ordinary
spins. Another quantum number which was necessary to dist inguish different
groups of baryons and mesons is  hypercharge. This is  conserved in strong and

electromagnetic interactions. Another related quantum number sometimes used is
strangeness. Strangeness is  hypertharge minus baryon number.

QUARKS

I t  i s  found that by postulat ing that three kinds of basic part icles,  cal led quarks,

exist,  with the proper charges, spins, isotopic spins, hypercharges and baryon
numbers,  the var ious baryons ancl mesons can be considered to be composites
of three or two quarks, respectively.

1 .  p- mesons con become bound with atomic nuclei, displacing the inner electrons, to

f o r m  M-mesic  a t o m s .  C a l c u l a t e  t h e  r a d i u s  o f  t h e  f i r s t  B o h r  o r b i t  f o r  a  Cc-mesic

atom of  t in ;  compare wi th  the rluclear radius.  What would the binding energy of

the /J meson be if the nucleus were of zero radius?

Answer : 4.46  fe rmis ; nuclear  radius = 6.5 fermis ; 8.08 MeV.

2 .  I n  w h a t  r e g i o n  o f  t h e  spectrunl-x-ray, i n f r a r e d ,  e t c . - w o u l d  t h e  p h o t o n s  b e ,

ar is ing f rom t rans i t ions due to a /A  meson dropping down into lower and lower

states in a p-mesic  iron atom?

3 .  I f  t he  a+  is  in i t ia l ly  at  rest ,  in  the react ion K+  + pt + u,,,  what is  the kinet ic

energy of the p+?

Answer: 4.12MeV.

4 .  In  t h e  r e a c t i o n  p +  p p*  p +  p t-  p  + p,  a  p r o t o n - a n t i p r o t o n  p a i r  i s  c r e a t e d .

What  i s  the threshold k inet ic ard total  energy of  each of  the or ig inal  protons in

t h e  center  o f  m o m e n t u m  s y s t e m  f a r  t h i s r e a c t i o n  t o  o c c u r ?  T h e  t o t a l  e n e r g y

E c m in the c.m.  system is  g iven in  terms of  the-total  energy EL  in  the lab system
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5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

OS E,  = k4Ff%,C2, when one of the two identical initial particles of rest mass

m. is at rest in the lab. Find the threshold kinetic and total energies in the lab system.

Answer: 5630 MeV  lab kinetic energy.

If the Z”  is at rest, what is the gc~mna ray energy in the reaction X0 m*  .i + 7,

by an electromagnetic interaction?

Answer: 75 MeV.

For Q A at rest, what is the kinetic energy of the K- meson given off in the weak

d e c a y ,  ;i + p  +  a-?

Answer: 32 MeV.

The K+ meson has a meon  life in its rest system of 1.2 x lo-’  sec. About how for

could CI  beam of 1 billic’n  eV  K+ particles go before half the particles decayed?

Answer: 6.77 m.

One unlikely decay mode of the K’ results in o gamma ray in addition to the fir+.

Write the reaction. An even more unlikely mode produces a r”  and a positron.

Write the reaction.

In inelast ic  proton-alpha part ic le  tollisions,  e i the r  no  and rt,  o r  p+  and K’,

can come off along wi+h  the alpha. The spin and isotopic spin of the alpha particle

are both zero. Discuss the possible vI>Iues  of spin and isotopic spin of the outcoming

particles which are consistent with the spin and isotopic spin of the incoming particles.

What are the total T ard T:, of the combination of outgoing particles?

Answer: S = %, T: = %.

What are the isotopic spins, T and Ts,  of 2He4,  zHe3  and , H3, assuming these

quantum numbers are CIS small as possible? For the reactions, p + He3  + He4  +

K+ a n d  p  + H3 + He4 i-  ?y”,  show that the initial and final total T3’s  are the same.

What must the total initial T’s be?

Answer: 0, 0; %, %;  %, -!h,  1.

A ho decays in flight into CI  K- ancl  a proton; it has a kinetic energy of 150 MeV.

Calculate the angle at which the prl>ton  is projected, if the x-  goes off at 90” with

respect to the incident direction of the 11’.

Answer: 5.4” from clirection  of incident A.

What is the threshold y energy such that B  a+ meson can be created when a y

collides with a proton? What is the other particle produced?

Answer: 151 MeV.

Which of the following reactions are impossible?

(a) K+  - ?r+  + K- + K+

(b) K+ - 8’ + k”  -t r+

(c) K+ - no  + To  -- 7r+

(d) K+  - A0  + x0 + s-+
A selection rule that appears to hold for weak interactions is that the magnitude

.of  the  change in  hyperchorge is  ullity, 1 ,IY / = 1.  Which of the folIowIng  t w o

sequences is possible?

(0) z-  + “0  + .y

(b) ,“-  - A0  + K- - no  + 7r”  + a- -- no  t 2-y + r-
A K” meson decays in flight into 2-(‘s, which make equal angles of 0 with respect

to the incident ?y”  direction. Derive an expression for the total energy of the TO.

Answer: E  =  m,c’/sin  0.

What conservation laws prevent A0 + s+  + Y?
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17.

18.

19.

20.

21.
22.

23.
24.
25.

26.

27.

W h y  d o e s n ’ t  t h e  d e c a y  n l p  t  r(’  occur  by  s t rong in te ract ion?  I t  doesn’ t  occur

b y  w e a k  i n t e r a c t i o n  e i t h e r .  W h y ?

As  po in ted out  in  th i s  chapter ,  X0 * .I  +  y g o e s  b y  e l e c t r o m a g n e t i c  i n t e r a c t i o n .

G i v e  t w o  r e a s o n s  w h y  X0 d o e s  n o t  d e c a y  b y  a  s t r o n g  i n t e r a c t i o n  s u c h  a s  I0  -+

.\  + HO.

O n e  o f  t h e s e  r e a c t i o n s  c a n  o c c u r  b y  s t r o n g  i n t e r a c t i o n  b u t  t h e  o t h e r  c a n n o t .

E x p l a i n  w h y .

(a)  T + n - K-  + .\

(b)a’+n  *K++.I

T h e  d e c a y  I0 - .i  +  y occurs8 v e r y  r a p i d l y ,  i n  f a r  l e s s  t h a n  1 0  I4  s e c .  T h e  d e c a y

\‘ l p + y occurs in about 10 6 s e c .  W h y  i s  t h e r e  t h i s  l a r g e  d i f f e r e n c e  i n

d e c a y  p r o b a b i l i t y ?

W h a t  c o n s e r v a t i o n  l a w s  p r e v e n t  ihe react ion ,  r’ + p ‘p + .i + K+?

T h e  r e a c t i o n  \“ + p t -  y is about 10 m4  t i m e s  ct s l i k e l y  crs  t h e  r e a c t i o n  X+ *

p +  IT’.  Why  do  you  th ink  th i s  i s  so?  Both  ctre  w e a k  i n t e r a c t i o n s .

W h a t  c o n s e r v a t i o n  I u w s  p r e v e n t  t h e  d e c a y ,  \‘~ t Y+ + y?

Why  doesn’ t  the  react ion  E”  -* .I  t -  HO  g o  b y  stronmg  i n t e r a c t i o n ?

T o  w h a t  b a r y o n s  l i s t e d  i n  T a b l e  16.2  d o e s  t h e  c o m b i n a t i o n  o f  t w o  AI’  q u a r k s  a n d

one p’  quark correspond?

To  what  baryons  l i s ted  in  Tab le  16 .2  does  the  combinat ion  o f  two p’  quarks  and

one n’ quark  cor respond?

T o  w h a t  m e s o n s  i n  T a b l e  1 6 . 1  d o e s  t h e  c o m b i n a t i o n  o f  cr  p ’  q u a r k  a n d  a n  ii’

quark  cor respond?





appendix 1
In this appendix the detailed proofs of results quoted in Chapter 8, for the kinetic
energy and angular momentum operators in spherical polar coordinates, wi l l  be
given. The kinetic energy operator, pz /2m,  in rectangular coordinates is

( A l . l )

We wish to express this operator in spherical polar coordinates r ,  0 and p,
defined by the coordinate transformations:

x = r sin 0 cos p r =  (x” + y2 + z’)“’

y = r sin 0 sin p Or ta” fl = g + Y2)‘i2
z

z = r cos 0 tan(c  = r
X

( A l  .2)

Since the operator in Equation (Al. l)  is  a second-order differential operator,
after making the transformation to spherical polar coordinates, no derivatives of
order higher than the second can appear. The most general form of such an
operator is:

where the coefficients A,, AZ,.  . .  13,  are some functions of the coordinates r ,

0 and cp.
This express ion may be s impl i f ied somewhat by noting that apart f rom the

factor -Ii22/2m  appear ing in Equat ion (Al.l),  every term has the phys ical
dimensions of (length))2.  In spher ical  polar coordinates,  the only var iable with
physical dimensions of length is the radius r; hence, tloe  coefficients A,, A2,.  . . D3

must each contain the factor -)i2/:2m  and enough factors of l/r  to give each
term the same physical dimensions as in Equation (Al .l).  Thus we must have:

4 8 3
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( A l  .3)

wl iere now, at most,  a,, a2,. . ds can be dimensionless real functions of 19  ‘and

v,
These functions may be identif ied by the fol lowing argument. In Cartesian

coordinates, the vector momentum operator is

( A l  .4)

where i, 7 and k are unit  vectors along the x,  y and z di rect ions,  respectively.
The operator p& appearing in Equation (Al . l )  is  the square of pop,

2
POP =  POP  * fJ0p

which reduces immediately to the sum of second der ivat ives in Equation (Al . l),
because of the orthogonality and constancy of the three unit vectors, ?,  ; and f.

I f  we can der ive an express ion for the vector momentum operator in spher ical
polar coordinates, anal,ogous  to Equat ion (A1.4),  then Equation (Al .5) can be
used to calculate the kinetic energy.

To derive the vector momentum operator in these coordinates, we introduce
unit vectors as follows:

(1) i is paral lel to r;
(2) f? is  in the cp  = constant plane, point ing in the direction a part icle would

move if only its cclordinate  0 were increased;
1 F.

(3) (i, normal to i and 0, such that i x 8 =  6.  r,Z  i s  paral le l  to the x-y plane
and is in the direction a particle would move if only its coordinate p were
increased.

These vectors,  each of clnit length, are indicated at the point (r ,  8, p)  in Figure

Al .l.  They are mutually perpendicu ar at each point, and change direction when
the angles (a and 19 change. These changes in direction must be accounted for
when taking the scalar product,  as in Equation (A1.5),  to calculate the kinetic
energy; for then pOP  . F, lpOp  . 8, and pOp  . $ are not zero.

The momentum operator p may be written in terms of i ts components in theA
i, r!I and 6 directions by noting that i f  0 and cp  are held constant,  and r  i s
changed, the differential increment of distance is

d s ,  =  d r (Pil.6)

I f  r  and q are held constant whi le 19  is  changed,, the differential increment of

distance is
sdsH  = rdti ( A l  .7)
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Figure Al .l Directions of unit vectors r, 0,  and v in spherical polar coordinates.

and changing cp  whi le keeping r and H  constant gives the differential element of
distance:

ds,  =  r  s i n  0 dp ( A l  .8)

In general,  the component of the vector momentum operator in the direction

corresponding to an increase of linear distance ds is

So, using Equations (A1.6) througil  (A1.9), in spherical polar coordinates the
momentum operator must be:

( A l  .9)

We need to calculate poP  * pop,  or

’ a;-.+g12L+$p-1 a

j ar r tM rsinB  d~
(A1.lO)

Consider f i rst only the terms aris ing from the scalar product in Equation (Al.lO),
which involve der ivat ives of  second order.  S ince i, o^ and @ form an orthogonal
set of unit vectors, the only second derivative terms whllch survive are

2 2 2
;.;L2 + H^.glL + +.+ -L_- a

ar r2 f3f12 r2  sin20  ~I+Q’

(Al.ll)
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There can, for example, be no term involving a’/drdB,  because this would havee 1
to arise from a term such as i-0  l/r il’/driIB,  which vanishes because i.8 ==  0.
Other cross-terms vanish for s imilar reasons.

H e n c e ,  f r o m  E q u a t i o n  (Al.ll),  t h e  c o e f f i c i e n t s  a,,  b,,  cl, d,,  d,  and d3
of the second-derivative terms in Equation (A1.3) may immediately be deter-
mined. These are:

a ,  = 1, b, = 1, cl = sin-’  0, d, =  d,  = d:,  = 0 (A1.12)

Only the coefficients a?, b2  and c?  of the der ivat ives of f i rst  order in Equation

(Al .3)  remain to be determined. These coeffkients may be identif ied by compar-

ing the effect of the two alternate expressions, (Al .l) and (Al .3),  when differen-
t iat ing arbitrar i ly chose11  functions of r, 0 and CF.  One sequence of choices of

functions which al lows the unique determination of the three remaining ca’eff-
cients  is: r2,  z and x.

(A) Let (Al .3)  act on ,r ‘. For brevky,  we put  C = --%*2/2m.  The result is:

Topr2  =: C(20,  + 2a2)  =  C ( 2  -t  2a,) 1tA1.13)

L e t ( A l . l ) a c t o n  r2 =  x2  -+  y2 +  2’. A typical term is calculated as follows:

dr2 d2r2--=22x  p-p
ax ax2

S i m i l a r l y ,  d2r2/ay2  =  d’r’,/dz’  =  2. H e n c e ,

J,,r2 =  6 C

Equating (A1.13) and (A1.14),  we must  have

( A 1 . 1 4 )

olr

2 +  2a2  = 6

17 (A1.15)

The results are unique, s ince lett ing Equations (A1.13) and (A1.14) act on d.
for any 4 > 2, gives results for a2  identical to the above.

( B )  L e t  ( A 1 . 3 )  a c t  o n  z =  r  co:  8. T h e  r e s u l t ,  a f t e r  utilizing ( A 1 . 1 2 )  a n d
(Al .15),  is:

T,,  ( r  cos 8) =  C z
b

cos 0 - 1 cos H  - 2 sin ( A 1 . 1 6 )
r r r

Letting (Al. l) act on z, the result is obviously zero. Hence, from (Al .16),

( A 1 . 1 7 )

and therefore,

cos H
b,  = ~

sin 0
(A1.18)
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(C) Let (Al .3)  act on x = r sin 0 cos cp.  The result is:

To, (r sin B cos p) =
(

2; s i n  0 c o s  $7  - 3
1 co? 0

s i n  13  c o s  cp  +  - -
r sin 0

cos $0

1- - srn  B cos r + c - -  T sin 0 cos ( A 1 . 1 9 )
r

But  letting the alternate expression, (Al.l), act on x, the result is zero. Hence,

1 cosz  00 = 9 sin 0 cos cp  - f sin 0 cos p + - -
r sin 0

cos cp

1 sin 0

r sin20
cos cp  - : sin d  cos cp

cos  cp

(

sin2  0 + cos’  0 - 1 - cz  sin2  0 sin p=-
r sin 0 cos y’ )

-c2  sin e sin cp=
r

Therefore,
c2  = 0

( A l  .20)

( A 1 . 2 1 )

Collecting our results, we find:

( A l  .22)

which was to be proved.
One method of obtaining components of the angular momentum operator

was given in Chapter 8.  Here, to obtain the express ion for the angular mo-

mentum operator,  we use instead a straightforward transformation of var iables
based on the chain rule, from calculus. The same method could have been used

in f inding pt, above. Th is  ru le states that the met  change in a function of
several  var iables such as $(r, 0, PO),  is the sum of c:ontributions  due to changes
in the variables separately:

I f  the changes in r ,  6’ and (o are due to a change in x ,  then upon div id ing

by dx, we have

w-= ar  ~3#  + ae a$ + f(p  w- .-
ax 8~ dr ax ae -ax a(p
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Usinig the  transformations  (Al .2),  we have:

f3r x a0 i acp 1 sincp

a,=;=
sin ~9  cos p, - = - cos 0 cos cp, --  =  -. - __

ax r ax r sin 0

Thus,

w-= cos (0 sin () f!.? + Cos  2 sin cp  a+.- ___ -.
ax ar r a8 r sin 0 ap

(Al .23)

Si~milarly,  for  a$/ay  we need:

dr Y
sin 0 sin +D,

ae i-=-=
ay r

- = - cos 0 sincp,
ay r

a(p  = + 1 cos  CF

(?Y r sin 19

Thus,

(Al .24)

For  the calculation  of a#/az,

ar Z cos 8, e = - -sin 0 acp-=_=
aZ r '

-=O
r i)Z aZ

Then,  using  the chain  rule,  we find:

(Al .25)

VVe  may  combine  Equcltions  (A1.23),  (A1.24)  and  (A1.25)  to obtain  expres-

sions  for  the  angular momentum  operators. For  example,  for  L, we have:

=h;[rsin0cos*I(sin+0sinL)~+  sinPrcosR;$+  5;)

-r  sin 0 sin cp  cos p sin 19  $ i-
(

cos l+c  cos 8 (7 sin cp  a

r ae---rsin0  ap )I
= “r( acos’  cp  + sin’ ‘p)  -?-  =  -ill  -

ap acp
(Al .26)

This, is  the  same  as the  result  derived  in  Equation  (8.50). To  obtain I, in  spherical

polar coordinates,  we use:
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L, = -&(y$  -z?)

= --i/i  r sin 0 sin ip cos 0 i - 7 ;le
[ (’

s i n 0  ?I

1

- r  c o s  19
(

s i n  p c o s  0 a
s i n  p s i n  0 g + --~

~0s  CF  a
r ii+--rsin0  ap)I

=-;ft
(

a COS~COS  p a-s,n  p ae - __--.  -
sin B a@ )

Similarly,

L,=-iii a
(

a
z--x-

ax a2 1

= -iA  r cos 19[ ( a
cos p sin 0 a,  +

c o s  cpc0~8  a sincp  a
r w;  - -  -rsinL3  av)

-r s in 0 cos p
(

c o s  0 $ - zij -j$)I
= -2’ ( a cosBsin p a

cos cp  -
as sin 0 )ap

( A l  .27)

( A l  .28)

The square of the angular momentum, L2, is given by

L2 = 1: + L;  + L,2 ( A l  .29)

Calculat ing these squares term by term, we have (us ing d cot 0 =  -sin-’  Bd0).

(

a
Lz# =  -1’  + s i n  p - +

cos BCOS  cp a ail/
ae sin0  ap)(

sinp-+
as

sin p cos (0 a+

sin2  0 ap
I cosr9sincpcoscp  a’+

sin 0 apa

+
cos 8 COS=  cp  a+ + cos d cos cp  sin p a *-. - -  -

sin 0 a s sin 19 acpdd

~05~ 8 sin p cos cp  a+ ccls2  8 cos2  p-----+  - a=+
-

sin’ t 3 ap sin2  B a@’
( A l  .30)



cos2 cF * .+ ~0s cp sin P w CosBcoscpsincp  a'+~--- - -
a@ sin2  B a9 sin B apao

+
c o s  0 sin’ cp  a+ cos 0 sin cp  cos cp ail/____----

sin O as sin I3 apa

+ ~0s’  H  s i n  cp  c o s  cp  a+ cos2 t ) sin2  (0 a'+~--+------
sin’ O ap sin’ B ad

Adding these two results, we obtain:

cos  0 aL; + I; :: --h2 $ + ~ -
(

+ ~0~2  0 a2__ ~
s i n  O ae sin’ O ap2 )

Then, s ince 1: =  -?r2(a2/acp2),  we get

12  = --A2
(

cos 0 a5 + - -
s i n  0 ae

+ r-a?
sin’ 19 )ap2

( A l  .31)

( A l  .32)

( A l  .33)

which is  the express ion gliven in Equation (8.52) for the angular momentum

squared.
The tedium of the above calculat ions can be greatly reduced by using more

powerful calculational methods derivemd  from vector and tensor analysis.
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ORTHOGONAUTY  O F  W A V E F U N C T I O N S

The eigenfunctions of operators which have only real eigenvalues sat isfy ortho-

gonality relations. For example, for two eigenfunctions #., 1c/,  w h i c h  h a v e
different energy eigenvalues E,, E,  respectively, the orthogonality relation is

J‘$,X+,dV  =  0 ,  m  :ti n (A2.1)

where the integral  goes over al l  the space in which the wavefunctions are de-
f ined. More general ly,  the orthogonal ity relat ions state that the integral over
space, of the product of one eigenfunction of an operator, t imes the complex
conjugate of another eigenfunction of the operator,  vanishes when the eigen-
functions correspond to different emigenvalues.

As an important first example, we will consider the operator,

2
;: + v (A2.2)

-the total  nonrelat iv ist ic energy operator-k inet ic, plus potential .  Suppose that
#” and $,,, are eigenfunctions of this operator with eigenvalues E, and E,,
respectively. Then,

(A2.3)

and

= EmlF/m (A2.4)

Taking the complex conjugate of the equation for $“, , we have:

(A2.5)

because the potential  energy and energy eigenvalues are real numbers.  Let us
mult iply Equation (A2.3) by $2 and Equation (A2.5) by $“.  The difference of the
result ing two equations is

4 9 1
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or  by adding and subtrac:ting  terms of the form (d#“/dx)(d+,*/i)x),  the diffler-
ence can be written as:

= (Em  - En)+,*+, (A2.7)

The terms in the potential ,  V, cancel out.  Integrat ion over a volume (dV  =
dxdydz)  gives

ti2

---D-C2 M
$81  F - $: %):I d y d z  +j--( $” F - #,” $‘):: dx,dz

+ $n F - lb,*  ‘$ ” dxdy) 1 = (E,  - E,,) j-$,X  $.  dV (A2.8)
11

Here x1  and x2, the values of  x  at the boundary of  the volume, could be fulnc-
t ions of y and z,  depending on the shape of the boundary of the volume. I f
(+“(d+~,lax)  - #:(13#“,ldx))  i s  the same when evaluated at  x1  and at  x:,,  and
similar ly for the terms involving derivatives  with respect to y and z,  then the left
s ide of Equation (A2.8) is zero. This would occur,. for example, for periosdic
boundary condit ions. Also, for a localized  part ic le,  where the wavefunct ion ap-
proaches zero as the coordinates go to inf inity, the quantit ies in parentheses
would al l  be zero as the volume of integrat ion approaches the volume of al l

space. I f  the wavefunct ions or  the der ivat ives of  the wavefunct ions are zero at
the boundaries, as is the case for a particle in a box, then again all terms on the
lefi side of Equation (A2.13) vanish. We then have:

(Em  - En)  f 1C/:$.dV  =  0
-”

(A2.9)

For E,  # E, ,  th is  equation can be sa5sfied  only if

J #;#“dV  =  0 ( A 2 . 1 0 )
”

This is  the orthogonality relation. The  eigenfunctions are said to be orthogonal.
If  there is degeneracy, it  is  possible that E,  =  E,,, in which case lv #z$,dV
might not be zero. However, i t  i s  st i l l  always poss ible to f ind l inear combinations

of different eigenfunctions it/m  and #., such that for the new combinations,

rel’ations  l ike Equation (A2.10)  hold.
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Clearly,  a s imi lar proof could have been made for the one dimensional
Schrodinger equation. In part icular,  let us consider the one dimensional case
w h e n  V ( x )  =  0 ,  a n d  p2  =  pt. The energy eigenfunctions may then also be
eigenfunctions of p..  I f  two energy eigenvalues are different,  and E =  p2/2m,
then the momentum eigenvalues are different. Hence, for periodic boundary

condit ions, the momentum eigenfunctions are orthogonal. L ikewise, the Bloch
functions in sol id state physics, cliscussed  in Chapter 12, are orthogonal, s ince
they satisfy periodic boundary coi?ditions.

Let us invest igate the orthogonality relations for the hydrogen atom wave-
funct ions.  The previous discuss ion shows that the wavefunct ions 1+5” t, and

1c, oPcm’ are orthogonal for different energies, i .e.  i f  the pr incipal quantum
numbers n and n’ are di f ferent.  However,  we moy show that the indiv idual
p r o d u c t  f u n c t i o n s  a r e  a l s o  o r t h o g o n a l  i f  n  # n ’ ,  t # t’, o r  m  # m ’ .  T h e
hydrogen wavefunctions discussecl  in Chapter 8 are of the form:

# n4,n  == R,,x (r)Q.,  (0’“” (A2.1 1)

w i t h  n ,  k and m integers. The orthogonality of the functions elm’ may be
demonstrated directly.  Thus,

s

2*
-‘“‘ve’“Pdp  = 1

2*
e -m’)a elim =0 if

0 i(m - m ’ )
m’ # m (A2.12)

0

I f  m  = m’, the integral is  not zero but 2~. Hence, the eigenfunctions et”‘*,  of
the z component of the angular momentum, L,, are orthogonal.

The functions R,,,  and ox,,  satisfy the equations:

= E,R,,,,  with E, = - me4
2(47rt,h)2n2

( A 2 . 1 3 )

d2@.m 1I d@c-2
do2 t a n  0 dH

(A2.14)

The orthogonality of the functions R,,,c for different  n’s and the same 4,  and
of (ij~,~  for different e and the same .m, may be demonstrated in a fashion
simi lar to that used above for the solut ions of the Schrodinger  equat ion. The
inf initesimal volume in spherical c o o r d i n a t e s  i s  r ’ d r  s i n  19  dH dp.  T h e  dp  w a s
used above for the proof of the orthogonality of the eigenfunctions of I , .  The

one dimensional volume elements needed in discussing the orthogonality of the
R,,x and of the G&m may therefore be taken to be r’dr  and s in tl do,  respec-
tively.

For the radial wavefunctions, R,,,  , orthogonal ity wi l l  be shown for functions
of the same 4 . Hence let us, for s implicity, drop the e subscr ipt.  Then, mult iply-

ing Equation (A2.13) by R:,
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Ii2  d*R.
--+?.I--

t (4:  +  1) R*R

2’M dr2

+ 1 Re  dRn

r ”  dr r2
n’  ”1
e2

- ___  RPR,  = E, R:R,
4acor

( A 2 . 1 5 )

A s imi lar equation is obtained by taking the complex conjugate of Equatilon
(A2.15) and interchanging n and n’. The difference of the two equations leads to:

)I = ( E ,  - E”,)R;R,

The integral  over r’dr  for r  running from zero to infinity is

ti2
---  Lr2(

R*dRnRdR3”
5

2 M “’  dr ” dr o)I =  ( E ,  - E,,) RXR,r’dr (A2.116)

Sin’ce  both R  and dR/dr  approach zero exponential ly as r  + a;  and are f in ite
at r  = 0, the left s ide of Equation (A2.16)  is zero. Thus, for different energies,
which is the same as for different n’s,

s

rx
R*,,e  R,,xr’dr  =  0 (A2.17)

0

This  could also have be,:n  deduced from the general orthogonality relation,
Equat ion (A2.10),  for the eigenfunci ions in the t ime independent Schrijdinger
equation, since for two functions with the same L and m but different n, there is
no energy degeneracy and the angular integrals over 0 and cp  cannot give zero.
Therefore, the radial part of the function must satisfy an orthogonality relation.
Since R may be chosen real,  the complex conjugate used here was not real ly

nec:essary.
For the angular functions at,,,, orthogonality wi l l  be demonstrated for func-

tions of the same m. Thelpefore,  for s impl icity the m subscript wi l l  be dropped.
Then, f rom Equation (A2.14),

(A2.18)

and a s imi lar complex conjugate equation, with interchange of & and &‘, is
valid. The difference between these two equations leads to:

=  [- C(L  +  1 )  +  [‘(  4 +  l)]@,“,@, (.A2.19)
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The integral over sin 0 dH for 0 running  from 0 to s is

=  [-4,(4  + 1 )  +- 4’(  L’ +  1)]L,,‘~@~,@4  sintide/ ( A 2 . 2 0 )

The left s ide of Equation (A2.20) is zero. Thus, for II’  # C,

s
T 6& 04.” sin 0 d0  = 0 (A2.21)o

S ince @.e,m  eima i s  a n  eigenfunction  o f  t h e  squarle  o f  t h e  a n g u l a r  m o m e n t u m
operator, L2, Equations (A2.12) and(A2.21),  show that the angular momentum
wavefunctions are orthogonal either for different total angular momenta, speci-
f ied by different t’s,  or for different I components of angular momenta, specif ied

by different m’s.
Similar orthogonality relations for eigenfunctions with different eigenvalues

can be proved for all operators with real eigenvalues.
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ATOMIC MASSES, NUC:LEAR  SPINIS AND MAGNETIC MOMENTS
OF THE STABLE NUCUDES

Given here are the masses of the neutral atoms of all stable nuclides and a few
unstable ones. The unstable nucl ides are indicated by an aster isk fol lowing the
mass number A. Nuclear :spins and magnetic moments are also given. Errors in
l isted values are in the last s ignif icant f igure only. The C” atom is the standard
at 12.000000 amu.’

’ 1 amu on the C” scale = 93 1.48 MeV

Z Element

0
1 Yi

2 H e

3 Li

4 B e

5 B

6 C

A Irl Atomic Mass

1 1 1.0086652
1 0 1.00782519
2 1 2.0141022
3* 2 3.0160497
3 1 3.0160297
4 2 4.0026031
5* 3 5.012297
6* 4 6.018893
5* 2 5.012538
6 3 6.015125
7 4 7.016004
a * 5 8.022487
7* 3 7.016929
8* 4 8.005308
9 5 9.012186

10* 6 10.013534
8* 3 8.024609
9* 4 9.013332

10 5 10.012939
1 1 6 11.0093053
12* 7 12.0143537
10* 4 10.016810
11* 5 11.011432
12 6 12.000000000

Spin I p (nuclear magnetons:l

l/2 - 1 . 9 1 3 1 4

l/2 +2.79277
1 +0.857406

l/2 +2.97885

l/2 - 2 . 1 2 7 5 5
0 0

1 +0.822010
3/2 +3.25628

3/2 - 1 .17744

3 + 1 .a0063
3/2 +2.68857

0 0

‘References: J. H. E. Mattauch,  W. Thiele, A. H. Wapstra, Nuclear Physics

67, 1, (1965). C. M. Lederer, J.  M. Hol lander, I .  Per lman, Table of Isotopes,

6th ed., John Wiley 8 Sons, New York, (1967).
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Z Element A N AtomicMass Spin I ~(nuclearmognetons)

7 N

8 0

9 F

10 Ne

11 Na
1 2 Mg

1 3
1 4

Al
Si

15

16

P

5

1 7 Cl

1 8 Ar

19

20

K

Ca

1 3 7 13.003354
14* 8 14.003242
15* 9 15.010600
12* 5 12.018641
13* 6 13.005738
1 4 7 14.0030744
1 5 8 15.000108
16* 9 16.006103
17* 10 17.00845
14* 6 14.0085971
15* 7 15.003070
16 8 15.9949150
17 9 16.999133
1 8 10 17.9991600
19* 11 19.003578
17* 8 17.002095
18* 9 18.000937
19 10 18.9984046
20* 11 19.999987
18* 8 18.005711
19* 9 19.001881
20 10 19.992440
2 1 11 20.993849
22 1 2 21.991385
23* 1 3 22.994473
23 1 2 22.989771
24 12 23.985042
25 1 3 24.985839
26 1 4 25.982593
27 1 4 26.981539
28 14 27.976929
29 1 5 28.976496
30 16 29.973763
29 14 28.981808
3 1 16 30.973765
32 16 31.972074
33 17 32.97146
34 1 8 :33.967865
36 20 :35.96709
35 1 8 :34.968851
37 20 :36.965897
36 1 8 i35.967544
38 20 :37.962728
40 22 :39.962384
39 20 :38.963710
40* 2 1 139.964000
4 1 22 40.961832
40 20 :39.962589
42 22 41.958625
43 23 42.958780
44 24 43.955490

A p p e n d i x  3  4 9 7

l/2 +0.702381
0 0

1 +0.40361
l/2 -0.28309

10 0
5/2 -1.89370
10

l/2 +2.6287

:3/2 -0.66176

:3/2 +2.21751

:5 /2 -0.85512

:5 /2 +3.64140

l/2 -0.55525

l/2
I D
:3/2
0

+1.13166

+0.64327

:3/2 +0.82183
:3/2 +0.68409

:3/2 +0.39140
4 -1.2981
:3/2 +0.21483

7/l 1.3172
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Z  E l e m e n t

21
2 2

SC
Ti

2 3 V

2 4 Cr

2 5 M n
2 6 F e

2 7 c o
2 8 N i

2 9 c u

3 0 Zn

31

3 2

G a

G e

3 3
3 4

AS
Se

3 5 Br

3 6 Kr

-
A N Atomic Mass Spin I

4 6 2 6 4 5 . 9 5 3 6 9
4 8 2 8 4 7 . 9 5 2 5 3
4 5 2 4 44.951i919
4 6 2 4 4 5 . 9 5 2 6 3 2
4 7 2 5 46.95’1768
4 8 2 6 4 7 . 9 4 7 9 5 0
4 9 2 7 4 8 . 9 4 7 8 7 0
5 0 2 8 4 9 . 9 4 4 7 8 6
so* 2 7 4 9 . 9 4 7 1 6 4
51 2 8 5 0 . 9 4 3 9 6 1
5 0 2 6 4 9 . 9 4 6 0 5 4
5 2 2 8 5 1 . 9 4 0 5 1 3
5 3 2 9 5 2 . 9 4 0 6 5 3
5 4 3 0 53.9313881
5 5 3 0 5 4 . 9 3 8 0 5 0
5 4 2 8 5 3 . 9 3 9 6 1 7
5 6 30 5 5 . 9 3 4 9 3 6
5 7 3 1 56.9315398
5 8 3 2 5 7 . 9 3 3 2 7 3
5 9 3 2 5 8 . 9 3 3 1 8 9
5 8 30 57.931i342
6 0 3 2 5 9 . 9 3 0 7 8 7
61 3 3 6 0 . 9 3 1 0 5 6
6 2 3 4 6 1 . 9 2 8 3 4 2
6 4 3 6 6 3 . 9 2 7 9 5 8
6 3 3 4 6 2 . 9 2 9 5 9 2
6 5 3 6 6 4 . 9 2 7 7 8 6
6 6 3 7 6 5 . 9 2 8 8 7 1
6 4 3 4 6 3 . 9 2 9 1 1 5
6 6 3 6 6 5 . 9 2 6 0 5 2
6 7 3 7 6 6 . 9 2 7 1 4 5
6 8 3 8 6 7 . 9 2 4 8 5 7
7 0 4 0 69.921i334
6 9 3 8 68.92!;574
71 4 0 7 0 . 9 2 4 7 0 6
7 0 3 8 6 9 . 9 2 4 2 5 1
7 2 4 0 7 1 . 9 2 2 0 8 2
7 3 41 7 2 . 9 2 3 4 6 2
7 4 4 2 7 3 . 9 2 1 1 8 1
7 6 4 4 75.92’1405
7 5 4 2 7 4 . 9 2 1 5 9 6
7 4 40 7 3 . 9 2 2 4 7 6
7 6 4 2 7 5 . 9 1 9 2 0 7
7 7 4 3 7 6 . 9 1 9 9 1 1
7 8 4 4 77.91:7314
7 9 4 4 78.9113329
81 4 6 80.91t5292
7 8 442 7 7 . 9 2 0 4 0 3
8 0 *44 79.9116380
8 2 ~46 81.91.3482
8 3 ,47 82.91,4131
8 4 ,48 8 3 . 9 1 1 5 0 3

7/2 +4.75626

5/2 - 0 . 7 8 8 1

7/2 - 1 . 1 0 3 6

6 -I-3.347

7/2 +5.148

3/2

5/2

l/2

7/2

- 0 . 4 7 4 3 4

+3.4678

+0.0902

+4.6583

3/2 +2.2261
312 +2.3849

5/2 +0.87552

3/2 +2.01602

3/2 +2.56161

912 - 0 . 8 7 8 8

312
0

l/2
0
3/2
3/2

+1.4390
0

+0.5344
0
+2.1056
+2.2696

912 - 0 . 9 7 0 1 7
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Z Element A N Atomic Mass Splin  I /1(nuclearmagnetons)

3 6 Kr
3 7 Rb

3 8 S r

3 9
4 0

Y
Z r

41 N b
4 2 M O

4 3 TC
4 4 R u

4 5 R h
4 6 Pd

4 7 Ag

4 8 Cd

4 9

5 0

I n

S n

8 6 5 0 8 5 . 9 1 0 6 1 6
8 5 4 8 8 4 . 9 1 1 8 0 0
87* 5 0 86.909 186
8 4 4 6 8 3 . 9 1 3 4 3 0
8 6 4 8 8 5 . 9 0 9 2 8 5
8 7 4 9 8 6 . 9 0 8 8 9 2
8 8 5 0 87.90564 1
8 9 5 0 8 8 . 9 0 5 8 7 2
9 0 5 0 8 9 . 9 0 4 7 0 0
91 51 9 0 . 9 0 5 6 4 2
9 2 5 2 91.90503 1
9 4 5 4 9 3 . 9 0 6 3 1 3
9 6 5 6 9.5.908286
9 3 5 2 9’2.906382
9 2 5 0 9 1 . 9 0 6 8 1 0
9 4 5 2 9:3.905090
9 5 5 3 9 4 . 9 0 5 8 3 9
9 6 5 4 9l5.904674
9 7 5 5 9t5.90602
9 8 5 6 9:7.905409

1 0 0 5 8 9 9 . 9 0 7 4 7 5
9 8 5 5 9i7.90711
9 6 5 2 915.907598
9 8 5 4 9 7 . 9 0 5 2 8 9
9 9 5 5 9 8 . 9 0 5 9 3 5

1 0 0 5 6 99.9042 18
101 5 7  1 0 0 . 9 0 5 5 7 7
1 0 2 5 8  1 0 1 . 9 0 4 3 4 8
1 0 4 6 0  1 0 3 . 9 0 5 4 3 0
1 0 3 5 8  lo:!.90551  1
1 0 2 5 6  1 0 1 . 9 0 5 6 0 9
1 0 4 5 8  1 0 3 . 9 0 4 0 1 1
1 0 5 5 9  1 0 4 . 9 0 5 0 6 4
1 0 6 6 0  1 0 5 1 . 9 0 3 4 7 9
1 0 8 6 2  1 0 7 . 9 0 3 8 9 1
1 1 0 6 4  1 0 9 . 9 0 5 1 6 4
1 0 7 6 0  1 0 6 . 9 0 5 0 9 4
1 0 8 6 1  1 0 7 . 9 0 5 9 4 9
1 0 9 6 2  1 0 8 8 . 9 0 4 7 5 6
1 0 6 5 8  1 0 5 . 9 0 6 4 6 3
1 0 8 6 0  1 0 7 . 9 0 4 1 8 7
1 1 0 6 2  1 0 9 . 9 0 3 0 1 2
111 6 3  1 1 0 . 9 0 4 1 8 8
1 1 2 6 4  1 1 1 . 9 0 2 7 6 2
1 1 3 6 5  1 1 2 . 9 0 4 4 0 8
1 1 4 6 6  1 1 3 . 9 0 3 3 6 0
1 1 6 6 8  1 1 5 . 9 0 4 7 6 2
1 1 3 6 4  1 1 2 . 9 0 4 0 8 9
115* 6 6  1 1 4 . 9 0 1 7 4 5
1 1 2 6 2  1 1 1 . 9 0 4 8 3 5
1 1 4 6 4  1 1 3 . 9 0 2 7 7 3
1 1 5 6 5  1 1 4 . 9 0 3 3 4 6

512 +1.35267
3/2 +2.7505

9/2 - - 1 . 0 9 3 0

l/2 - 0 . 1 3 7 3 1 6

5/2 - 1 . 3 0 2 8 5

9,/2 +6.1671

s/2 - 0 . 9 1 3 3

5,/2 - 0 . 9 3 2 5

512 - 0 . 6 2

5/‘2 - 0 . 7

l/2 - 0 . 0 8 8 3

5/2 - 0 . 6 1 5

l/2

l/2

l/2

l/2

9/2 f5.5233
9/2 +5.5351

l/2 - 0 . 9 1 7 8 1

- 0 . 1 1 3 5 4 8

- 0 . 1 3 0 5 3 8

- 0 . 5 9 5 0 1

- 0.62243
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i! Element A
-__

5 1 Sb

52 Te

53
54

I
Xe

55 cs
56 Ba

57

58

La

Ce

59 Pr
60 Nd

6 1 Pm

N Atomic Mass Spin I ~(nuclear  magnetons)
-___ - -

116 66 115.901745
117 67 116.002958
118 68 117.901606
119 69 118.903313
120 70 119.902198
122 72 121.903441
124 74 123.905272
121 70 120.903816
123 72 122.904213
120 68 119.904023
122 70 121.903066
123 7 1 122.904277
124 72 123.902842
125 73 124.904418
126 74 125.903322
128 76 127.904426
130 78 129.906238
127 74 126.904470
124 70 123.90612
126 72 125.90429
128 74 127.90354
129 75 128.90478
130 76 129.90351
131 77 130.90509
132 78 131.90416
134 80 13390540
136 82 135.90722
133 78 132.90536
130 74 129.90625
132 76 131.90512
134 78 133.90461
135 79 134.90555
136 80 135.90430
137 81 136.90550
138 82 137.90500
138* 81 137.90691
139 82 138.90614
136 78 135.90710
138 80 137.90583
140 82 139.90539
142 84 141.90914
141 8 2  14Cl.90760
142 82 141.90766
143 83 14:!.90978
144* 84 143.91004
145 85 144.91254
146 86 14Li.91309
148 88 147.91687
150 90 149.92092
147 86 14t5.91511

l/2

-0.99983

-1.04621

5/2 +3.3590

7/2 +2.547

l/2 -0.73585

l/2 -0.88715

5/‘2 +2.8091

l/2 -0.77686

3/2 +0.69066

7/2 +2.5789

3/2 +0.83718

3/2 +0.93654

5 +3.7071

712 +2.7781

512 +4.3

7/2 -1.064

7/2 -0.653
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Z Element A N AtomicMass Spin I p(nuclear maqnetons)

62 S m

63 Eu

64 Gd

65 Tb
66 OY

67 H O

68 Er

69 Tm
70 Yb

I

71 Lu

72 Hf

73 Ta
74 w

144 82 143.91199
147* 85 146.91487
148 86 147.91479
149 87 148.91718
150 88 149.91728
152 90 151.91976
154 92 lS3.92228
151 88 l!iO.91984
153 90 152.92124
152 88 1511.91979
154 90 1513.92093
155 91 15~4.92266
156 92 155.92218
157 93 156.92403
158 94 157.92418
160 96 159.92712
159 94 158.92539
156 90 155.92392
158 92 157.92445
160 94 159.92520
161 95 160.92695
162 96 161.92680
163 97 162.92876
164 98 163.92920
165 98 164.93042
162 94 161.92874
164 96 16.3.92929
166 98 16.5.93031
167 99 166.93206
168 100 1617.93238
170 102 16'?.93556
169 100 1613.93425
168 98 167.9342
170 100 169.93502
171 101 170.93643
172 102 17'1.93636
173 103 17:!.93806
174 104 173.93874
176 106 175.94268
175 104 174.94064
176* 105 17S.94266
174 102 173.94036
176 104 17S.94157
177 105 176.94340
178 106 177.94388
179 107 17E1.94603
180 108 179.94682
181 108 180.94801
180 106 179.94700

712 -0.8

7/l --0.65

S/2 +3.465
5/2 +1.52

312

7/2

7,/2

l/2

l/2

5/2

7/2 +2.23

712 +0.61

912 -0.47

712 +2.35

+0.4930

-0.678

182 108 181.94830
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Z Element A N Atomic Mass Spin I ~(nuclearmagnetons)

7!5 Re

74 OS

77 Ir

78 Pt

79 Au
80 b

81

82

83

TI

Pb

Bi

183 109 182.95032
184 110 183.9!5103
186 112 185.9.5444
185 110 184.95306
187* 112 186.95583
184 108 183.95275
186 110 185.95387
187 111 186.95583
188 112 187.95608
189 113 188.95830
190 114 189.95863
192 116 191.96145
191 114 190.96064
193 116 192.96301
190* 112 189.95995
192 114 191.96115
194 116 193.96272
195 117 194.96481
196 118 195.96497
198 120 197.96790
197 118 196.96654
196 116 195.96582
198 118 197.96676
199 119 198.96828
200 120 199.96833
201 121 200.97031
202 122 201.9'7064
204 124 203.97349
203 122 202.972353
205 124 204.974442
206* 125 205.976104
207* 126 206.977450
208* 127 207.982813
209* 128 208.985296
210* 129 209.990054
204 122 203.973044
206 124 205.974468
207 125 206.975903
208 126 207.976650
209 127 208.981082
210* 128 209.984187
211* 129 210.988742
212* 130 211.991905
214* 132 213.99977
209 126 208.980394
210* 127 209.984121
211* 128 210.987300
212* 129 211.991279
213* 130 212.994317
214* 131 213.998686

l/2 +0.117224

5,/2 +3.1718
5,/2 +3.2043

312 +0.16
3/2 +0.17

l/2 +0.60602

312 +0.74485

l/2

3/2

l/2 +1.61169
l/2 +1.62254

l/2 +0.5895

9/2 +4.0802

+0.502702

-0.556701
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2 Element

a4 PO

85 At

86 Rn

87 Fr

88 Ra

89 AC

90 Th

9 1 Pa

92 U

93 NP
94 Pu
95 A m

-
A N

209* 125
210* 126
211* 127
212* 128
213* 129
214' 130
215* 131
216* 132
218* 134
215* 130
216* 131
217* 132
218* 133
219* 133
220* 134
222* 136
221' 134
223* 136
223* 135
224* 136
225* 137
226* 138
228* 140
225* 136
227' 138
228* 139
227* 137
228* 138
229* 139
230* 140
231* 141
232* 142
231* 140
233* 142
234* 143
233' 141
234* 142
235* 143
238* 146
237* 144
240* 146
241' 146

Atomic Mass Spin I ~(nuclearmagnetons)

208.982426 l/2
209.982876
210.986657
211.988866
212.992825
213.995201
214.999423
216.001922
218.008930
214.998663
216.002411
217.004648
218.008607
219.009481
220.011401
222.017531
221.014183
223.019736
223.018501
2'24.02021
2'25.02352
2'26.02536
2'28.03114
2'25.02315
2t27.02775
2t28.03108
2Y27.02771
2t28.02875
2t29.03165
230.03309
231.03629
232.03812
231.03588
233.04013
234.04330
233.03952
234.04090
235.04392
238.05377 7/2
237.04806
240.05388
241.05671 S/2 l-l.4
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SOME PHYSICAL CONSTANTS AND CONVERSIONS’

Table of physical constants

Speed of l ight,  c = 2.998 x lO*m/sec.

Planck’s constant ,  h = 6.626 x 10eZ4  joule-sec.

If =  h,‘2r  =  1 . 0 5 4 5  x  10e3”  j o u l e - s e c .

Reciprocal of fine structure constant, 1 /tr  = 1 /( e2/4rcohc)  = 137.04.

Gravitational constant, G = 6.67 x lo-”  nt-m2/kg2.

Bolltzmann  constant ,  ks  = 1.381 x 10 m23  joule/K.

Avogadro’s  number ,  Ne =:  6.022 x 1023/mole.

Gas constant,  R = Noks  = 8.31 joule/K-mole = 1.99 calories/K-mole.

Electron:

Charge,  ) e  / = 1.602 x lo-l9  cou lombs;

Mass ,  m,  = 9 . 1 0 9  x  110-3’ kg = 0.5 110 MeV;

Magnet ic  moment  (Bohlr  magneton:!,  ps = eh/lm,

=  9 . 2 7 3  x  1O-24  joule/(weber/m2:);

Compton wavelength ,  X, = h/m.c = 2.426 x lo-l2  m ;

Bohr radius,  a = 4*coli/m,e2  = 5.2917 x lo-”  m ;

R y d b e r g  c o n s t a n t ,  R, ==  % m,e4/hf:(4rQi)2  =  1 . 0 9 7 3 7 3 1  x  lO’/m.

Pro’ton:

Mass ,  mp  =Nuclear mag~i~~,3 ;, ll~~~~:,9,=  9 3 8 . 2  MeV  =  1!:6.1  m , ;

I - : = 5 . 0 5 1  x  lo-  ioule/(weber/m2).

Constant  in  Coulomb’s law,  l/(  47rti)  = 8.987 x lo9 nt-m2/cou12.

Stefan-Boltzmann constant in black body radiation,

a = 2r5k;/15c3h3 =  5 . 6 7  x  1 0  -s watts/m2-K4.

Table of conversions

1 radian = 57.3 degrees;  1 degree = 0.01745 radians

1  almu =  1 . 6 6 0  x  10m2’kg  =  931.48MeV

1 eV  =  1 . 6 0 2  x  lo-l9  i;  1  i =  6 . 2 4 2  x  1O’seV

1 NeV  =  1 . 6 0 2  x  10-13i

1  fermi  =  10-l’  m

1 Angstrom =  lo-  lo  m

1 foot = 0.3048 m; 1 m ==  3.281 ft.

1 mile = 1.609 km; 1 km = 0.621 ml1

1  b u r n  =  10m2*m2

1 d a y  =  8 6 4 0 0  set

1 year =  3 . 1 5 6  x  107sec

1 c u r i e  =  3 . 7  x  lO”disintegrations,‘sec.

’ IReference:  8. N. Taylor, W. H. Parker, D. N. Langenberg, Reviews of Modern Physics

41,375,(1969).
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index

Absolute space, 53
Accelerators, 402
Acceptor, 373
Acoustic branch, 356
Actinium series, 440
Alkali metals, 256
Alpha decay, 441

theory, 443
Alpha particle, 391

model, 425
scattering, 393

amu, 5
Angular momentum

conservation, 230
intrinsic, 240
operator, 231,232,488
quantization, 218
quantum number, 218, 232, 234, 244
spin, 240
total, 233,243

Annihilation, 123
Anomalous Zeeman effect, 243
Antineutrino, 447, 464
Antiparticle, 464
Antisymmetric function, 258
Atomic mass

number, 409
table, 495
unit, 5

Atomic number, 401
Average lifetime, 461
Average value, 20

momentum, 296
Avogadro’s number, 6,504
Azimuthal quantum number, 232, 235

Balmer formula, 2 15
Balmer series, 217

Band, 364,366,367
conduction, 370
valence, 370

Band spectra, 246
Barn, unit, 391
Barrier penletration, 190, 443
Boryon, 467
Beta decay, 43 1,447

theory, 450
Beta particle, 391
Binding energy

definitiorl,  230
deuteron,  415
hydrogen atom, 230
impurity, 373
nuclear, 422
per nucleon, 424

Black body radiation, 328
Bloch theorem, 365
Bohr magneton, 237
Bohr model, hydrogen, 2 17
Bohr radius, 221
Boltzmann (constant, ks, 4, 289, 504
Boltzmann ‘distribution, 335
Boltzmann ,factor, 238, 312
Bench-Bruevich experiment, 58
Bond

covalent, 346
ionic, 34t5
metallic, 347

Bose-Einstein distribution, 335
Boson, 312
Boundary conditions, 170, 192, 316
Brackett  series, 217
Bragg formula, 148
Bravois  lattice, 341
Brillouin zone, 367
Biicherer  experiment, 83

507
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c, speed of light, 43,504
Carbon based amu,  5
Carbon dating, 458
Center of mass system, 220
Charge independence, 417
Classical statistical mechanics, 279
Collision, 43
Complex numbers, 8
Compound nucleus, 455
Compton effect, 119
Compton wavelength, 12:3, 504
Conduction band, 370
Conductors, 370, 371
Configurations, electron, 262
Conservation laws

baryons, 468
energy, 43,88
leptons, 465
mass, 44

mass-energy, a8

momentum, 43,83
strong interactions, 469

Constant potential, 169
Contraction, lengths, 64
Conversion of units, 504
Coordinate tronsformatic~ns

Galilean, 51
Lorentz, 65

ICorrespondence principle, 47
quantum theory, 207

(Coulomb barrier, 443
(Coupling, S.  1,  241
ICovalent  binding, 346
‘Cross-section

differential, 388
Rutherford, 397
total, 387

Crystal binding force, 346
Crystal classification, 341
Curie, unit, 504
Cyclotron, 402

D state, 255
Daughter nucleus, 433
Davisson-Germer experirnent, 146
De Broglie relations, 145
De Broglie wave, 141,218
De Broglie wavelength, ;!I  8
D e c a y

alpha, 441

beta, 447
fission, 457
gamma, 454

Decay constant, 432
Dee, 402
Degeneracy

eigenvolues, 226, 256
statistics, 3 16, 336

Density of states, 288
energy, 299,321
momentum, 295,316,318

Detailed balance, 305,314,321,335
Deuteron, 414
Diatomic  molecule, 244
Diffraction, electron, 148
Dilation, time, 61
Dipole moment, magnetic

electron, 236
nuclei, 413

Discrete medium, 349
Disintegration constant, 431
Dispersion relation, 6, 352
Distribution function, 16

Bose-Einstein, 335
energy, 300
Fermi-Dirac, 315
ideal gas, 291
Maxwell-Boltzmann, 291
momentum, 295,299
phase space, 285

Donor, 373
Doppler effect, 100
Double-slit diffraction, 130
Duane-Hunt law, 115
Dulong-Petit law, 302, 361

e, electron charge, 504
Effective mass, 368
Eigenfunction, 158, 162
Eigenvalue, 158
Einstein photoelectric equation, 1 17
Electrostatic Coulomb potential, 424,443
Electron

charge, 504
magnetic moment, 504
mass, 504

Electron capture, 453
Electron configuration, 262
Electron diffraction, 148, 151
Electronic specific heat, 324
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Electron lepton number, 465
Electron-positron pair, 123
Electrons in metals, 323
Electron spin, 240
Electron volt, 4
Elementary particles, 16
Elements, periodic table, 266
Emission

spontaneous, 331
stimulated, 332

Endothermic reaction, 456
Energy

conservation, 43,88
frequency relation, photon, 113
kinetic, 87
lattice vibrations, 357, 359
mass relation, 87
momentum relationship, 90
momentum transformation, 97
operator, 164,482
rdlativistic,  86
rest, 86

Energy band, 364,365
Energy, binding, 230
Energy density of states, 300, 32 1
Energy eigenfunction, 158
Energy equipartition, 302
Energy level, 194
Energy level diagram, 195
Energy, probability function, 280, 300
Energy quantization, 193
Equal a priori probabilities, 12
Equiportition of energy, 302
Errors

repeated experiments, 28
rms, 25

Exclusion principle, 254, 258
and statistics, 313

Exothermic reaction, 456
Expectation value, 20,32

energy, 164
gaussian  distribution, 35
momentum, 160

Experimental error, 24,28
Exponential function, 9
Extrinsic semiconductor, 373

F state, 255
Fermi-Dirac distribution, 315
Fermi energy, 315,322,324

Fermion,  3’12
Fermi, unit, 384
Fine structure

constant, 219, 504
splitting, 240
x-ray, 272

Fission, nuclear, 457
Flux, particle, 386
Fractional error, 26
Frequency, energy relation, 1 13
Frequency, wave vector transformation, 139
Fusion, nucllear,  457

Golilean  transformations, 51
velocity, 52

Gamma decay, 436,454
Gamma rays, 123,436
Gaussian distribution, 34
Gaussian packet

free-particle, 179
harmonic oscillator, 205

Geiger-Nuitall  rule, 447
Ground state, 194, 197, 2 16, 260
Group speed, 6, 141

h, Planck’s constant, 1 1 1, 1 13, 1 15, 13 1,
150

ti, 1 5 0 , 5 0 4
Hadron,  467
Half-life, 433
Hall effect, 373
Halogens, 265
Hard sphere scattering, 389
Harmonic oscillator

average energy, 302
distributi’on  function, 301
energy eigenvalues, 198
quantum, 196

Heat capacity
electron gas, 325
lattice, 302, 364

Heisenberg uncertainty principle, 152, 154
Helium, liquid, 321, 336
Hole, 371
Hydrogen

Bohr model, 217
energy levels, 2 15, 226
ortho-, pow-,  275
Schrb;dinger  equation, 222
wavefunctions, 226
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Hlyperchorge, 470
isotopic spin plot, 473

Ideal gos
distribution function, 291
energy, 288
in gravitational field, 294

Impact porometer, 394
Impurities in semiconductors, 373
Incident flux, 386
Indistinguishability of particles, 256
Inert gases, 263
Inertial frame, 48
IInertial  system, 48
IInsulator,  371
IInterferometer,  Michelson, 54
hnternol  conversion, 454
IIntrinsic semiconductor, 373
Inversion symmetry, 344
Itonic  binding, 346
fonizotion  energy, 230
Isomer, 436,454
Isotone,  411
Isotope, 411
Isotopic Spin, 469

j, angular momentum quantum number, 243

k:s,  Boftzmann  constant, 4, 289
li:, wave number, 6
K,  x-ray line, 271
K capture, 453
Kinetic energy, 87

operator, 168,222,483
K meson, 467

,e, angular momentum quantum number,
2 3 4 , 2 3 5

Lambda particle, 90, 468
Laser, 333
Lattice specific heat, 364
ILattice  vector, 341
ILattice  vibrations, 351

energy, 357
quantizotion, 360

ILegendre  polynomials, 234
ltepton,  4 6 4
Linear accelerator, 403
Linear chain of atoms, 350,354
Liquid drop model, 421
Longitudinal Doppler effect, 102

Lorentz force, 3
Lorentz transformations

coordinate, 65
energy-momentum, 96
velocity, 71
wove vector, 139

Lyman series, 217

Magic number, 425
Magnetic moment, 236,413
Magneto”

Bohr, 237
nuclear, 413

Moss conservation, 44
MOSS

effective, 368
relatiwstic,  83
rest, 83

Moss-energy conservation, 87
Moss, atomic, 409
Moss number, 409
Maxwell-Boltzmonn distribution, 288

experimental verification, 298
ideal gas, 291

Mesons, 419,466
Meson theory of Yukawa, 418
Metallic binding, 347
MeV,  4
MeV/c,  5
Michelson interferometer, 54
Michelson-Morley experiment, 54
Miller-Kusch experiment, 296
Minimum uncertainty, 181, 197
MKS units, 3
Molecular rotation, 244
Momentum

conservation, 43
energy relationship, 90
energy transformation, 98
operator, 162
relativistic, 83

Momentum density of states, 295
Momentum distribution function, 295, 299
Momentum eigenfunction, 159
Mosely low, 271
Most probable value

energy, 300
momentum, 296,299

mm,  218,232,235



Index 5 1 1

Mu meson, 63, 383, 464
Muon, 464

Mvonic lepton number, 465

n, principal qvontvm number, 226, 235

n-type semiconductor, 373

Natural radioactivity, 431
Neptunium series, 438

Nevtrino, 464

flux, 458
Neutron, 410,411, 467

Neutron number, 41 1
Newton’s laws of motion, 42,53,  54
Nondegenerate statistics, 316, 336

Non-inertial system, 49
Normal distribution, 35
Normal Zeeman effect, 239

Normalization, 21, 193, 204
Nuclear binding energy, 422
Nuclear fission, 457

Nuclear forces, 416,418

Nuclear fusion, 457

Nuclear magnetic moment, 413
Nuclear magneton, 413
Nuclear masses, 409

Nuclear models, 421

Nuclear radius, 384, 394
Nuclear reactions, 454
Nuclear spin, 413

Nucleon, 41 1

conservation, 448
Nvclide, 427, 431

Number of modes

bond, 367

sound, 354,356
Number of states

band, 367

shell, 256

Optical branch, 356

Orbital angular momentum, 231, 232, 233
Orthogonolity, 491

Orthohydrogen, 273

P state, 255

p-type semiconductor, 373
Pair annilhilation,  126

Pair production, 123

Parahydrogen, 273

Parent nucleus, 433

Particle accelerators, 402
Particles, elementary, 464

Particle in a box, 190, 2 13
Paschen series, 217

Pavli exclusion principle, 254, 258

Periodic boundary conditions, 316,353, 366
Periodic table, 266

Pfvnd serie’s,  217
Phase spacte,  284, 450

volume element, 286, 287

Phase speed, 6, 137, 141
Phase, wave, 136, 138
Phonon, 361

Photodisintegration, 415
Photoelectric effect, 1 15

Photon,5,ll12,113,116,119
distribution, 328

Pi meson, 4 19,467

Planck energy-frequency relation, 1 13
Planck rod&ion  formula, 329

Planck’s constant, 1 11, 113, 115, 13 1,504
Positron, 124, 464

Postulates of relativity, 55

Potential energy, 88
Primitive laitice vector, 341
Probability, 11

amplitude, 130, 157
density, 30

distribvtison  function, 16
equal a priori, 12

products of, 14
sums of, ‘I 3

Probability, wavefunction, 130, 156

Proton, 411,467

mass, 504
Proton-protean cycle, 457

Principal quantum number, 226, 235
Principle

exclusion,, 254, 258
relativity, 56

superposition, 130, 163

uncertainty, 152, 154
Products of probability, 14

Q, reaction energy, 441

Quanta, 11 I
Qvantization

Bohr model, 218

lattice vibrations, 360
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Quantum mechanics, 167
Quantum theory of radiation, 329
Quark, 474

R, gas constant, 302, 504
Radial momentum operator, 224
Radiation, black body, 329
Radioactive carbon dating, 458
R a d i o a c t i v e  d e c a y

laws, 432,433
table, 437

Radioactive series, 436
Radius

Bohr, 221
nucleur,  3 8 4 , 3 9 4

Rayleigh-Jeans radiation formula, 329
Redshift, 103
Reduced mass, 220
Reflection coefficient, 186
Reflection plane, 344
Reflection symmetry, 344
Relativistic transformations

longitudinal length, 64
Lorentz, 65
time, 60
transverse length, 60
velocity, 71

R’elativistic  kinetic energy, 137
Relativistic mass, 83
Relativistic mechanics, 85
Relativistic momentum, 88
Relativistic postulates, 57
Relativistic wave equation, 169
Rest energy, 87
Rigid rotator, 244
Root mean square deviation, 24
Rotation axis, 342
Rotational quantum number, 244
Rotational spectrum, 245
Rotational symmetry, 342
Rutherford

atomic model, 393
cross-section, 397

Rutherford scattering, 393
theory, 394

Rydberg constant, 215,219, 221,504

s, electron spin, 240
5;  state, 255

Scattering, 385
Scattering angle, 387

Rutherford, 396
Schrodinger  equation, 166, 167

examples, 178
hydrogen, 222

Selection rule, 239, 244
Semiconductor, 371
Shell model, 425
Sigma particle, 468
Simple harmonic oscillator

average energy, 302
distribution function, 301
energy eigenvalues, 198
quantum, 196

Simultaneity,  67
Single-slit diffraction, 153
Solid state, 341
Sound waves, 347,349
Specific heat

electron gas, 325
solid lattice, 302, 362

Spectral series, 2 17
S p e e d

group, 6, 141
phase, 6, 141

Speed of light, 43,504
Spherical polar coordinates, 222, 23 1,483
Spin, 240, 24 1
Spin magnetic quantum number, 240
Spin orbit interaction, 241
Spontoneous emission, 33 1
Spreading of packet, 182
Square potential barrier, 188
Stability line, 447
Standing wave, 192
Stationary state, 195,213
Statistical mechanics, 279, 312
Stefan-Boltzmann constant, 504
Step potential, 183, 187
Stern-Gerloch experiment, 242
Stimulated emission, 332
Stirling formula, 35
Strangeness quantum number, 470
Sums of angular momenta, 242
Sums of probabilities, 13
Superposition, 130, 163

of lattice modes, 359
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Surface energy, nuclear, 423

Symmetric function, 258

Symmetries of crystals, 341

Temperature, 280

Thermal equilibrium, 280

Thorium series, 437

Threshold energy, 125,415,456

Time dilation, 61

Time reversal, 305

Transformation

Galilean, 51

Lorentz,  65

Transition probability, 314

Transitions, 214

Translational symmetry, 341

Transmission coefficient, 187

Transverse Doppler effect, 101

Tunneling, 188,443

Uncertainty, minimum, 181, 197

Uncertainty principle

energy-time, 152

light waves, 127, 128

momentum, position, 154

Unit cell, 341

Units, 3

conversion, 504

Universal gas constant, R, 302, 504

Uranium series, 439

Valence band, 370

Valence crystal, 346

Van der Waals  force, 347

Velocity

group, 6, 141

phase, 68,  141

Velocity transformations, 52, 71

Vibration, lattice, 349

Volume energy, nuclear, 423

Volume element

energy, ,300

momentum space, 295

phase space, 287

Van Laue diffraction, 149

Wave equation, sound

continuous medium, 349

discrete Imedium,  350

Wavefunction, 130

free pariicle,  159

hydrogen, 226

Wavelength, 6

Wave mechanics, 167

Wave packets, 179,205

Wave vector, frequency transformation, 140

Weak interaction, 465

Work function, 1 16, 326

Work, relativistic, 86

Xi particle, 468

X rays, 1 14, 270

Young’s momdulus,  348

Yukawa force, 421

Zeeman effect, 236

anomalous, 243

normal, 239

Zero point energy, 197, 206

Zero rest mass particle, 11 1




